
Itemset Support Queries using Frequent

Itemsets and Their Condensed Representations

Taneli Mielikäinen1, Panče Panov2, and Sašo Džeroski2

1 HIIT BRU, Department of Computer Science, University of Helsinki, Finland
2 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

Abstract. The purpose of this paper is two-fold: First, we give efficient
algorithms for answering itemset support queries for collections of item-
sets from various representations of the frequency information. As index
structures we use itemset tries of transaction databases, frequent itemsets
and their condensed representations. Second, we evaluate the usefulness
of condensed representations of frequent itemsets to answer itemset sup-
port queries using the proposed query algorithms and index structures.
We study analytically the worst-case time complexities of querying con-
densed representations and evaluate experimentally the query efficiency
with random itemset queries to several benchmark transaction databases.

1 Introduction

Discovery of frequent itemsets aims to find all itemsets occurring sufficiently
many times in a given transaction database [1, 2]. An example of a transaction
database is a collection of documents represented as sets of words occurring in
them. There, an itemset is a set of words and the frequency of an itemset is the
fraction of the documents containing all the words in the itemset. Some other
examples of frequent itemsets include sets of products often bought together
from a supermarket and sets of web pages often referred together by other web
pages. A variety of methods enabling the discovery of large numbers of frequent
itemsets have been developed; see [3, 4] for a representative collection of the state
of the art methods for frequent itemset mining.

Frequent itemsets can be used to summarize data directly or as an inter-
mediate step to construct association rules [1, 5]. Frequent itemset collections
describing the data in detail tend to be very large and hence they are rather
problematic as summaries of the data. Due to such problems major efforts have
been done to exclude redundant itemsets from the output, i.e., to obtain a con-
densed representation of frequent itemsets; see [6, 7].

Condensed representations of frequent itemsets are considered also as promis-
ing building blocks in inductive databases [8–11]. One important issue in (in-
ductive) databases is query answering. An inductive database should be able
to answer efficiently data mining queries, for example itemset support queries.
An itemset support query asks how large fraction of transactions in the given
transaction database contain a given itemset.

In this paper we study the task of answering itemset support queries and
examine how the condensed representations of frequent itemsets could be used
for such queries. Efficient answering of itemset support queries can be used in
many data mining algorithms such as rule induction [12], decision tree construc-
tion [13] and learning Näıve Bayes classifiers [14], see [15]. Also, they have a close
connection to statistical queries studied in learning theory: an infrastructure for
answering itemset support queries can be considered as an efficient implementa-
tion of the statistical query oracle for the concept class of conjunctions of positive
literals [16]. Furthermore, assessing the applicability of different condensed rep-
resentations for itemset support queries would be helpful also in focusing the
research and use of different condensed representations.

Related work. There has been some work on approximate frequency estimates
for and using frequent itemsets. In [17] frequent itemsets are used to induce prob-
abilistic models describing the joint probability distributions of binary datasets.
[5, 18] study the approximations of the frequencies of boolean formulas in trans-
action data. Techniques for obtaining frequency approximations based on ran-
dom subsets of transactions are described in [19, 20]. Also the problem of deter-
mining exact frequencies of itemsets have been studied. [21] gives algorithms for
answering several types queries to a transaction database represented as a tree
in a main memory. [22] proposes FP-trees that are trie structures for transaction
data developed for frequent itemset mining. A data structure called AD-tree is
proposed in [23]. AD-tree represents for all attribute-value combinations occur-
ring in the projections of a relational database their counts in a trie. [24] studies
the use of automata to represent itemset collections and their condensed repre-
sentations. Protocols for private itemset support queries are given in [25]. To the
best of our knowledge this is the first systematic study of using condensed rep-
resentations of frequent itemsets to facilitate the answering of itemset support
queries.

Roadmap. Section 2 gives the central concepts in frequent itemset mining. Sec-
tion 3 defines the itemset support query problem, and describes data structures
and algorithms for answering itemset support queries using different condensed
representations. The proposed approaches for itemset support query answering
are evaluated experimentally in Section 4. Section 5 concludes the paper.

2 Preliminaries

In this section we briefly define the central concepts in frequent itemset mining
and their condensed representations. See [2–4, 6, 7] for more details.

