
Journal of Computer Science 2 (5): 422-430, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Abdellatif. Mtibaa, Laboratory EµE, Faculty of Sciences of Monastir, 5019, Monastir, Tunisia
Tel. No. 00216 98 565026

422

An Iterative Method for Algorithms Implementation on a Limited Dynamically

Reconfigurable Hardware

1Abdellatif. Mtibaa, 2,3Abdessalem. Ben Abdelali, 2,3Lotfi. Boussaid and 2Elbey. Bourennane

 1Laboratory EµE, Faculty of Sciences of Monastir, 5019, Monastir, Tunisia
 2Laboratory LE2I, University of Burgundy, 21000 Dijon, France

 3Laboratory C.E.S, National Engineering School of Sfax,(ENIS),B.P W. 3038, Sfax, Tunisia

Abstract: In this study we propose a framework and a combined temporal partitioning and design
space exploration method for run time reconfigurable processors. Our objective is to help designers to
implement an algorithm in limited FPGA area resources while respecting the execution time constraint.
The algorithm to be implemented is represented by a task graph with different implementation
alternatives (design points) for each task. We study the effect of hardware resources limitation in the
choice of the algorithm implementation design point. The proposed method is based on an heuristic
technique which consists on combining temporal partitioning and task design points selection to obtain
solutions that satisfy the imposed constraints.

Key words: Reconfigurable hardware, run time reconfiguration, time partitioning, design points

INTRODUCTION

 With today’s deep sub-micron technology, the
state-of-the-art FPGA have exceeded 10 million system
gates, allowing for multimillion gates FPGAs operating
at speeds surpassing 400 MHz. Many designs, which
previously could only achieve speed and cost of density
goals in ASICs, are converting to much more flexible
and productive reprogrammable solutions. The major
developments in FPGA logic density, speed, packaging
etc. have made implementing a system of processor/s,
IP blocks, and user logic in an FPGA (System On a
Programmable Chip: SOPC) a possibility. This
technology is currently being used for the acceleration
of a wide variety of applications on a large number of
systems. It has evolved so much that the real-time
aspect is not the only objective of the designer[1]. It has
allowed the association of the flexibility and the
specificity. Several applications can be realized by
specialized architectures by simply configuring the
FPGAs each time the FPGA-based board is supplied.
 With the advent of new device architectures and
new software tools, the interest in Run-Time
Reconfiguration (RTR) or dynamically reconfiguration
logic has increased. This concept has introduced several
advantages. It helps the designer to optimize his
implementation by increasing the functional density of
the FPGA coprocessor. It offers the possibility of
sharing in time the available resources in the FPGA
between the different tasks of an application. This can
be accomplished by using either total or partial dynamic
reconfiguration. This later allows the configuration of a
part of an FPGA design to change while the circuit is
running. The AT40K40 FPGA family of ATMEL

allows the reconfiguration of any area of the component
by modifying the SRAM configuration contents[1].
Actually, Xilinx offers this technology for his more
recent families such as the Virtex-II Pro FPGAs[2-4].
 In this study we propose a method for efficient
management of a given FPGA area resources for a
particular algorithm by exploiting the dynamic
reconfiguration for possible use in SOPC. The proposed
method consists in combining temporal partitioning
techniques and design points selection of the different
tasks constituting the algorithm. We aim to resolve the
temporal partitioning problem for a given application
while considering the characteristic of multi design
point of each algorithm task. This can be very useful for
possibly variable resources available on the FPGA
when adding a new service or an update[5]. By using
different alternatives for the algorithm tasks we
increase the chance to meet the application constraints.
In fact choosing the best design point for each task may
not necessarily result in the best overall design. This
depends on the architectural constraints and the
dependency constraints among the tasks[6].

