
Celina Gibbs+, Daniel Lohmann*, Chunjian Robin Liu+, and Yvonne Coady+

+University of Victoria, Friedrich-Alexander-University Erlangen-Nuremberg
celinag@uvic.ca, lohmann@cs.fau.de, clui@cs.uvic.ca, ycoady@cs.uvic.ca

* This work was conducted during a research stay at University of Victoria, supported by the German Academic Exchange Council
(DAAD) under grant no. D/06/40386

Abstract

Recently, Continua Health Alliance has brought
together a powerhouse team, including Cisco, IBM,
Motorola and others, for personal telehealth products
and services. This team will provide commodity
interoperable healthcare devices and services by
introducing new connectivity standards for health
management tools. But the costs of integrating and
configuring disparate system services have proven to
be prohibitive in this domain – healthcare processes
require extreme agility to assimilate information
across traditional boundaries. As a result, these tools
must work effectively with dynamic business processes
that often elude cost-effective integration themselves.
This creates a requirement for software to be fluidly
configurable and interoperable in order to best
support personalized care with truly integrated
solutions. We believe that, without a new technology
for the seamless integration of features within
healthcare devices, costs associated with attempts to
fuse IT with dynamic business processes will continue
to be an obstacle in modern patient care.

Aspect-Oriented Software Development (AOSD) is
focused on novel notions of modularity that crosscut
traditional abstraction boundaries. AOSD techniques
and tools, applied at all stages of the software
lifecycle, are changing the way software is developed
in a wide spectrum of application domains, ranging
from embedded systems to enterprise IT. This paper
outlines the ways in which aspects could aid the
integration and evolution of software used to support
modern healthcare practices across this spectrum,
with examples at each stage. We believe the key
principle of AOSD – the modularization of
crosscutting concerns – to be an integral part of the
solution to the challenges currently facing modern
health service infrastructures.

1 Introduction

Business processes in healthcare are changing rapidly.
This is largely due to new technologies that enable
processes that were unthinkable not that long ago.
Astonishingly, the changes in business processes due
to evolving technology also bring about changes in
technology due to evolving business processes.
Specifically, demands for highly configurable systems
to support more personalized healthcare needs fall into
this circular relationship. Everything from wireless
sensor network technology to adaptive web
applications has been put to the test in these dynamic
environments. However, the inability for these
systems to respond has posed a major challenge in
process integration and evolution today.

business process or software module

newly introduced
integration

Figure 1 - Scattered and tangled introduction
of an integration concern.

Integration is hard – both at the level of business
processes and legacy software systems. We further
believe that the inherent fusing of the two, and the
circular relationship involved, makes it even harder.

Modular Integration Through Aspects:
Making Cents of Legacy Systems

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE

In this paper we suggest that the nature of the problem
is fundamentally the same in both the business process
and technology domains: a set of well defined
elements (either business processes or software
modules) with well defined interfaces begin to decay
as new issues for integration are introduced to the
system. Support for integration must be scattered
across these previously well-defined entities, and
becomes tangled within them. This has a costly
impact – whether it is at the level of processes or
software – and ultimately compromises the structural
integrity of the system. Conceptually, this scattering
and tangling can be viewed from the perspective
shown in Figure 1, where the boxes are an abstract
representation of either a business process or a
software module, depending on the domain, and the
dark lines within the boxes represent the scattered and
tangled integration issues within these legacy entities.
A more cost effective way to introduce integration is
depicted in Figure 2. Here, the modularity of the
legacy system is preserved. The integration issue
remains modular, and the legacy entities are still in
tact.

aspect

Figure 2 – Modular introduction of an
integration concern.

Aspect-Oriented Software Development1 (AOSD) is
focused on novel notions of modularity that crosscut
traditional abstraction boundaries. AOSD techniques
and tools, applied at all stages of the software
lifecycle, are changing the way software is developed
in a wide spectrum of application domains, ranging
from embedded systems to enterprise IT. This paper
outlines the ways in which we believe aspects could
aid the integration and evolution of both business
processes and software used to support modern
healthcare practices across this spectrum, with

1 www.aosd.net

examples taken from our experience to-date working
with aspects in software. We believe the key principle
of AOSD – the modularization of crosscutting
concerns – to be an integral part of the solution to the
challenges currently facing integration and evolution
of modern health service infrastructures.

