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Abstract. In our continuing work on ”Blind Signal Separation” this
paper focuses on extending our previous work [1] by creating a data
set that can successfully perform blind separation of polyphonic signals
containing similar instruments playing similar notes in a noisy environ-
ment. Upon isolating and subtracting the dominant signal from a base
signal containing varying types and amounts of noise, even though we
purposefully excluded any identical matches in the dataset, the signal
separation system successfully built a resulting foreign set of synthe-
sized sounds that the classifier correctly recognized. Herein, this paper
presents a system that classifies and separates two harmonic signals with
added noise. This novel methodology incorporates Knowledge Discovery,
MPEG7-based segmentation and Inverse Fourier Transforms.

1 Introduction

Blind Signal Separation (BSS) and Blind Audio Source Separation (BASS) are
the subjects of intense work in the field of Music Information Retrieval. This
paper is an extension of previous music information retrieval work wherein we
separated harmonic signals of musical instruments from a polyphonic domain.
[1] In this paper we move forward and simulate some of the complexities of real
world polyphonic blind source separation. Particularly, involving our previous
work to recognize and synthesis signals in order to extract proper parameters
from a source containing two very similar sounds in a polluted environment
containing varying degrees of noise.

1.1 The BSS Cocktail Party

In 1986, Jutten and Herault proposed the concept of Blind Signal Separation
by capturing clean individual signals from unknown, noisy signals containing
multiple overlapping signals [2]. Jutten’s recursive neural network found clean
signals based on the assumption that the noisy source signals were statistically
independent. Researchers in the field began to refer to this noise as the cocktail
party property, as in the undefinable buzz of incoherent sounds present at a large
cocktail party. Simultaneously, Independent Component Analysis (ICA) evolved
as a statistical tool that expressed a set of multidimensional observations as
a combination of unknown latent variables sometimes called dormant signals.
ICA reconstructs dormant signals by representing them as a set of hypothesized



2

independent sequences where k = the number of unknown independent mixtures
from the unobserved independent source signals:

x = f(Θ, s), (1)

where x = (x1, x2, ..., xm) is an observed vector and f is a general unknown
function with parameters Θ [3] that operates the variables listed in the vector
s = (s1, ..., sn)

s(t) = [s1(t), ..., sk(t)]T . (2)

Here a data vector x(t) is observed at each time point t, such that given any
multivariate data, ICA can decorrelate the original noisy signal and produce a
clean linear co-ordinate system using:

x(t) = As(t), (3)

where A is a n× k full rank scalar matrix. Algorithms that analyze polyphonic
time-invariant music signals systems operate in either the time domain [4], the
frequency domain [5] or both the time and frequency domains simultaneously [6].
Kostek takes a different approach and instead divides BSS algorithms into either
those operating on multichannel or single channel sources. Multichannel sources
detect signals of various sensors whereas single channel sources are typically
harmonic [7]. For clarity, let it be said that experiments provided herein switch
between the time and frequency domain, but more importantly, per Kostek’s ap-
proach, our experiments fall into the multichannel category because, at this point
of experimentation two harmonic signals are presented for BSS. In the future, a
polyphonic signal containing a harmonic and a percussive may be presented.

1.2 Art leading up to BSS in MIR, a brief review

In 2000, Fujinaga and MacMillan created a system recognizing orchestral instru-
ments using an exemplar-based learning system that incorporated a k nearest
neighbor classifier (k-NNC). [8] Also, in 2000, Eronen and Klapuri created a
musical instrument recognition system that modeled the temporal and spectral
characteristics of sound signals [9] that measured the features of acoustic signals.
The Eronen system was a step forward in BSS because the system was pitch in-
dependent and it successfully isolated tones of musical instruments using the full
pitch range of 30 orchestral instruments played with different articulations. In
2001 Zhang constructed a multi-stage system that segmented music into indi-
vidual notes and estimated the harmonic partial estimation from a polyphonic
source [10]. In 2002, Wieczorkowska, collaborated with Slezak, Wróblewski and
Synak [11] and used MPEG-7 based features to create a testing database for
training classifiers used to identify musical instrument sounds. Her results showed
that the kNNC classifier outperformed, by far, the rough set classifiers. In 2003,
Eronen [12] and Agostini [13] both tested, in separate tests, the viability of using
decision tree classifiers in music information retrieval.