State of the ART in the dynamic reconfiguration
domain: In literature a lot of interest was given to the
dynamic reconfiguration and the opportunities given by
the new FPGA technologies. Works in this field aim To
reduce the difficulty in managing the dynamically
reconfigured application and to provide a reliable
implementation by developing a set of tools and
associated methodologies addressing many issues
related to the Dynamic Reconfiguration such as:
Automatic partitioning of a conventional design,
Specification of the dynamic constraints, Verification

J. Computer Sci., 2 (5): 422-430, 2006

 423

of the dynamic implementation through dynamic
simulations, Automatic generation of the configuration
controller, etc.
 In[7-9] the FSS (FPGA Support System)
environment which is developed at Manchester
University is represented. It facilitates the execution of
hardware-based tasks on a dynamically reconfigurable
FPGA. It supports the placement, execution and
removal of blocks on the FPGA. A framework for the
Design and Implementation of Dynamically and
Partially Reconfigurable Systems “PaDReH” is
proposed in[10,11]. It is presented with a design flow
including partitioning, scheduling and validation.
Papers[12,13] are related to the integrated design system
called SPARCS (Synthesis and Partitioning for
Adaptive Reconfigurable Computing Systems) which is
developed in the ECECS Department at Cincinnati
University. It aims to automatically partitioning and
synthesizing designs for reconfigurable boards with
multiple field-programmable devices (FPGA). The
system contains a temporal partitioning tool, a spatial
partitioning tool, and a high-level synthesis tool. In[14] a
run-time reconfiguration system for FPGA computing
resources is proposed; System behaviour and
architecture are represented as a problem graph, and an
architecture graph, respectively. The Model-Integrated
Development Environment for Adaptive Computing
(MIDE) project of Vanderbilt University[15] has as goal
to develop high-level system design tools for
implementing dynamically reconfigurable systems
using adaptive computing technology. It is aimed at
embedded systems of weapons like missile guiding
systems. It uses DSP processors coupled to Virtex
Xilinx FPGAs. The Berkeley Reconfigurable
Architectures, Software, and Systems (BRASS) project
of Berkeley University has proposed SCORE (Stream
Computations for Reconfigurable Execution)[16], a
computation model based on the organization of
reconfigurable systems around the virtualization of
three main hardware concepts: paged reconfigurable
hardware, page communication through the use of
streams, and storage. The Dynamically Reconfigurable
Hardware Research at Bournemouth University[17,18]
has proposed the DYNASTY tool, which is a generic
CAD framework for research in the area of
reconfigurable system design techniques and
methodologies.
 The Specific action « dynamically reconfigurable
Architectures » of the CNRS (National Center of
Scientific Research in France) Multi-field themes
network on SOC provides three main research projects
in dynamic reconfiguration: ARDOISE, DART and
DNODE[19]. In difference to ARDOISE, DART and
DNODE are note based on the use of the dynamically
reconfigurable FPGA. ARDOISE propose a
dynamically reconfigurable Architecture dedicated to
embedded image and signal processing. In[1], an image-
processing application, image rotation, that exploits the

FPGAs dynamic reconfiguration method is presented. It
shows that the choice of an implementation, static or
dynamic reconfiguration, depends on the application
nature. Paper[20] describes Implementation of
JPEG2000 Arithmetic Decoder using Dynamic
Reconfiguration. The target architecture is ARDOISE.
Works about Dynamic Reconfiguration methods and
applications presented in[21-23] are also related to the
ARDOISE architecture.
 Numerous algorithms for partitioning, scheduling
and placement of tasks for reconfigurable computing
devices are proposed in the literature. The paper[24]
treats in addition to the partitioning, the scheduling of
the tasks. The advantage of the approach presented in
this study is the capability to model communication
between nonadjacent on-chip configurations and
multiple levels of logic. Other more recent works were
interested in depth to the time placement problem[25-30].
The execution of a task on the reconfigurable device
leads to the online placement problem, for which a
method based on free rectangles management and
heuristics fitting has been proposed in[28] and improved
in[30,31]. In[25] the authors modeled the time placement as
a three-dimensional problem. A task is represented by a
cube in which the X and the Y coordinates represent the
width and the height of the task in the given FPGA. The
Z coordinates represents the time at which the task will
be mapped in the FPGA.
In spite of the variety and the importance of the state of
the art, this field remains very active. Many problems
remain without efficient solutions or have yet to be
solved and the academic community continues the
suggestion of new techniques and methods to better
exploit the dynamic reconfiguration in different
applications and systems. The handled problems are
due to new applications needs, environment and
technology constraints.