As Figure 2 eludes, the key difference between an
aspect-oriented techniques over traditional approaches
to modularity is that aspects completely specify not
only the concern they modularize (in this case,
integration), but also explicitly how that concern
interacts with the entities it crosscuts. In software, we
understand how to do this in terms of well-defined
points in the execution of a program. These points are
well defined in terms of the interfaces that are exposed
in the system. In business processes we believe this
same structure would hold, but we leave it to the
experts in the area to define exactly what this may
mean in the context of healthcare processes2. We
believe that process modeling, represented by Petri-net
based workflow nets [1], may be a good place to start
with further investigation of aspects in this domain.

This paper is organized as follows. First we take
from our experience in embedded systems, outlining
the technological challenges of viewing a patient as a
source of data and the need for AOSD in product lines
of this very lowest level of software, the micro-
controller (Section 2). We then explore these same
principles as they apply to challenges facing
configurable communication protocols (Section 3), in
these systems where memory, computation and power
consumption. Finally, we consider the alternative (or
perhaps synergistic) application of AOSD to the
challenges of filtering data at the application level
(Section 4).

2 Embedded SYSTEMS Level

2.1 The Patient at Home as a Source of Data

Clearly, the most important source of data for
clinical services and medical processes in the
healthcare system is the patient. Modern diagnostic
technologies lead to an increasing amount of
electronic data to be collected whenever a patient
visits a physician for examination. While most
patients see their physician rarely in the first decades
of their life, for many the time spent increases
exponentially with their age often resulting in
necessary hospitalization for constant observation.

2 We are not healthcare professionals, we are computer scientists.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2

One of the biggest challenges facing our aging
society is to find ways to allow seniors to age in place
and maintain independence as long as possible. There
are significant societal and financial benefits to
supporting independent living however, there is an
associated risk factor. Episodes of confusion and
disorientation, undetected heart attacks, and the
danger of accidents can put a great deal of stress on
involved individuals. From this, there is growing
interest in technology that provides constant
observation in the home, combined with cognitive
systems for a reliable detection of emergency
situations.

To support this independent, self-sustaining, yet

safe living environment, recording and interpretation
of the patient’s vital statistics is necessary. A
fundamental set of sensors to provide this data,
coupled with micro-controllers and transceivers for
data integration are typically attached directly to the
patient’s body. In this scenario these devices constitute
the Patient’s Personal Body Network (PPBN) also
known as the Body Area Network (BAN).

A constantly worn and working PPBN is the basis
for two major functions of the overall system: 1)
detection of short-term body function anomalies. 2)
providing physicians with long-term data records
about the patient’s vital statistics.

Short-term anomalies typically indicate an

Figure 3 - Example Feature Diagram for a PPBN.
A PPBN consists of at least one sensor one plan and one sink. Sensors acquire information about the
patient’s body functions (such as heart rate or blood glucose level) and, optionally, their current environment
(such as the current position in GPS coordinates). Data acquirement is controlled and integrated by one or
more plans and, depending on the plan, processed into one or more sinks (such as an alarm sink to indicate
an emergency situation or a data link to transfer data to an external device.) Plans observe and react on
medically relevant data (such as a heart rate observer) as well as on cross-cutting system-eminent state
(such as the still available energy).

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3

emergency situation that requires some kind of
intervention. Depending on the grade of the anomaly,
intervention may range from reminding the patient to
take some medication up to an automated emergency
call for external help.

Long-term data records from PPBNs could be a
valuable data source for physicians to detect creeping
changes in the aetiopathology of the patient. The
integration of this data into the clinical process could
allow physicians to optimize medication and
treatment.

2.2 Challenges

While the functionality provided by the higher
layers of an integrated healthcare system is typically
implemented using general-purpose commodity
hardware technology (e.g. PCs and PDAs), the PPBN
clearly is a special-purpose system. Patients would be
required to wear the PPBN at all times, and therefore
it must not hinder them in their daily living. Hence,
PPBN components are deeply embedded systems,
allowing the possibility of implantation. They have to
be small, light, and robust. This domain strictly limits
resources in terms of memory, computation power,
and energy.