Two most important ingredients in frequent itemset mining are transaction
databases and itemsets. Transaction databases comprise the data. Itemsets are
in dual role as building blocks of transaction databases and representation of the
discovered knowledge:

Definition 1 (Transaction databases and itemsets). A transaction database
D is a set of transactions. A transaction t is a pair 〈i, X〉 consisting of a trans-
action identifier tid(t) = i and an itemset is(t) = X. A transaction identifier is
a natural number occurring in at most one transaction in a transaction database.
An itemset X is a finite subset of I, the set of possible items. The set Du consists
of all different itemsets in D, i.e., Du = {X : 〈i, X〉 ∈ D}.

Example 1. D = {〈1, {1, 2, 3, 4}〉 , 〈2, {3, 4, 5, 6}〉 , 〈3, {1, 2, 3, 4, 5, 6}〉} is an ex-
ample of a transaction database.

As examples of itemsets, the itemsets occurring in that database, i.e., the
sets in Du are {1, 2, 3, 4}, {3, 4, 5, 6}, and {1, 2, 3, 4, 5, 6}.

Also certain statistics computed from the transaction database to itemsets
are central for frequent itemset mining:

Definition 2 (Occurrences, counts, covers, supports and frequencies).
The occurrence set of an itemset X in a transaction database D is occ(X,D) =
{i : 〈i, Y 〉 ∈ D, X = Y }. The count of X in D is count(X,D) = |occ(X,D)|.
The cover of X in D is cover (X,D) = {i : 〈i, Y 〉 , X ⊆ Y }, the support of X in
D is supp(X,D) = |cover (X,D)| and the frequency of X in D is fr (X,D) =
supp(X,D)/ |D|.

Using the concepts defined above we can define frequent itemsets:

Definition 3 (Frequent itemsets). An itemset X is σ-frequent in a transac-
tion database D if fr (X,D) ≥ σ. The collection of all σ-frequent itemsets in D
is F(σ,D).

Frequent itemset mining has been a central issue in data mining since its intro-
duction almost 15 years ago [1], many efficient algorithms for frequent itemset
mining have been proposed [2–4], and similar techniques have been applied to
a variety of other types of patterns than itemsets and quality functions than
support.

The frequent itemset collections representing the data well are often very
large—even larger than the underlying transaction database—and contain much
redundant information. To cope with this problem many techniques for removing
redundant itemsets from the frequent itemset collection have been proposed,
see [6, 7].

For example, in many transaction databases there are several frequent item-
sets with exactly the same cover. This can be used to partition the collection
of frequent itemsets to equivalence classes. From each equivalence class we can
select, e.g., all maximal or minimal itemsets (called closed and free itemsets):

Definition 4 (Closed and free frequent itemsets). X ∈ F(σ,D) is closed
σ-frequent itemset in D, if fr(X,D) > fr(Y,D) for all Y) X. The collection of
closed σ-frequent itemsets is C(σ,D).

X ∈ F(σ,D) is free σ-frequent itemset in D, if fr(X,D) < fr(Y,D) for all
Y (X. The collection of free σ-frequent itemsets is G(σ,D). Free itemsets are
known also as generators.

Example 2. The frequent itemsets in the transaction database given in Exam-
ple 1 with minimum frequency threshold 2/3 are the itemsets in 2{1,2,3,4} ∪
2{3,4,5,6}, in total 27 itemsets. The closed frequent itemsets comprise in the
itemsets {1, 2, 3, 4}, {3, 4}, and {3, 4, 5, 6}. The free frequent itemsets are ∅, {1},
{2}, {5}, and {6}.

Although there is a many-to-one mapping between free and closed frequent
itemsets in D, i.e., that there are always at least as many free frequent itemsets as
there are closed frequent itemsets, the collections of free frequent itemsets have
the advantage of being downward closed. (An itemset collection S is downward
closed if X ∈ S, Y ⊆ X ⇒ Y ∈ S.) This enables the re-use of virtually all known
frequent itemset mining algorithms with minor modifications to discover only
free frequent itemsets.

The deduction rules for closed and free itemsets to purge the frequent item-
set collection are quite simple. Hence, they do not purge the collection very
much. Smaller condensed representations can be obtained using more powerful
deduction rules, such as Bonferroni inequalities [6, 7]:

Definition 5 (Non-derivable frequent itemsets). X ∈ F(σ,D) is non-
derivable σ-frequent itemset in D, if supp(X,D) < supp(X,D) where

supp(X,D) = max
Y (X,|X\Y | odd

∑

Y ⊆Z(X

(−1)|X\Z|+1supp(Z,D)

supp(X,D) = min
Y (X,|X\Y | even

∑

Y ⊆Z(X

(−1)|X\Z|+1supp(Z,D)

are the greatest lower bound supp(X,D) and smallest upper bound supp(X,D)
for the support of an itemset X given the supports of all subsets of X. The
collection of non-derivable σ-frequent itemsets is N (σ,D).