Motivations and problem formulation: The actual
systems for multimedia services have demanding
applications that can be driven by portability,
performance, cost, consumption and flexibility. A key
challenge of mobile computing, for example, is that
many attributes of the environment vary
dynamically[32]. The key issue in the design of portable
multimedia systems is to find a good balance between
flexibility and high-processing power on one side, and
area and energy-efficiency of the implementation on the
other side. the rapid evolution of multimedia services
and their quality necessitates the use of dedicated
electronic systems that assure a big level of flexibility
by giving the possibility for updates and new services
addition while respecting the application constraints.
Dynamically reconfigurable systems, usually based on
dynamically reconfigurable FPGA, present a very
interesting solution for such problems. In fact, with the
development of new height performance FPGA families
it becomes possible to achieve high performance in

J. Computer Sci., 2 (5): 422-430, 2006

 424

term of latency at relatively low cost in term of used
hardware resources. Our research interest is related to
SORC (system on reconfigurable chip) conception and
Algorithm Architecture Adequation (AAA) for
multimedia applications[33]. Resolving problems related
to the us of dynamic reconfiguration in SOPC is one
important issue in our work .
 Critical treatments of a given application are
usually executed by hardware modules. By considering
the application constraints and the available hardware
resources the designers have to choose between
dynamic reconfiguration and static configuration (or
ASIC implementation). In this study we consider that
we have limited reconfigurable hardware resources that
should be exploited for the implementation of a given
algorithm. The resources limitation can be caused by
global consideration related to the system and the
application constraints or for the fact that the system
already exists and no extensions are possible whereas
adding a new service or an update or modification of
existing service is required (Fig. 1:).

Processeurs
RTOSes and SW

architecture

CPU

 Reconfigurable

hardware
ressource

MEM

H/W
process

H/W
process

H/W
process

Available
hardware
resources

Fig. 1: A SOC with run time reconfigurable hardware

resources

 Our objective is then to be able to run our
algorithm in this limited FPGA area resources while
respecting the execution time constraint. The main idea
consists in considering different implementation
alternatives for the tasks set of the algorithm to be
implemented and combining the temporal partitioning
and tasks design points selection to obtain a solution
satisfying the constraints (Fig. 2).
 Different implementation alternatives are possible
for the same task. They suggest different area-time
tradeoff points. These different implementations are
design points in the design space of a task. Choosing
the best design point for each task may not necessarily
result in the best overall design. When combining
several design points we can satisfy different
application constraints by using an adequate static
selection method[5] to choose the convenient
combination of tasks.

 Exploring a very large design space can be too
computationally expensive. To limit the number of
candidate design points in our work we consider tasks
with average or high granularity. Design space
exploration of tasks does not concern the operators
level.
 The first step in our method is the Static Estimation
(SE). This step can help the designer to choose between
static and dynamic implementation. It also gives
important information that can be used to take decisions
in the partitioning algorithm progress. In the following
paragraphs we represent the proposed method and the
associated tool which integrate the different techniques
used in this method and support the required input and
output format.

Static estimation: The principal input of the proposed
method is a tasks graph with different area and latency
for each task. Figure 3 represent two possible methods
to enter the task graph and parameters of the different
tasks: graphical method and text based method. In this
figure the number “2” written near the first task means
that the correspondent task has for the moment two
design points. Design points can also be introduced by
using a text editor. Design points are composed of three
parameters: area, time and consumption. In this work
we interested only in the two first parameters.
 The static estimation is done according to an
iterative process based on a technique of unconstrained
scheduling. It gives important information about static
realization. In a first step the algorithm determines the
As Soon As Possible (ASAP) and the As Late As
Possible (ALAP) schedules of tasks. In a second step
the mobility of each task is calculated. The mobility of
a task (Ti) is calculated as follow:

Mobility (Ti) = ALAP (Ti) - ASAP (Ti)
 Between the two scheduling limits ((ASAP) and
(ALAP)) other schedules can exist. Their number (NM)
is given by:
 ∏

=
+=

Nt

i

iTmobilityNM
1

)1)((; Nt: number of tasks
 The possible schedules extraction is based on an
adequate dependency matrix representing the tasks
graph. The algorithm excludes the invalid schedule
which does not respect the dependency constraint by
reasoning on the dependency matrix values and their
location in the matrix.
 The proposed framework shows the ASAP and
ALAP scheduling results and the different possible
schedules (Figure 4). It also allows calculation of the
limit values of area (Amin, Amax : minimum area,
maximum area) and latency (Lmin, Lmax: minimum
latency, maximum latency) when using the best area
design points or the best latency design points of each
task .
 Figure 4 represent an example of a task graph and
the scheduling results for the design points presented in

J. Computer Sci., 2 (5): 422-430, 2006

 425

Table 1: Example of design points for a task graph
T1 (ns,Clb) T2 (ns,Clb) T3 (ns,Clb) T4 (ns,Clb) T5 (ns,Clb) T6 (ns,Clb) T7 (ns,Clb)
(840,162) 750,128 860,276 875,174 752,220 820,196 650,185
(560,182) 500,138 700,320 625,235 620,325 560,356 525,235
(420,276) 375,180 480,400 375,336 465,385 435,396 385,325
(375,380)

Task graphe

S
ta

tic
 E

st
im

at
io

n

Partition(1)

Partition(n)

T 1
T 3

T 2

T 5 T 6

T 4

T 12

T 8
T 10

T 7
T 11

T 9

 Area/latency

T4

T41
T42

T43

T 1

T 11 T 1n T12

 Area/latency

Temporal
Partitioning

Design points
selection

T
T

T

T T

T

T

T4 T

T T

T

 * Reconfiguration time
 ** Memory constraint
 *** Area constraint

Fig. 2: Principle of the proposed method

Graphic entry Textual entry

Fig. 3: User interface to enter the tasks graph

Fig. 4: A screen shot of the scheduling results for the example represented by Table 1

J. Computer Sci., 2 (5): 422-430, 2006

 426

Table 1. The mobility of each task of the example is
given by Table 2. The final scheduling result is
represented by Table 3.

Table 2: Mobility of tasks for the example represented by Fig. 4
Task T(1) T(2) T(3) T(4) T(5) T(6) T(7)
Mobility 0 0 0 0 1 1 1

The proposed partitioning method: The proposed
method consists in modifying the partitioning algorithm
presented in[34] to take in to account the different design
point of tasks constituting the algorithm to be
implemented. The input of the new partitioning
algorithm is tasks graph with different area and latency
for each task, area constraint, memory constraint and
the reconfiguration time. The output of the algorithm is
a set of time partitions. The tasks of each partition are
executed when the partition is mapped on the
reconfigurable device. We aim to obtain the optimal
number of temporal segments and to place each task in
the appropriate partition while satisfying area, memory
and time constraints. The latency reduction is
performed by selecting the appropriate design points in
each algorithm iteration. The different steps of the
proposed method are summarized by Fig. 5.
 To obtain the optimal number of partitions the
algorithm preserves the minimal number of partitions
for which the area and memory constraints are satisfied
(Nmin) And verify the possibility to obtain a solution
that satisfies the time constraint. To determine Nmin the
algorithm starts by calculating the theoretical minimal
number of time partitions Nthmin, which is given by :