The functional requirements on the PPBN, on the
other hand, vary widely between patients. The actual
body functions to observe as well as the observation
frequency and integration algorithms to must be fine-
tuned for every patient. As it is simply impossible to
find a one-fits-all solution that adheres to hardware
and system resource requirements, the PPBN has to be
tailored to fulfill exactly the requirements of the
specific patient, but nothing more. This leads to a
high, but deliberate level of heterogeneity on both, the
hardware and the software side. There is a demand for
strategies and implementation techniques to
systematically deal with this variety in healthcare
processes in a current state and future states. Current
states, in the sense that the data gathered by PPBNs
has to be made available for the physician in charge
and well integrated with other available data about the
patient’s current state; and future states in the sense
that physicians must be able to reconfigure a patient’s
PPBN according to changing requirements.

2.3 Embedded Software Product Lines

There is no one-fits-all recipe for building a
software system that fulfills the requirements of all
potential applications, while adhering to system

resource requirements. The solution is therefore to
tailor the PPBN to provide exactly the functionality
required. This leads to a family-based or software
product-line (SPL) approach. SPL is an effective
approach to increase reuse and quality of software and
decrease development time and cost, by sharing
architecture and a set of reusable components. In the
embedded systems domain, the SPL approach is used
particularly for configurable system software,
especially operating systems. Well known examples
are eCos [7], PURE [3], and TinyOS [14].

By consequently following the SPL-based approach
of software development, highly customizable PPBNs
are feasible. Variant building, however, is only a first
step in the development process. Without being able to
organize and manage the many possible variants of
the software family in an adequate and user-friendly
manner, this approach will be doomed to failure.
Feature modeling appears to be a promising way to
tackle the variability management problem. This
technique is understood as “the activity of modeling
the common and the variable properties of concepts
and their interdependencies and organizing them into
a coherent model referred to as a feature model” [5].
The goal is to come up with directives for the
structural design of a system that meets the
requirements and constraints specified by the features.
Common is a graphical representation of the feature
model in terms of a feature diagram. The diagram is
of a tree-like structure, with the nodes referring to
specific feature categories. Four feature categories are
defined: mandatory, optional, alternative, and or. A
feature diagram describes the options and constraints
that shall exist within a system. It models the variable
and fixed properties of a family of programs, which
implement that system. The feature diagram shown in
Figure 4 illustrates the model of the envisioned PPBN.

2.4 The role of AOP in SPL Development

Software product lines are prone to evolution due to
the emergence of new requirements on the products in
the family. The evolution could be a continuous
change, which happens with the maturity of the
technology and involves an incremental adoption
approach, or it may be radical and force system-wide
changes at once. The evolution could be the
restructuring or replacement of a feature or multiple
features or constantly raising the level of services etc.
Moreover, the evolution could affect only a particular
module or a number of different modules. When the
evolution of a single, related concern requires changes

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4

to multiple modules, it is said to be crosscutting and
hence, non-trivial to localize. Often, the unanticipated
changes affect multiple modules and result in code
tangling, limiting levels of evolvability, variability and
granularity and negatively affecting the quality of the
SPL. With traditional decomposition approaches, it is
difficult to localize and encapsulate these crosscutting
concerns. Thus a crucial point in the SPL approach is
the mapping of all selectable and configurable features
to their corresponding, well-encapsulated
implementation modules. Some so called orthogonal
features like security, mobility, monitoring, real-time
constraints, profiling, or energy management, are
typically reflected in many points of the software code.
This crosscutting character restricts implementation of
such orthogonal features as independent encapsulated
entities and thereby limits variability, granularity and
evolvability.