3 Itemset support queries

The itemset support query problem asks for the supports of a collection of item-
sets w.r.t. some support function supp|S . The problem can be formulated as
follows:

Problem 1 (Itemset support query). Given a representation of supports of item-
sets in a collection S, and a collection Q of itemsets, find the supports for all
itemsets in Q∩ S.

In this paper, we focus on the case where the collection S is equal to F(σ,D)
in some transaction database D and Q being a single itemset, as the main goal
of the current paper is study how well condensed representations of itemset
collections are suited to answer itemset support queries.

The representations we consider are supp|F(σ,D), supp|C(σ,D), supp|G(σ,D)

supp|N (σ,D) and count |Du
. That is, we use index structures containing sup-

ports for all, closed, free and non-derivable frequent itemsets, and the occurrence

counts of different itemsets in the database D, respectively, to answer the itemset
support queries. We represent itemset collections S that we use in the itemset
support queries as tries, similarly to [26].

Definition 6 (Itemset tries). An itemset trie for an itemset collection S ⊆ 2I

is a rooted labeled tree T (S) = T = 〈V, E, l : E → I〉, such that for each item-
set X ∈ S, |X | = k, there is an unique node vX ∈ V such that the labels
label (〈vi−1, vi〉) of the path 〈root(T), v1〉 , . . . , 〈vk−1, vX〉 form an increasing se-
quence corresponding to the itemset X = {label(〈root(T), v1〉), . . . , label(〈vk−1, vX〉)}.
The itemset corresponding to a node v is denoted by Xv.

Example 3. The tries T (Du), T (C(σ,D)), T (G(σ,D)) and T (F(σ,D)) of Exam-
ples 1 and 2 are as follows:

1

2

3

1
4

5

1
6

3

4

5

1
6

1

2

3

2
4

3

3
4

5

2
6

3

2

1

2

2

2

5

2

6

3

2
1

2
2

2
3

2
4

2
4

2
3

2
4

2
4

2
2

2
3

2
4

2
4

3
3

3
4

2
5

2
6

2
6

2
5

2
6

2
6

3
4

2
5

2
6

2
6

2
5

2
6

2
6

The edges are labeled by the items in the itemsets and the labeled nodes
correspond to the itemsets in the collection: the itemset associated to a label
node is determined by the edge labels of the path from root to that node, and
the node label corresponds to the value of the node.

Itemset tries provide simple representations of itemset collections S for de-
ciding very efficiently whether a given itemset is in the collection or not. The
tries are adapted straightforwardly to answer also many other kinds of queries
by adding to each node v in T (S) a value val (v). The exact use of the values
of the nodes depend on what kind of function is represented by the trie. For
example, val (v) = count(Xv ,D), Xv ∈ Du, and val (v) = supp(Xv,D), Xv ∈ S
for all supp|S ,S ∈ {F(σ,D), C(σ,D),G(σ,D),N (σ,D)}.

The algorithm for querying the value of a given itemset Q from an itemset
trie T (S) is given in Algorithm 1. The algorithm retrieves the value of an itemset
Q (represented as an ascending sequence Q1, . . . , Q|Q| of items) in time O(|Q|).
We assume that val (v) = 0 for all Xv /∈ S. Hence, the the value returned for an
itemset not in S is always 0.

Algorithm 1 provides the worst-case optimal solution for querying the values
associated to itemsets from an itemset trie representing the collection explicitly.

Algorithm 1 The algorithm for obtaining the value of an itemset Q from T (S)
if Q ∈ S.

1: function IVQ-Eq(T (S),Q)
2: u← root (T (S))
3: for all j = 1, . . . , |Q| do

4: if child(u, Qj) exists then

5: u← child(u, Qj)
6: else

7: return 0
8: return val(u)

As the condensed representations of frequent itemsets are proper subcollections
of frequent itemsets, Algorithm 1 can be used to query only the supports of the
itemsets that appear explicitly in the condensed representations. For example,
Algorithm 1 returns non-zero supports only for closed frequent itemsets from
T (C(σ,D)) and only for free frequent itemsets from T (G(σ,D)).