)/)))((((
1

minmin �
=

=
Nt

i

ci ATAceilNth

Nt : number of tasks in the task graph
Ti : task number I
A (Ti): area of task Ti
(A (Ti))min: the minimum area of task Ti among the

different design points of Ti
Ac: area constraint (FPGA area)
ceil is a C++ function. Ceil (x) returns a value
representing the smallest integer that is greater than or
equal to x
 If area and memory constraints are satisfied for at
least one possible scheduling, Nmin is equal to Nthmin, if
not we increment the number of partitions.
 The partitioning process for a specified number of
partition (N) gives as a result the possible schedules
that respect the memory and area constraints. The
constraints test allows identification of the best solution
that respect the time constraint. If no solution satisfies
the time constraint a design points selection is
performed to improve the latency of each partition. The
constraints test will be applied for the obtained
solutions. If, also, no satisfactory solution is obtained N
will be incremented and we repeat the different steps

N m in d e te rm in a tio n a n d

P a r t it io n in g fo r N = N m in

D e s ig n p o in ts s e le c t io n

c o n s tra in ts
te s t

I te ra tio n
te s t

P a rt it io n in g fo r N = N + 1

S o lu tio n g e n e ra tio n

N = N + 1

c o n s tra in ts
te s t

N o

Y e s

Fig. 5: Flow chart of the proposed method

for N = N+1. Before repeating the described steps a test
called “iteration test” is done. Its objective is to verify if
the actual number of partitioning (N) allows a feasible
and improved solution to be obtained. As a simple
condition to verify the feasibility is that N must be
smaller than Ntmax which represent the theoretic
maximal number of partitions. Ntmax is obtained by:

max (/)t t TN floor C R=
Ct: time constraint
RT: reconfiguration time
Floor is a C++ function. Floor(x) returns a value
representing the largest integer that is less than or equal
to x

 Ntmax represents a very coarse criterion. In our
algorithm we consider a better criterion definition based
on the time left for the execution of the different tasks
for a given number of partitions (N). This execution
time is defined as:

T t TE C R N= − ×
 When the number of partitions increases using
design points with a higher area becomes possible and a
higher speed can be obtained, but the available
execution time, ET, decreases. Before studying
solutions for the actual number of partitions we have to
verify if ET is sufficient to execute tasks. In this step the
Static Estimation results are useful.

J. Computer Sci., 2 (5): 422-430, 2006

 427

Table 3: Scheduling results for the example represented by Fig. 4 (S(i) : scheduling solution N°i; Ctr (i): control step N°i)
 Ctr 1 Ctr 2 Ctr 3 Ctr 4 Amin L max Amax L min
S 1 1 2-5 3-6-7 4 1341 3327 2402 1695
S 2 1 2-5 3-7 4-6 1341 3327 2402 1755
S 3 1 2 3-5-6 4-7 1341 3325 2402 1615
S 4 1 2 3-5 4-6-7 1341 3325 2402 1665

Partitioning process: In the partitioning process for a
given number of partitions (N) we always start with the
minimum area design point for each task and we
identify the possible schedules that respect the memory
and area constraints. The obtained schedules must
respect the dependency constraint: a task Ti on which
another task Tj is dependent has to be placed either in
the same partition as Tj or in an earlier one.
 The reconfiguration time and the area, memory and
time constraints are introduced by using the graphical
interface represented by Fig. 6.

Fig. 6: Graphical interface to enter the user constraints

 To respect the area constraint the sum of area costs
of all the tasks mapped to a temporal partition must be
less than the area constraint (Ac):
 A (Pi) ≤ Ac
A (Pi): area of partition Pi. It is calculated as following:

() (), .i i j j
j

A P A T= Φ�

with: , j i1 if i j T PΦ = ∈

 , j 0 if i j iT PΦ = ∉

 Data transfer between partitions take place due to
dependent tasks belonging to different partitions (figure
7). This intermediate data needs to be stored between
partitions and should be less than the memory
constraint (Mc). For a given partition Pi we have to take
into account only the available memory resources (Ma)
which is calculated by: Ma = Mc - Mu
 (Mu) represents memory resource used by previous
partitions of Pi to communicate with subsequent
partitions of Pi. Data used for this communication must

still be saved until the execution of the concerned
partitions. In Figure 7 the DATA (D2) will be used by
the partition P3. For the memory constraint of partition
P2 we have to subtract the necessary memory resources
from D2.