In 2004, Kostek developed a 3-stage classification system that successfully
identified up to twelve instruments played under a diverse range of articulations
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[14]. The manner in which Kostek designed her stages of signal preprocessing,
feature extraction and classification may prove to be the standard in BSS MIR.
In the preprocessing stage Kostek incorporated 1) the average magnitude differ-
ence function and 2) Schroeder’s histogram for purposes of pitch detection. Her
feature extraction stage extracts three distinct sets of features: Fourteen FFT
based features, MPEG-7 standard feature parameters, and wavelet analysis.

2 Experiments

To further develop previous research where we dissimilar sounds, here we used
two very similarly timbered and pitched instruments. In the previous experi-
ments we used 4 separate versions of a polyphonic source containing two har-
monic continuous signals obtained from the McGill University Masters Samples
(MUMs) CDs. The first raw sample contained a C at octave 5 played on a nine
foot Steinway, recorded at 44,100HZ, in 16-bit stereo and the second raw sample
contained an A at octave 3 played on a Bb Clarinet, recorded at 44,100HZ, in
16-bit stereo. We then created four more samples created from mixes of the first
two raw samples.

In this paper’s experiments we again used Sony’s Sound Forge 8.0 for mixing
sounds. Two base instruments used to create a mix, in terms of their timbre,
are much closer in this paper than in the previous one [1]. The first raw sample
contained a C at octave 4 played on a violin by a bow, played with a vibrato
effect. The second raw sample contained a quite similar sounding C at octave
5 played on a flute with a fluttering technique. Both raw sounds were recorded
at 44,100HZ, in 16-bit stereo and obtained from the McGill University Masters
Samples (MUMs) CDs.

2.1 Noise Variations

In order to further simulate real world environments we decided to pollute the
date set with noise. First we constructed a noise data set based off of four pri-
mary noises. The first noise contained sounds recorded at a museum containing
footsteps, clatter, muffled noises and talking. The second noise contained the
sound a very strong wind makes on as it gusts, the pitches varied and so did
the intensity of the gusts. The third noise contained the sounds an old clattering
sputtering air conditioner made, it included the sound of the air, the vibrations
of the tin and the engine as well as the old motor straining to keep turning.
The last noise contained the clanking and noise that a factory steam engine
made. One can hear the steam, the pistons, and the large gears all grinding
to make a terrible noise. We then mixed, using Sony’s Sound Forge software,
the four aforementioned raw noises to produce ten additional noise combina-
tions. These combinations included 01:02, 01:02:03, 01:02:03:04, 01:03:04, 02:03,
02:03:04, 01:02:04, 01:03, 01:04 and 03:04. To create the sound data set, the team
mixed these 10 new noises and 4 original noises with 4C violin 5C flute using
Sony’s Sound Forge 8.0 for mixing sounds (see Tables 1 and 2).
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2.2 Creating a Real-World Training and Testing Sets

Creating a real world data set for training is the essence of the paper. In the
real world, polyphonic recording invariably contain pollutants in the form of
noise. Taking the created noises, explained in the previous section, the team
constructed a set of sounds for training/testing as follows. We randomly selected
four sets into the training set. Essentially, as in the real world a training set will
have, first, noise and probably never contain the exact signal in the training set.
We used WEKA for all classifications. Using similar sounds, varying noise and
no exact match in the training data set achieved our real world environment as
shown in Tables 1 and 2.

Table 1. Training Set: Sample
Sound Mixes: Training Set Prepa-
ration

Harmonics Noise

4C violin 5C flute 01
4C violin 5C flute 01:02
4C violin 5C flute 01:02:03
4C violin 5C flute 01:02:03:04
4C violin 5C flute 01:03:04
4C violin 5C flute 02
4C violin 5C flute 02:03
4C violin 5C flute 02:03:04
4C violin 5C flute 03
4C violin 5C flute 04

Table 2. Sample Sound Mixes:
Testing Set Preparation

Harmonics Noise

4C violin 5C flute 01:02:04
4C violin 5C flute 01:03
4C violin 5C flute 01:04
4C violin 5C flute 03:04

Upon isolating and subtracting 5C flute signal from the mix of all 10 sounds
in the Training Set (see [1]), we obtained a new dataset of 10 samples of 4C violin
mixed with different types of noises as shown in Table 3. Now, we extended this
set by adding to it 25 varying pitches of a Steinway Piano taken from the MUM
database. This new dataset was used for training and the one shown in Table 4
for testing.

2.3 Classifiers

We used four classifiers in our investigations on musical instrument recognition:
Tree J48, Logistic Regression Model, Bayesian Network, and Locally Weighted
Learning.