The supports of frequent itemsets can be retrieved from the supports of closed
and free frequent itemsets, and the counts in Du using the formula of form

val(X) = ◦ {val(Y) : Y ∈ S, Y ⊇ X} (1)

where the operation ◦ forms a commutative monoid with some value set M .
(M = N for supports and counts.) Namely, the support of X ∈ F(σ,D) can be
obtained from those representations as follows:

supp(X,D) =
∑

Y ∈Du,Y ⊇X

count(Y,D)

= max
Y ∈C(σ,D),Y ⊇X

supp(Y,D)

= min
Y ∈G(σ,D),I\Y⊇I\X

supp(Y,D)

Hence, the operations ◦ are in these cases +, max and min>0, respectively. (These
formulas to deduce the supports follow immediately from the definitions of Du,
C(σ,D), and G(σ,D).)

To answer the itemset value queries using Equation 1, the itemset tries T (S)
are preprocessed for these queries in such a way that the values val(v) of the
nodes v in T (S) are replaced by ◦ {val (u) : u ∈ subtrie(v, T (S))}. Such prepro-
cessing can be done in time O(|V |) for an itemset trie T = (V, E).

Example 4. After the preprocessing, the tries T (Du) and T (C(σ,D)) of Exam-
ple 3 look the following:

3

2
1

2
2

2
3

2
4

1
5

1
6

1
3

1
4

1
5

1
6

3

2
1

2
2

2
3

2
4

3
3

3
4

2
5

2
6

Preprocessing replaces the values val(v) in T (Du) by
∑

u∈subtrie(v,T (S)) val (u)

and the values val(v) in T (C(σ,D)) by max {val(u) : u ∈ subtrie(v, T (S))}.

The evaluation of Equation 1 for (preprocessed) itemset tries T (S) is de-
scribed as Algorithm 2. (Note that the pseudocode omits many lower-level de-
tails of the algorithm for the sake of readability. For example, recursive function
calls are not be used in practice as they cause some slowdown.)

Algorithm 2 The algorithm for obtaining the value itemset Q from T (S) by
Equation 1.

1: function IVQ-Supset(T (S),Q)
2: return IVQ-Supset-Node(T (S),Q, root(T (S)),1)

1: function IVQ-Supset-Node(T (S),Q, v, j)
2: val ← 0
3: for all u ∈ children(v), label(v, u) ≤ Qj and subtrie(u, T (S)) can contain the

itemset
˘

Qj , . . . , Q|Q|

¯

do

4: if label(v, u) < Qj then

5: val ← val ◦ IVQ-Supset-Node(T (S),Q, u, j)
6: else if j < |Q| then

7: val ← val ◦ IVQ-Supset-Node(T (S),Q, u, j + 1)
8: else

9: val ← val ◦ val(u)

10: return val

The worst-case time complexity of Algorithm 2 is not as good as of Al-
gorithm 1. Namely, in the worst case the whole itemset trie T (S) have to be
traversed. This is the case, for example, when S = {{i, n/2, . . . , n − 1} : i =
1, . . . , n/2 − 1} and Q = {n}. In this example the ordering of the items in the
trie makes a great difference in terms of time and space requirements. Even more
severe example is the following: S{X ∪{2n+1} : X ⊆ {1, . . . , 2n}, |X | = n} and
Q = {2n + 1}.

The performance of the query evaluation can be improved by efficient and
effective detection of subtries that cannot have paths containing the query item-
set. A few examples of such criteria are depth(subtrie(u, T (S))) < |Q| − i (i.e.,
in the subtrie of u there should be a path of length at least |Q| − i) and

max label (subtrie(u, T (S))) < Q|Q| (i.e., it should be possible that the subtrie
contains the item Q|Q|)).

Algorithm 2 is not very appropriate for free frequent itemsets because then
the complements of the itemsets must be used. This often leads to much larger
itemsets. An alternative of using the complements of the free frequent itemsets
is to use a simple modification of Equation 1:

val(X) = ◦ {val(Y) : Y ∈ S, Y ⊆ X} (2)

The support of X ∈ F(σ,D) can be obtained from the representations T (Du),
T (C(σ,D)) and T (G(σ,D)) using Equation 2 by

supp(X,D) =
∑

Y ∈Du,I\Y ⊆I\X

count(Y,D)

= max
Y ∈C(σ,D),I\Y⊆I\X

supp(Y,D)

= min
Y ∈G(σ,D),Y ⊆X

supp(Y,D)

The method implementing Equation 2 is given as Algorithm 3. For this al-
gorithm the itemset tries T (S) should represent the itemset collection and their
values as they are, i.e., without any preprocessing.