Fig. 7: Data transferring between partitions

 The Partitioning problem resolution starts by
extracting a dependency vector (DV) from the task
graph as defined in[34]. In a second step, the algorithm
builds the dependency matrix D. The matrix D has as
dimension N(lines) x Nt(columns); with N represent
the number of partition and Nt represent the number of
tasks. From this matrix, the algorithm extracts the
possible schedules of tasks while respecting the
dependency constraints.

Design point selection: To be able to meet the latency
constraint the design point’s selection has as objective
to improve the latency of each partition by exploring
the different design points of each task constituting the
considered partition. For a given partition the selection
problem can be formulated as represented in figure 8.
We aim to obtain the optimal latency while respecting
the area and memory constraints.
Design points of each task is represented in the
following form:

() () ()1 1 2 2
1 1 1 1 1 1() , () , () , () ,..., () , ()n nA T L T A T L T A T L T ,

A(Ti)
j: area of the design point N° j of task i

L(Ti)
j: latency of the design point N° j of task i

 Area constraint is calculated by considering the
sum of tasks area in the considered partition. The
latency of a given solution depends on the execution
order of tasks (sequential and parallel) and their
dependency (Fig. 9). It will be the maximal latency

J. Computer Sci., 2 (5): 422-430, 2006

 428

among all the paths of the task graph mapped to the
partition.

T2 T 5�T3

Ti-s2

T1 T2 Ti

SELECTION

Ti

S1
S2

S3

…

Area constraint

T2-s3
T1-s1

P1

P2

Fig. 8: Design points selection

���

���

��

��

Dependency

Fig. 9: An example of tasks dependency

The latency of partition Pi (L (Pi)) is given by:

() (){ }jji
j

i TLPMaxPLat .,Φ=

with () () (), ,. .j i k j k k j
k j

LP T L T L T
≠

= Φ Φ +�

Where
 ∅ij = ∅ik =1, if the task (Tj) respectively the task (Tk)
belongs to the partition (Pi), else ∅ij = ∅ik = 0
∅jk = 1, if the task (Tk) depends on the task (Tj), else
∅jk = 0.
For the example represented by figure 9, the latency is
calculated as follows:

1 3 2 4() [(() ()) , (() ())]iL P M ax L P L P L P L P= + +
We use the same principle to calculate the global
latency for a given solution (L(Sn)) :

�
=

=
N

i
in PLSL

1

)()(

THE PARTITION RESULT REPRESENTATION

 The final result is a set of partition of tasks. Each
task takes an appropriate design point so that the
combinations of the different tasks according to the
partition order correspond to a satisfying solution. The
final result can be represented graphically as shown in
Fig. 10.

Fig. 10: Graphical representation of the final solution

CONCLUSION

 In this study we have described a method and a
framework that allows facilitating the implementation
of a given algorithm in a limited run time
reconfigurable FPGA area. The proposed method
consists on combining temporal partitioning and a
selection of task design points to obtain constraint
satisfying solutions. This is based on the fact that
choosing the best design point for each task may not
necessarily result in the best overall design as this
depends on the architectural constraints and the
dependency constraints among the tasks. A dedicated
framework was designed to implement the method with
graphical interface to be more helpful for the user.
 Our work currently concerns different aspects that
aim to improve the effectiveness of the results and to
concretize the use of DR and the proposed methods in
several applications. In our work group we are
interested in the multimedia field represented mainly by
content based video indexing applications that can be a
very important application domain for the RD. To
improve the obtained results of the proposed methods
for the DR it is necessary to take into account the
internal structure of the new FPGA devices in terms of
internal memory and resources and their dispositions.
This depends on the FPGA family and characteristics
that will be used as a supplementary input for our

J. Computer Sci., 2 (5): 422-430, 2006

 429

methods. It will represent additional conditions to be
taken into account for result reliability improvement.

REFERENCES

1. Bourennane, E., C. Milan, M. Paindavoine and S.

Bouchoux, 2002. Real time image rotation using
dynamic reconfiguration. Real-Time Imaging J., 8:
277-289.