AOSD provides mechanisms to encapsulate
crosscutting concerns into isolated entities called
aspects, by specifying the action that will occur at
specified points in the system. This control of
execution can be applied either statically or at
runtime. The encapsulation of crosscutting concerns
provided by AOSD allows for the evolution of these
concerns in isolation. Hence, evolution is limited only
to addition, removal or modification of the concern
without affecting the rest of the application. A well-
directed application of AOSD principles in the
development of software product lines can lead to a
higher variability, evolvability and granularity of the
selectable system features, as their implementations
can not only be encapsulated by classes, but also by
aspects. By employing AOSD techniques, the
evolution in SPL is principally feature-driven as it is
confined to the deployment or the removal of features
either statically or at runtime. A well-directed
application of AOSD principles in the development of
software product lines can therefore enable the
development and evolution of optimally patient-
tailored, yet resource-thrifty, PPBN systems.

3 Configurable protocols

3.1 Coalescing Patient Data

TinyOS [14] is an operating system (OS) with a
modular and communication based design to support
distributed data collection, and other requirements
specific to wireless sensor networks. This system
software may well be the OS of choice for the

collection of patient data in commodity wireless
sensors.

Development in this embedded systems domain is
constrained by memory footprint and power
consumption and motivates the component based
design of this scaled back OS. The typical 'mote'
platform for TinyOS is 10KB of RAM and 100KB of
ROM. The event driven design allows for the system
resource allocation to be based on the components
required by the event allowing for fine-tuning of
power consumption between 10uA and 25mA. These
events can have a cascading effect, where one event in
turn triggers another. This cascading effect introduces
difficulty when introducing change to a system,
requiring a developer to understand and possibly
cascade changes across the system structure.

Aggregate data collection is identified as one of the
most widely used services of wireless sensor networks
and one of the key services in workflow scenarios of
electronic healthcare. Many low-level details are
considered in this seemingly small part of a workflow
scenario. TinyOS supports this service, considering
factors including, but not limited to the number of
devices involved, the paths available for data transfer
(routing) with complex routing algorithms dependant
on system configuration.

Data collection is considered a non-functional
requirement along with flow control, error control and
security that are introduced in a networking
environment such as this. These non-functional
requirements within a networking environment
introduce complexity with low-level mechanisms of
support, overflowing the structural boundaries
established by the functional requirements of the
system.

Typical ISO and TCP/IP network protocols adhere
to a simple hierarchical layering where each layer
encapsulates a group of related functions. A CP
framework provides a requirement-driven,
customizable set of protocols comprised of function
specific modules. A specific protocol stack is then just
a configuration of the required modules in each
protocol layer. The x-kernel [9] is an example of a
configurable protocol that follows this type of standard
hierarchical structure. Although these CP frameworks
are arguably more configurable and extensible than
their fixed counterparts, TCP/IP and ISO, they still do
not support configuration and encapsulation of fine-
grained policy that cuts across multiple layers in the
hierarchy. Cactus [8] adheres to the traditional
layered architecture in its composition of protocols or
services, where each service is composed of multiple

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5

micro-protocols, which are linked to specific events,
dynamically triggering a corresponding event handler.

Networking protocols have typically followed a
layered, hierarchical architecture imposing strict
interfaces at each level. This structure allows the
developer to consider each layer in isolation, where an
individual layer provides certain services to exactly
one layer above. This design provides good separation
of concerns, reducing the complexity of the system by
shielding the upper layers from the implementation
details of those below. These characteristics
associated with separation and locality not only aid in
the initial development process, but also support future
evolution and modification of the system and lends the
architecture to reuse.

3.2 Challenges

This hierarchical structure of network protocols
often results in requirements associated with low-level
mechanisms overflowing boundaries. Non-functional
requirements, such as data collection, flow control,
error control and security fall into this category. The
fine-grained implementation of these low-level
mechanisms is thus scattered across multiple layers in
the system. By this definition we can say that non-
functional requirement crosscut the architecture.
Regardless of the dominant decomposition of the
system architecture, there tend to be requirements that
do not fit cleanly into that hierarchical structure and
are therefore considered to have an inherently
crosscutting structure.