Algorithm 3 The algorithm for obtaining the value itemset Q from T (S) by
Equation2.

1: function IVQ-Subset(T (S),Q)
2: return IVQ-Subset-Node(T (S),Q, root (T (S)),1)

1: function IVQ-Subset-Node(T (S),Q, v, j)
2: val ← 0
3: for all u ∈ children(v), label(v, u) ∈ Q do

4: if label(v, u) < Q|Q| then

5: val ← val ◦ IVQ-Subset-Node(T (S),Q, u, min {i : Qi > label(v, u)})
6: else

7: val ← val ◦ val(u)

8: return val

In this case, the time complexity can also be quite high: in the worst case
the whole trie T (S) has to be traversed even when no itemset in S is contained
in any itemset in Q. As an example, consider the collection S = {X ∪{n} : X ⊆
{1, . . . , n − 2}} and the query Q = {1, . . . , n − 1}.

In general case not much additional pruning of unpromising parts of the
search trie can be done. In some special cases, however, that is possible. For
example, in the case free frequent itemsets, maintaining the smallest support in
the subtrie can be used to skip those subtries that cannot have smaller supports
than the value obtained that far in the traversal.

Answering itemset support queries using the representation T (N (σ,D)) is
slightly more complicated, but can be implemented as follows: (1) query Q is
transformed into downward closed collection Q′, (2) Algorithm 1 is applied to
T (Q′), (3) the still undetermined supports of the itemsets in T (Q′) are deduced
using Bonferroni-inequalities [27], and (4) Algorithm 1 is applied to retrieve
supports of itemsets in Q from T (Q′).

Unfortunately the proposed algorithm for itemset support queries from the
representation based on non-derivable itemsets is not very practical, because
the fastest known algorithm to obtain the support of an itemset of size k using
Bonferroni-inequalities has the worst-case time complexity O(2k) [27]. Hence,
we omit non-derivable itemsets from our experiments.

4 Experiments

We examine the performance of itemset query algorithms using random queries
to several benchmark databases in frequent itemset mining from the FIMI trans-
action database repository (http://fimi.cs.helsinki.fi). To see the potential differ-
ences in the performance of different representations, we selected 8 transaction
databases where the number of all frequent itemsets is higher than the number
of closed or free frequent itemsets. For each database D we used a minimum
support threshold σ |D| that produces a large number of frequent itemsets, be-
cause the goal of using itemset collections as index structures for itemset support
queries is to be able to answer as large fraction of the queries as possible. This
differs somewhat from the classical use of frequent itemsets and association rules
as a small number of nuggets of knowledge. The basic statistics of the selected
databases are shown in Table 1.

Table 1. The transaction databases used in the experiments. The columns are the
transaction database name, the minimum support threshold, the number frequent
items, the number of transactions, the number of different transactions after removing
infrequent items, the number of frequent itemsets, the number of free frequent itemsets,
and the number of closed frequent itemsets.

D |I| |D| σ |D|
˛

˛I≥σ
˛

˛

˛

˛D≥σ
u

˛

˛ |F(σ,D)| |G(σ,D)| |C(σ,D)|

connect 129 67 557 50 000 30 214 1 928 335 26 417 26 417
kosarak 41 270 990 002 900 1 384 387 603 1 598 294 1 143 594 1 124 819
mushroom 119 8 124 500 67 7 032 1 442 503 14 925 9 864
pumsb 2 113 49 046 35 000 34 3305 1897479 519 725 194 538
pumsb* 2 088 49 046 13 000 63 25 404 1 293 828 57 172 32 115
retail 16 470 88 162 5 10 988 83 119 1 506 775 532 342 504 142
WebView-1 497 59 601 35 369 18 184 1 177 607 118 696 76 260
WebView-2 3 340 77 511 15 2 643 48 117 1 599 210 397 283 343 818

We selected randomly 1 000 000 itemsets from F(σ,D) with uniform distri-
bution over the collection to assess average-case efficiency of different represen-

tations of the frequent itemsets to answer itemset support queries. As a baseline
representation we used the representation of D≥σ

u as list of itemsets together
with their occurrence counts. The sizes of the trie representations and the aver-
age query answering performances for 1 000 000 random itemset support queries
from the collection F(σ,D) for the databases of Table 1 are shown in Table 2.