2. Butel, P., G. Habay and A. Rachet, 2004.
Managing partial dynamic reconfiguration in
Virtex-II Pro FPGAs. Xcell J., 50 : 32-37.

3. Xilinx, 2004. Two flows for partial
reconfiguration: module based or difference based.
Application. Note, Xilinx, Sept.

4. Bobda, C., B. Blodget, M. Huebner, A. Niyonkuru,
A. Ahmadinia and M. Majer, 2004. Designing
partial and dynamically reconfigurable applications
on Xilinx Virtex-II FPGAs using HandelC.
Technical Report 03-2004, University of Erlangen-
Nuremberg, Department of CS 12.

5. Albouchi, A., A. Mtibaa, 2004. Component
Selection for SOC. 16th Intl. Conf.
Microelectronics: ICM'04, Dec. 6-8, Gammart,
Tunisia, pp : 750-753.

6. Kaul, M. and R. Vemuri, 1999. Temporal
partitioning combined with design space
exploration for latency minimization of run-time
reconfigured designs. design automation & test in
Europe (DATE'99) Conf., p. 202, Munich,
Germany, 9-12 Mar.

7. Edwards, M. and P. Green, 2003. Runtime support
for dynamically reconfigurable computing systems.
J. Systems Architecture, 49: 267–281.

8. Bubb, L., M. Edwards, P. Green, C. Pimlott, K.
Rees, M. Stewart, A. Taylor, M. Vakondios and J.
Yates, 2001. Run-time support environment for
reconfigurable systems. Euromicro Symp. Digital
Systems, Design (DSD2001), pp: 35-141, Warsaw,
Poland, Sep. 04-06.

9. Green, P., M. Vakondios and M. Edwards, 2002.
An evaluation of an FPGA run-time support
system. 28th euromicro symposium on digital
system design (DSD'02), pp: 299-307, Dortmund,
Germany, Sep. 04-06.

10. Carvalho, E., N. Calazans, E. Brião and F. Moraes,
2004. PaDReH a framework for the design and
implementation of dynamically and partially
reconfigurable systems. Proc. SBCCI.

11. Carvalho, E., F. Möller, F. Moraes, N. Calazans,
2004. Design frameworks and configuration
controllers for dynamic and partial reconfiguration.
Technical Report Series, No. 042, Faculté
d’informatique –Bresil, June.

12. Kaul, M., V. Srinivasan, S. Govindarajan, I. Ouaiss
and R. Vemuri, 1998. Partitioning and synthesis for
run-time reconfigurable computers using the
SPARCS system. Military and Aerospace
Applications of Programmable Devices and
Technologies Conf. (MAPLD'98), NASA Goddard
Space Flight Center Greenbelt, Maryland, Sep. 15-
16.

13. Govindarajan, S. and R. Vemuri, 2000. Tightly
integrated design space exploration with spatial
and temporal partitioning in SPARCS. Proc.
Roadmap to Reconfigurable Computing. 10th Intl.
Workshop on Field-Programmable Logic and
Applications (FPL 2000), Villach, Austria, Aug.
27-30.

14. Eisenring, M. and M. Platzner, 2002. A framework
for run-time reconfigurable systems. J.
Supercomputing, 21: 145-159.

15. Bapty, T., S. Neema, J. Scott, J. Sztipanovits and S.
Asaad, 2000. Model-integrated tools for the design
of dynamically reconfigurable systems. Technical
Report #ISIS-99-01, ISIS, Vanderbilt University.

16. Caspi, E., A. Dehon and J. Wawrzynek, 2001. A
streaming multithreaded model. Proc. 3rd
Workshop on Media and Stream Processors, pp:
21–28, Austin, TX.

17. Vasilko, M., 2000. Design visualisation for
dynamically reconfigurable systems. Proc.
Roadmap to Reconfigurable Computing. 10th Intl.
Workshop on Field-Programmable Logic and
Applications FPL 2000, pp: 131–140, Villach,
Austria, Aug. 27-30.