Bayesian Network A set of variable nodes with a set of dependencies called
edges that exist between the variables and a set of probability distribution func-
tions for each variable. The nodes represent the random variables while the
arrows are the directed edges between pairs of nodes. This approach has been
successfully applied to speech recognition [15], [16].
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Table 3. Sample Training Set: Re-
sultant Sounds by Sound Separa-
tion

Harmonics Noise

4C violin 01
4C violin 01:02
4C] piano clean
4C] piano clean

Table 4. Sample Testing Set: Re-
sultant Sounds by Sound Separa-
tion

Harmonics Noise

4C violin 01:02:04
4C violin 01:03
4C violin 01:04
4C violin 03:04

Tree J48 Decision Tree-J48 is a supervised classification algorithm, which has
been extensively used for machine learning and pattern recognition [17]. Tree-J48
is normally constructed top-down, where parent nodes represent conditional at-
tributes and leaf nodes represent decision outcomes. It first chooses a most infor-
mative attribute that can best differentiate the data set; it then creates branches
for each interval of the attribute where instances are divided into groups, until
instances are clearly separated in terms of the decision attribute; finally it tests
the tree by new instances in a test data set.

Logistic Regression Model Logistic regression model is a popular statistical
approach of analyzing multinomial response variables, since it does not assume
normally distributed conditional attributes which can be continuous, discrete,
dichotomous or a mix of any of these; it can handle nonlinear relationships
between the decision attribute and the conditional attributes. It has been widely
used to correctly predict the category of outcome for new instances by maximum
likelihood estimation using the most economical model [19].

Locally Weighted Learning Locally Weighted Learning is a well-known lazy
learning algorithm for pattern recognition. It votes on the prediction based on
a set of nearest neighbors (instances) of the new instance, where relevance is
measured by a distance function, typically a Euclidean Distance Function, be-
tween the query instance and the neighbor instance. The local model consists of a
structural and a parametric identification, which involve parameter optimization
and selection [20].

3 Experimental Parameters

3.1 MPEG-7 features

In considering the use of MPEG-7, the authors recognized that a sound segment
containing musical instruments may have three states: transient, quasi-steady
and decay. Identifying the boundary of the transient state enables accurate tim-
ber recognition. Wieczorkowska proposed a timbre detection system [21] where
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Fig. 1. Procedure for subtracting an extracted signal’s FFT from the source FFT

she splits each sound segment into 7 equal intervals. Because different instru-
ments require different lengths, we use a new approach to look at the time it
takes for the transient duration to reach the quasi-steady state of the fundamen-
tal frequency. It is estimated by computing the local cross-correlation function of
the sound object, and the mean time to reach the maximum within each frame.
The classifiers we built for training/testing are based on the following MPEG-7
descriptors:

AudioSpectrumCentroid. It is a description of the center of gravity of the
log-frequency power spectrum. Spectrum centroid is an economical description
of the shape of the power spectrum. It indicates whether the power spectrum
is dominated by low or high frequencies and, additionally, it is correlated with
a major perceptual dimension of timbre; i.e.sharpness. To extract the spectrum
centroid: 1. Calculate the power spectrum coefficients; 2. Power spectrum coef-
ficients below 62.5 Hz are replaced by a single coefficient, with power equal to
their sum and a nominal frequency of 31.25 Hz;3. Frequencies of all coefficients
are scaled to an octave scale anchored at 1 kHz.

AudioSpectrumSpread. It is a description of the spread of the log-frequency
power spectrum. Spectrum spread is an economical descriptor of the shape of the
power spectrum that indicates whether it is concentrated in the vicinity of its
centroid, or else spread out over the spectrum. It allows differentiating between
tone-like and noise-like sounds. To extract the spectrum Spread, we calculate
the spectrum spread as the RMS deviation with respect to the centroid, on an
octave scale.
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HarmonicSpectralCentroid. It is computed as the average over the sound
segment duration of the instantaneous HarmonicSpectralCentroid within a run-
ning window. The instantatneous HarmonicSpectralCentroid is computed as the
amplitude (linear scale) weighted mean of the harmonic peaks of the spectrum.
To extract the Harmonic Spectral Centroid, 1. Estimate the harmonic peaks over
the sound segment. 2. Calculate the instantaneous HarmonicSpectralCentroid.
3. Calculate the average HarmonicSpectralCentroid for the sound segment.

HarmonicSpectralDeviation. It is computed as the average over the sound
segment duration of the instantaneous HarmonicSpectralDeviation within a run-
ning window which is computed as the spectral deviation of log-amplitude com-
ponents from a global spectral envelope. The Harmonic Spectral Deviation is
extracted using the following algorithm 1. Estimate the harmonic peaks over the
sound segment. 2. Estimate the spectral envelope. 3. Calculate the instantaneous
HarmonicSpectralDeviation. 4. Calculate the average HarmonicSpectralDevia-
tion for the sound segment.