Configurable protocol (CP) frameworks, such as
Cactus have been developed to provide a modular
representation of non-functional requirements in
network architectures. These non-functional
requirements in this form, known as micro-protocols,
better support reusability, configurability,
extensibility, and evolvability. Healthcare systems
require a high degree of configurability and flexibility
across multiple platforms under tight constraints in
terms of memory footprint, computational resources
and power.

The challenge in a micro-protocol implementation
is in providing a clear separation of these concerns
that do not fall into the dominant structure of the
system. The number of potential configurations in
addition to the fine-grained nature of their
implementation makes these micro-protocols the
grounds for a particularly complex system.

The implementation of Cactus is restricted by
traditional approaches to capturing modular design
and is limited in the following three ways:

• The ability to provide a clear structural view of
the relationship between a given micro-
protocol, the events affecting it and the
strategies to handle those events.

• The ability for developers to customize the
events and event handlers within these concrete
libraries.

• The ability to provide a clear structural view of
the interactions between micro-protocols.

3.3 Solutions

As a small proof of concept example [3], Hiltunen
describes the concept of message stability in a network
service used by many micro-protocols as a trigger for
related action. How message stability is defined is
dependant on multiple factors including general
network architecture, the micro-protocol affected and
the specific configuration of the micro-protocol.

This paper builds on this proof of concept,
considering two implementations of a multicast
architecture. The first version defines message
stability using a global flag and the second using
acknowledgements. The significance of this variation
in ubiquitous healthcare systems is directly related to
the issue of resource constraints. This state of stability
triggers related action that can vary depending on the
configuration of the micro-protocol. This example
considers both an archiving and a garbage collecting
micro-protocol for each version, where archiving
would consume more memory and garbage collection
would free this constrained resource.

Figure 4 highlights these characteristics in terms of
two possible implementations of a multicast service
(denoted V1 and V2 respectively). In the first version
(V1), the trigger is a global flag, and the version can
be configured to use either archival or garbage
collection actions. Similarly, the second version (V2)
can be configured according to these same two actions,
but the trigger is the act of acknowledgment. These
versions, V1 and V2, will form the basis for the design
and implementation of the configuration aspects that
will follow.

service Multicast V1 Multicast V2

triggers global flag acknowledgement

action
archive

garbage
archive

garbage
Figure 4 - stability micro-protocol
characteristics

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6

The trigger factor for each micro-protocol can be
defined as the state of message stability. The
difference thus lies in the definition of what marks
entry to that state. Much like programming to an
interface, introducing an abstract aspect will force any
subaspect to concretely define the principled points of
execution associated with entry to a stable state.

Figure 5 shows the abstract aspect
MulticastStability with the single abstract pointcut,
msgStability that will force inherited classes to
provide a concrete implementation specifying the
principled execution points in the system associated
with message stability.

public abstract aspect MulticastStability {

 abstract pointcut
 msgStability(Msg m, Client c);
}

Figure 5 - Abstract aspect for stability
microprotocol.

Figure 6 shows a concrete implementation of the
abstract aspect MulticastStability for multicast
system V1, where entry to a stable state is triggered
with a global flag. The concrete named pointcut,
msgStability, specifies the execution points for this
particular implementation to be any place where the
stability flag is set and a stable state is entered. The
message and the host as parameters are introduced as
parameters within the pointcut, giving access to the
instances of those objects. The aspect builds on this
named pointcut, specifying the action that will take
place upon entry to this stable state. In this case, the
advice is archiving the instance of the message once
the stable state is reached. The after keyword
explicitly forces this advice to be triggered only upon
entry to the stable state.

public aspect microProtocolV1 extends
 MulticastStabilityAspect {

 Archive a = new Archive();

 //joinpoint
 pointcut msgStability(Msg m, Host h):
 set(boolean Host.STABILITY_FLAG())
 && this(m) && target(h);

 //advice
 after(Msg m, Client c):
 msgStability(m, c) {

 //add the message to archive
 a.add(m);
 }
}

Figure 6 - Concrete implementation of
stability microprotocol for MulticastV1.

Similar to this implementation, multiple
configurations of the micro-protocol can be created by
simply introducing new concrete aspects and fine-
tuning of the pointcut and advice to match the
specifications. For example, V2 would define
msgStability to occur after all acknowledgements
have been sent out (albeit a more complicated
pointcut, but still possible considering the high
likelihood of an ack method for the advice to monitor).