18. Vasilko, M. and D. Long, 1998. Design of a
prototyping system for high-speed dynamically
reconfigurable logic. Proc. 8th Annual Advanced
PLD & FPGA Conference and Exhibition, pp: 208-
219, Royal Ascot, Bracknell, England, May 12.

19. Torres, L., 2002. Architectures reconfigurables
dynamiquement pour les systemes sur puce.
Workshop du Réseau Thématique "System On
Chip" du STIC_CNRS, Aussois, 23 Sep.

20. Sophie, B. and E. Bourennane, 2005. An
application based on dynamic reconfiguration of
FPGAs: JPEG2000 arithmetic decoder. Optical
Engineering.

21. Abel, N., L. Kessal and D. Demigny, 2004. Design
flexibility using FPGA dynamical reconfiguration.
ICIP’2004.

22. Boudouani, N., 2004. Architectures
reconfigurables dynamiquement: synthèse
matérielle d'opérateurs de détection et d'estimation
de mouvement temps réel. PHD thesis, university
of Cergy-Pontoise - Mars.

J. Computer Sci., 2 (5): 422-430, 2006

 430

23. Kessal, L., N. Abel et D. Demigny, 2005.
Développement des IPs et ordonnancement des
configurations dans une Architecture à
Reconfiguration Dynamique. Journées
Francophones sur l'Adéquation Algorithme
Architecture JFAAA'05, Dijon, France, 18 Jan.

24. D. Chang and M. Marek-Sadowska, 1999.
Partitioning sequential circuits on dynamically
recontigurable FPGAS. IEEE Trans. Computers,
48: 565–578.

25. Bobda, C., 2003. Synthesis of dataflow graphs for
reconfigurable systems using temporal partitioning
and temporal placement. PhD Thesis. University
Paderborn, Heinz Nixdorf Institute.

26. Ahmadinia, A., C. Bobda, D. Koch, M. Majer and
J. Teich, 2004. Task scheduling for heterogeneous
reconfigurable computers. Proc. 17th Symp.
Integrated Circuits and Systems Design (SBCCI),
pp: 22-27, Pernambuco, Brazil, Sep. 7-11.

27. Handa, M. and R. Vemuri, 2004. An efficient
algorithm for finding empty space for online FPGA
placement. Proc. 41st Ann. Conference on Design
Automation, pp: 960–965, ACM Press.

28. Bazargan, K., R. Kastner and M. Sarrafzadeh,
2000. Fast template placement for reconfigurable
computing systems. IEEE Design and Test-Special
Issue on Reconfigurable Computing, pp: 68–83.

29. Steiger, C., H. Walder and M. Platzner, 2003.
Heuristics for online scheduling real-time tasks to
partially reconfigurable devices. Proc. 3rd Intl.
Conf. Field Programmable Logic and Application
(FPL’03), pp: 575–584.

30. Walder, H., C. Steiger and M. Platzner, 2003. Fast
online task placement on FPGAs: Free space
partitioning and 2d-hashing. Proc. 17th Intl.
Parallel and Distributed Processing Symp.
(IPDPS)/Reconfigurable Architectures Workshop
(RAW), pp: 178.

31. Ahmadinia, A. and J. Teich, 2003. Speeding up
online placement for XILINX FPGAs by reducing
configuration overhead. Proc. IFIP Intl. Conf.
VLSI-SOC, pp: 118–122, Darmstadt, Germany.

32. Gerard, J.M.S., J.M.P. Havinga, L.T. Smit, P.M.
Heysters and M.A.J. Rosien, 2002,. Dynamic
reconfiguration in mobile systems. In Field-
Programmable Logic and Applications, pp: 171-
181.

33. Ben Abdelali, A. and A. Mtibaa, 2005. Toward
hardware implementation of the compact color
descriptor. Adv. Engg. Software, 36: 475-486.

34. Ouni, B., A. Mtibaa, M. Abid, 2005. Synthesis and
time partitioning for reconfigurable systems.
Design Automation for Embedded Systems J., 9:
177-191.