HarmonicSpectralSpread. It is computed as the average over the sound
segment duration of the instantaneous HarmonicSpectralSpread within a run-
ning window computed as the amplitude weighted standard deviation of the
harmonic peaks of the spectrum, normalized by the instantaneous Harmonic-
SpectralCentroid. It is extracted using the following algorithm 1. Estimate the
harmonic peaks over the sound segment. 2. Estimate the instantaneous Harmon-
icSpectralCentroid. 3. Calculate the instantaneous HarmonicSpectralSpread for
each frame. 4. Calculate the average HarmonicSpectralSpread for each sound
segment.

HarmonicSpectralVariation. It is the mean over the sound segment du-
ration of the instantaneous HarmonicSpectralVariation. The instantaneous Har-
monicSpectralVariation is defined as the normalized correlation between the am-
plitude of the harmonic peaks of two adjacent frames. It is extracted using the
following algorithm. 1. Estimate the harmonic peaks over the sound segment. 2.
Calculate the instantaneous HarmonicSpectralVariation each frame. 3. Calculate
the HarmonicSpectralVariation for the sound segment.

4 Experimental Procedures

In this research, we applied four different types of noise to built our testing
dataset of 14 sounds described in Tables 1, 2. The second table represents
randomly selected four of the resultant new sounds for testing. This testing con-
sisted of binary classification of violin against a 25 varying pitches of a Steinway
Piano taken from the MUM database. We used the remaining sounds in 3 for
training. Essentially, we now had a training set that was void of any of the
combination in the training set 4. In analyzing the results we found that the
system correctly classified all the synthesized using four different classifiers. We
did observe however that the original sound of violin from the MUMs database
was incorrectly classified, without other original violin sounds from MUMs in the
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training set, by three of the classifiers: Tree J48, Logistic Regression Model, and
Bayesian Network. Thus, in this research, we conclude that the original sounds
from MUMs and the synthesized sound, which were produced by our subtrac-
tion algorithm, can form a robust database, which can represent similar sounds
of recordings from different sources. We consider the transient duration as the
time to reach the quasi-steady state of fundamental frequency. Thus we only
apply it to the harmonic descriptors, since in this duration the sound contains
more timbre information than pitch information of the note, which is highly
relevant to the fundamental frequency. The fundamental frequency is estimated
by first computing the local cross-correlation function of the sound object, and
then computing mean time to reach its maximum within each frame, and finally
choosing the most frequently appearing resultant frequency in the quasi-steady
status. In each frame i, the fundamental frequency is calculated in this form:

f(i) =
Sr

Ki/ni
(4)

where Sr is the sample Frequency, n is the total number of r(i, k)’s local valleys
across zero, where k ∈ [1,Ki]. See formula. Ki is estimated by k as the maximum
fundamental period by the following formula, where r(i, k) reaches its maximum
value. ω is the maximum fundamental period expected.

r(i, k) =
m+n−1∑

j=1

s(j)s(j − k)

/√√√√
m+n−1∑

j=m

s(j − k)2
m+n−1∑

j=m

s(j)2, k ∈ [1, Sr × ω]

(5)

Table 5. Overall Accuracy Results Tree J8, Logistic, Local Weighted Learning,
Bayesian Network .

TreeJ48 Logistic LWL BayesianNetwork

Accuracy 83.33% 83.33% 100% 83.33%

Table 6. Individual Results.

TreeJ48 Logistic LWL BayesianNetwork

4C violin noise 01 02 04 Yes Yes Yes Yes
4C violin noise 01 03 Yes Yes Yes Yes
4C violin noise 01 04 Yes Yes Yes Yes
4C violin noise 03 04 No No Yes No
Subtracted Piano Sounds Yes Yes Yes Yes
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5 Conclusion

Automatic sound indexing should allow labeling sound segments with instrument
names. In our research, we start with the singular, homophonic sounds of musical
instruments, and then extend our investigations to simultaneous sounds. This
paper is focussing on the mix of two instruments sounds, the construction of
successful classifiers for identifying them, and developing a new theory which we
can easily extend to the mix of several sounds. Knowledge discovery techniques
are applied at this stage of research. First of all, we discover rules that recognize
various musical instruments. Next, we apply rules from the obtained set, one by
one, to unknown sounds. By identifying so called supporting rules, we are able to
point out which instrument is playing (or is dominating) in the given segment,
and in what time moments this instrument starts and ends playing.
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