Table 2. The space requirements of different trie representations and their query an-
swering time speedups w.r.t. a list representation of D≥σ

u for 1 000 000 random itemset
support queries selected from frequent itemsets.

the sizes of the tries in KBs the speed-ups in the query times

D D≥σ
u F(σ,D) G(σ,D) C(σ,D) D≥σ

u F(σ,D) G(σ,D) C(σ,D)

connect 36 75 326 1 032 1 032 14.4 7.0 1.1 1.4
kosarak 117 735 62 433 44 672 44 286 0.8 8 705.7 170.8 65.7
mushroom 776 56 348 583 420 29.5 244.7 71.6 126.2
pumsb 752 74 120 20 302 10 416 43.9 117.8 6.2 5.6
pumsb* 6 695 50 540 2 233 1 395 41.1 1 505.3 248.1 302.9
retail 26 024 58 858 20 795 20 240 1.5 1 759.3 35.0 6.4
WebView-1 2 166 46 000 4 637 3 308 5.2 320.5 38.0 11.4
WebView-2 8 692 62 469 15 519 13 950 22.5 820.8 24.8 11.7

The trie representations show often considerable speedup compared to the
baseline approach. The experimental results show also that answering itemset
support queries to T (D≥σ

u), T (C(σ,D)) and T (G(σ,D)) are often much slower
than answering them using T (F(σ,D)). Especially queries to T (D≥σ

u) for kosarak

were considerable slower than to the other representations, even slower than the
baseline representation. One possible explanation is that the branching factor
of the trie T (D≥σ

u) is higher than in T (F(σ,D)), T (C(σ,D)) and T (G(σ,D)).
Furthermore, the pruning conditions in Algorithm 2 are more expensive than in
the baseline approach. If the pruning fails, then the pruning attempts result just
slowdown.

In general, condensed representations of frequent itemsets seem to offer a rea-
sonable alternative for itemset support queries using all frequent itemsets only
when very few frequent itemsets are contained in the condensed representation.
(Note that in the case of T (G(σ,D)) and T (C(σ,D)) the query optimization of
first checking whether the itemset is in the collection could improve the perfor-
mance considerably.) The preliminary experimental results are promising, but
more comprehensive evaluation of itemset support queries is needed.

5 Conclusions

In this paper we studied the use of frequent itemsets, the condensed represen-
tations of the frequent itemsets, and the concise representations of transaction
databases for answering itemset support queries. Answering such queries is an

important task in inductive databases for performing interactive data mining
queries and as building blocks of data mining algorithms. We proposed efficient
trie structures for representing itemset collections and the answering itemset
support queries. We evaluated experimentally the applicability of the major con-
densed representations of frequent itemsets to answer itemset support queries.
Trie representations seem to offer a reasonable approach for facilitating itemset
support querying.

As a future work we plan to work on efficient indices for querying approxi-
mate representations of frequent itemsets. Some representations, e.g., [19, 28], fit
readily to itemset tries, but it is not clear what would be the best representation
for answering multiple itemset support queries. Another potential line of research
is of hierarchical descriptions of data to facilitate the efficient query answering.
For example, using the projections of the transaction database to the maximal
frequent itemsets can result significant space saving compared other condensed
representations [29]. Querying projections with only a very small number of dif-
ferent transactions is fast. Most likely there is no particular represenation that
would be always the best for all itemset support queries, but different indices
suit for different kinds of transaction databases. This suggests to develop tech-
niques for finding most efficient representation for a particular database and
distribution queries. Furthermore, combining different representations for a sin-
gle transaction databases have some promise in both helping to comprehend the
underlying itemset collections and speeding up the itemset support queries.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In Buneman, P., Jajodia, S., eds.: SIGMOD Conference.
(1993) 207–216

2. Goethals, B.: Frequent set mining. In Maimon, O., Rokach, L., eds.: The Data
Mining and Knowledge Discovery Handbook. Springer (2005) 377–397

3. Goethals, B., Zaki, M.J., eds.: FIMI ’03, Frequent Itemset Mining Implementa-
tions, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Im-
plementations, 19 December 2003, Melbourne, Florida, USA. Volume 90 of CEUR
Workshop Proceedings. (2003)