This small proof of concept has shown that in
applying AOSD to the domain of CPs is not only
possible, but also can clarify the structure as suggested
by Hiltunen. Further, this proof of concept indicates
that these results are not limited to a single micro-
protocol, but might also extend to clarify interaction
between existing micro-protocols. The relationship
between a given micro-protocol, the events that affect
it and the action that they take is localized to one
modular unit, allowing the code to emulate the design.
In this form, developers can more effectively reason
about the relationship between micro-protocols, as
their internal structure is better separated, their
external interaction is made explicit, and their
functionality is exposed in context (within the aspect).

The localized linguistic support provided in the
AOSD implementation not only provides developers
with structural clarity, but also provides access to their
configuration to allow fine-grained customizations to
be applied.

This small study suggests that an AOSD approach
alleviates the restrictions identified in the Cactus
approach in the following three ways:
• Provides a clear structural view of the relationship

between a given micro-protocol, the events
affecting it and the strategies to handle those
events.

• Allows for fine-grained customization of a given
micro-protocol configuration.

• Provides a clear structural view of the interactions
between multiple micro-protocols.

There are several tradeoffs to consider with this
approach. CPs inherently require a fine-grained
implementation, which in turn requires fine-grained
pointcuts in an AO implementation. Hiltunen
suggests that current mechanisms for semantic
pointcuts may be sufficient, but studies have shown
the contrary. In [13], Siadat et al provide results that
suggest the amount of refactoring required in their
case study to expose sufficient required execution
points was intolerable.

This refactoring required maybe alleviated with an
AO language with stronger semantic support, but this

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7

also may introduce the issue of performance. For
example, even the more semantic based support
provided by AspectJ has been shown to incur extra
performance. In systems in general, and more
specifically network architectures; the performance
overhead of an implementation is a serious
consideration.

Another consideration in this domain is the varying
architectures to consider. CPs encompass the area of
embedded devices and also real-time systems, widely
used in health care. Specifically, with portable hand-
held embedded devices memory footprint is an issue.
Currently AO implementations are known to have a
significant increase in memory footprint, making their
use limited in this area. Resource constraints become
an even greater consideration in real-time systems,
where deterministic runtimes are necessary for
ensuring deadlines are met.

4 Customizable Enterprise IT

4.1 Dynamic Monitor Needs

Traditional system diagnostic and optimization
techniques in enterprise solutions to application level
software rely on static system structure and static
instrumentation. But static approaches are simply no
longer sustainable in the evolution of complex,
distributed and dynamic systems. This is particularly
true in healthcare environments, where monitoring
associated with patient status information may change
rapidly.

4.2 Challenges

Heterogeneity and predefined abstraction
boundaries are actually obstacles to evolution of the
system – layering, componentization, and
virtualization provide necessary levers for abstraction,
but emergent behaviour ultimately impairs the efficacy
of local reasoning. Understanding and evolving
system behavior thus requires approaches that can
flow freely across boundaries and provide
comprehensive analysis that can be easily collected,
correlated, and subsequently used to adapt applications
dynamically, as they are executing. Looking at this
problem from another angle, complex system
architectures must be designed and documented from
the perspective of multiple views for different
stakeholders [6]. Furthermore, views may need to be
iteratively refined, as focus changes during the process
of analyzing interests [4]. Ideally, infrastructure to

support views should be able to be easily removed
once users no longer need them, and incur little to no
performance penalty. Recent technologies such as
those employed by JFluid [10] go a long way to
demonstrating that dynamic bytecode instrumentation
can be both customized and efficient.

4.3 Solution

For a large class of optimization strategies related to
unanticipated external environment conditions,
optimizations are becoming an increasingly important
obstacle to effective evolution. Mixing optimization
logic with application logic requires non-local
information and makes both of them more difficult to
understand, maintain, and evolve, due to the
idiosyncratic dependencies on external factors.
Optimization code is context dependent and highly
sensitive to dynamic factors such as server load,
network traffic, and even order of operation
completion. These factors make it particularly
inefficient to encode certain kinds of optimizations in
the absence of a priori knowledge about execution
contexts.

Figure 7 - Data from MonitorAspect.

SONAR (Sustainable Optimization and Navigation
with Aspects at Runtime) is our current prototype for a
fluid and unified framework that allows stakeholders
to dynamically explore and adapt meaningful entities
that are otherwise spread across predefined abstraction
boundaries. This allows for a safe and sound
approach to system evolution. Through a combination
of dynamic Aspect-Oriented Programming (AOP),
Extensible Markup Language (XML), and Java
Management Extensions (JMX), SONAR can
comprehensively coalesce scattered artifacts, enabling
iterative and interactive system-wide investigation and

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8

evolution. SONAR allows stakeholders to easily shift
focus between coarser/finer grained, or even
crosscutting entities, and presents system diagnostics
in a comprehensive, manageable unit.

JMX is used as a means to comprehensively
visualize and manage aspects introduced by SONAR.
This includes retrieving data from aspects, invoking
operations, and receiving event notification. Through
JMX, the aspects can be managed by JMX-compatible
tools remotely and/or locally. The tool we used is
called JConsole which is a JMX-compliant graphical
tool for monitoring and management built into Sun’s
JDK distribution shown in Figure 7.

This figure illustrates how the statistics from three
different invocation points collected by MonitorAspect
can be visualized as line charts in Jconsole and
managed in SONAR.

Tracing. In order to demonstrate SONAR’s ability
to freely navigate across abstraction boundaries in the
system, we developed a TraceAspect. This aspect is
not enabled (i.e., its deployment strategy is manual)
when the system is started. The stakeholder can thus
enable the tracing through domain independent AOP
(deploy/undeploy).

The TraceAspect reflects a request-centric view of
the system, recording key data points as requests are
serviced. As a result, it exposes several key
configurable options and operations through JConsole,
such as the ability to:
• enable/disable tracing to specified classes and/or

methods
• apply a filter, to exclude unwanted data
• configure tracing details (timestamps, duration)
• manipulate buffer operations (change the size,

clear the buffer) in resource constrained devices

Figure 8 – Serving a request stack trace.

All the above options and operations are accessible
through this aspect’s JMX interface. All data is stored

at the server side and can be retrieved and viewed
through JMX management tool.
Figure 8 visually depicts the information collected by
SONAR regarding requests to retrieve customer
accounts. Each bar indicates the processing time (in
milliseconds) of a method, the summation of the time
spent in processing its method body and subsequent
method calls. The top level is the entry point of
serving an HTTP request. Access to SessionBeans,
EntityBeans and JSPs are traced to clearly show the
processing time in each software layer according to
J2EE architecture.

Cross-platform Optimization. We chose
SpringAir, a web application built upon Spring and
the .Net framework, as our second case study to
demonstrate cross-platform support for optimization.
The basic idea is to retrieve some cached data from
remote systems and build a local copy in order to save
the time spent on network communication.
Optimizations that improve locality can dramatically
impact the evolvability of many of today’s web-service
based applications. These kinds of performance
bottlenecks could thus be avoided in the context of
time sensitive patient care information retrieval
scenarios. The important evidence this work suggests
is the efficacy of aspects in the role of high-level
system integration and beyond – into the realm of
optimization.

Our plans are to investigate how to unify SONAR
with heavyweight, low level tool kits in order to
provide an efficient means of truly integrating tasks
crossing all layers in the software stack, beyond
middleware and applications shown here, and down
into the protocol and OS layers, as discussed in
Sections 2 and 3. We also plan to further investigate a
high level language specifically for optimization and
navigation into SONAR, based on what we have
established so far in terms of semantic representation
of system behaviour. We believe this language would
require higher-level representation of aspect
compositions in order to provide comprehensive
management. For example, when some combination
of optimizations may actually interfere with each
other, or to determine when the lifetime of an
optimization has essentially expired due to changes in
the external environment. We further believe that this
kind of language could be adapted to be semantically
viable at the level of aspects associated with the
integration of business processes. Process modeling
tools such as Protos [12] may give us some insights as
to what these languages may require.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9