4. Bayardo Jr., R.J., Goethals, B., Zaki, M.J., eds.: FIMI ’04, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Brighton,
UK, November 1, 2004. Volume 126 of CEUR Workshop Proceedings. (2004)

5. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed represen-
tations (extended abstract). In: KDD. (1996) 189–194

6. Calders, T., Rigotti, C., Boulicaut, J.F.: A survey on condensed representations
for frequent sets. [30] 64–80

7. Mielikäinen, T.: Transaction databases, frequent itemsets, and their condensed
representations. [31] 139–164

8. Boulicaut, J.F.: Inductive databases and multiple uses of frequent itemsets: The
cInQ approach. In Boulicaut, J.F., Raedt, L.D., Mannila, H., eds.: Database Sup-
port for Data Mining Applications. Volume 3848 of LNCS. (2004) 1–23

9. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39 (1996) 58–64

10. Mannila, H.: Inductive databases and condensed representations for data mining.
In: ILPS. (1997) 21–30

11. Siebes, A.: Data mining in inductive databases. [31] 1–23
12. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3 (1989)

261–283
13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1992)
14. Maron, M.E.: Automatic indexing: An experimental inquiry. J. ACM 8 (1961)

404–417
15. Panov, P., Džeroski, S., Blockeel, H., Loškovska, S.: Predictive data mining us-

ing itemset frequencies. In: Proceedings of the 8th International Multiconference
Information Society. (2005) 224–227

16. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J. ACM 45

(1998) 983–1006
17. Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: Probabilistic models for

query approximation on binary transaction data. IEEE Transactions on Knowledge
and Data Engineering 15 (2003) 1409–1421

18. Seppänen, J.K., Mannila, H.: Boolean formulas and frequent sets. [30] 348–361
19. Mielikäinen, T.: Separating structure from interestingness. In Dai, H., Srikant, R.,

Zhang, C., eds.: PAKDD. Volume 3056 of LNCS. (2004) 476–485
20. Toivonen, H.: Sampling large databases for association rules. In Vijayaraman,

T.M., Buchmann, A.P., Mohan, C., Sarda, N.L., eds.: VLDB. (1996) 134–145
21. Kubat, M., Hafez, A., Raghavan, V.V., Lekkala, J.R., Chen, W.K.: Itemset trees

for targeted association querying. IEEE Transactions on Knowledge and Data
Engineering 15 (2003) 1522–1534

22. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8 (2004)
53–87

23. Moore, A.W., Lee, M.S.: Cached sufficient statistics for efficient machine learning
with large datasets. JAIR 8 (1998) 67–91

24. Mielikäinen, T.: Implicit enumeration of patterns. [32] 150–172
25. Laur, S., Lipmaa, H., Mielikäinen, T.: Private itemset support counting. In Qing,

S., Mao, W., Lopez, J., Wang, G., eds.: ICICS. Volume 3783 of LNCS. (2005)
97–111

26. Mielikäinen, T.: An automata approach to pattern collections. [32] 130–149
27. Calders, T., Goethals, B.: Quick inclusion-exclusion. [31] 86–103
28. Geerts, F., Goethals, B., Mielikäinen, T.: What you store is what you get. [33]

60–69
29. Mielikäinen, T.: Finding all occurring patterns of interest. [33] 97–106
30. Boulicaut, J.F., Raedt, L.D., Mannila, H., eds.: Constraint-Based Mining and In-

ductive Databases, European Workshop on Inductive Databases and Constraint
Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Pa-
pers. Volume 3848 of LNCS. (2005)

31. Bonchi, F., Boulicaut, J.F., eds.: Knowledge Discovery in Inductive Databases, 4th
International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised
Selected and Invited Papers. Volume 3933 of LNCS. (2006)

32. Goethals, B., Siebes, A., eds.: KDID 2004, Knowledge Discovery in Inductive
Databases, Proceedings of the Third International Workshop on Knowledge Dis-
covery in Inductive Databases, Pisa, Italy, September 20, 2004, Revised Selected
and Invited Papers. Volume 3377 of LNCS. (2005)

33. Boulicaut, J.F., Dzeroski, S., eds.: Proceedings of the Second International Work-
shop on Inductive Databases, 22 September, Cavtat-Dubrovnik, Croatia. (2003)