5 Conclusion

Healthcare devices and features they provide are the
core building blocks of electronic healthcare system
with the number of features growing rapidly. These
clearly defined blocks provide a modular approach to
the healthcare system, encapsulating each concern and
facilitating change, maintenance and reuse. But the
responsibility of integration and coordination of these
devices cuts across the system and does not fall cleanly
and separately into the legacy structure. This
crosscutting structure is difficult to modularize with
current approaches, but it is exactly the way in which
AOSD looks to promote and support modular
reasoning and implementations. AOSD cuts across
the core hierarchical structural boundaries by
specifying the uniform integration points across each
feature.

Evolution of legacy entities in general is hard
because traditional structural organization is not agile
enough to change both statically and dynamically
without breaking. AOSD supports this concept by
providing a centralized locus of control of the
explicitly defined elements of interaction.

The concept of modularity extends beyond the
software design and implementation and has effects in
business, society and multiple facets of human
organization. Baldwin et al. identify the role of
modularity in business organization and product
development [2]. Baldwin goes on to recognize that
this modularity does not necessarily align with the
hierarchical organization structure we are accustomed
to:

“We would also say: do not be dogmatic
about product and process boundaries. A
process can be a module, and, if it is, the
process can be a product. In fact, product
definitions are endogenous in a modular
system.”

The examples provided in this paper, at three levels
of integration, illustrate the ways in which the
consideration and management of crosscutting
structure in a modular way is beneficial. We believe,
the consideration of crosscutting modularity at the
level of business process, and ultimately the design
and implementation of these complex healthcare
systems is necessary to alleviate the cyclic relationship
between evolving business processes and evolving
technology. Specifically, as the opportunity to change
interaction strategies is supported by the structural
integrity of aspect-oriented development we can

provide more configurable business processes, design
and systems.

6 References

[1] W.P.M.v.d. Aalst and Hee, K.M.v. 2002. Workflow
Management: Models, Methods, and Systems.
Cambridge: MIT Press.

[2] Carliss Y. Baldwin and Kim B. Clark (2000) Design
Rules, Volume 1, The Power of Modularity, MIT Press,
Cambridge MA.

[3] Danilo Beuche, Antonio Augusto Frohlich, Reinhard
Meyer, Holger Papajewski, Friedrich Schon, Wolfgang
Schroder-Preikschat and Olaf Spinczyk and Ute
Spinczyk (2000) On Architecture Transparency in
Operating Systems. In sigopsew00, acm, Kolding
Denmark.

[4] Paul Clements, Felix Bachmann, Len Bass, David
Garlan, James Ivers, Reed Little, Robert Nord and
Judith Stafford, Documenting Software Architectures:
Views and Beyond, ISBN: 0201703726, 2002.

[5] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger
and Ulrich W. Eisenecker (2002) Generative
Programming for Embedded Software: An Industrial
Experience Report. In gpce02, Springer.

[6] DTrace, Solaris Dynamic Tracing Guide,
http://www.sun.com/bigadmin/content/dtrace/

[7] eCos, http://ecos.sourceware.org.

[8] Matti Hiltunen, Fancois Taiani, Richard Schlichting.
Reflections on Aspects and Configurable Protocols, In
Proc. International Conference on Aspect-Oriented
Software Development (AOSD), 2006.

[9] Norm Hutchison, L. Peterson. The x-kernel: An
architecture for implementing network protocols. IEEE
Trans. On Software Engineering, 1991.

[10] JFluid, http://profiler beans.org/index.html.

[11] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier and John Irwin, Aspect-Oriented
Programming, European Conference on Object-
Oriented Programming (ECOOP), 1997.

[12] Pallas Athena (1997). Protos User Manual. Plasmolen,
the Netherlands: Pallas Athena BV.

[13] Jamal Siadat, Robert Walker, Cameron Kiddle.
Optimization Aspects in Network Simulation. In Proc.
International Conference on Aspect-Oriented Software
Development (AOSD), 2006.

[14] TinyOS, www.tinyos.net.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10

