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Exploration, Partitioning and
Simulation of Reconfigurable
Systems

Exploration, Partitionierung und Simulation rekonfigurierbarer Systeme
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Martin Streubühr, Christian Haubelt, University of Erlangen-Nürnberg,
Andreas Schallenberg, Wolfgang Nebel, CvO University Oldenburg

Summary Reconfigurable devices in large complex systems
allow the reduction of the amount of required resources. They
serve as run-time re-usable devices for performance critical
data-oriented processes. However, the use of reconfigurable
devices within large systems greatly increases the design com-
plexity. The designer’s task gets even harder when the goal
is a resource efficient solution. Constructing a good design
requires the consideration of many design alternatives. With to-
day’s complex systems and the resulting degrees of freedom the
designer should be assisted by sophisticated design space ex-
ploration tools. However, all known system-level design space
exploration tools do not exploit the potentials dynamic hard-
ware reconfiguration exposes. Moreover, the implementation
of selected solutions poses an additional challenge and also
requires a cycle-level simulation. This paper presents a novel
design methodology which is able to overcome these draw-
backs by integrating state-of-the-art temporal partitioning
approaches for dynamic hardware reconfiguration into system-
level design space exploration.

��� Zusammenfassung Dynamisch rekonfigurierbare
Chips erlauben es, bei großen Systemen Ressourcen einzu-
sparen. Sie dienen als dynamisch programmierbare Einheiten
für laufzeitkritische Anwendungen. Leider erhöht der Einsatz
dieser Chips die Entwurfskomplexität drastisch. Die Aufgabe
wird noch schwieriger, wenn eine ressourceneffiziente Lösung
gefordert ist. Um dabei eine gute Lösung zu finden, müssen
viele Entwurfsalternativen untersucht werden, wobei bei der
heutigen Komplexität der Systeme und der Anzahl an Freiheits-
graden der Entwickler durch Werkzeuge unterstützt werden
sollte. Leider gibt es bis heute keine Explorationswerkzeuge
auf Systemebene, die auch das Potential der Laufzeitrekonfi-
gurierung ausnutzen. Der vorliegende Beitrag stellt eine neue
Entwurfsmethode vor, um die genannten Aufgaben zu lö-
sen. Dazu werden aktuelle Explorations-, Partitionierungs-
und Simulationsverfahren herangezogen. Das mittels mehrerer
Iterationsverfahren gewonnene Explorationsergebnis unter-
stützt dann den Entwickler bei der letztendlichen Implemen-
tierung.

KEYWORDS B.7.1 [Hardware: Integrated Circuits: Types and Design Styles], C.3 [Computer Systems Circuits: Special-
Purpose and Application-Based Systems], I.6.2 [Computer Methodologies: Simulation and Modeling: Simu-
lation Languages], reconfiguration, design space exploration, design methodology, simulation, partitioning,
FPGA/Rekonfigurierung, Entwurfsraumexploration, Entwurfsmethodik, Simulation, Partitionierung

1 Introduction
The demanding computational re-
quirements of today’s systems is of-
ten tackled by a set of heterogeneous
devices each solving a specific prob-

lem best. Such systems are com-
posed of general-purpose CPUs,
DSPs or ASICs, and increasingly
reconfigurable devices like FPGAs.
Being challenging even without, the

design complexity of such heteroge-
neous systems including FPGAs in-

This work was partially funded by the
Deutsche Forschungsgemeinschaft SPP 1148
Reconfigurable Computing.
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Schwerpunktthema

creases, as FPGAs incorporate hard-
ware reuse.

Several concepts targeting es-
sential parts of the design of such
systems can be found in the lit-
erature. However, integrated design
methodologies from system-level to
simulation and eventual generation
of configurations are still subject to
research, particularly if the reconfig-
urable FPGAs are fundamental parts
of the systems. Such an integrated
design methodology that spans the
whole design process is proposed in
this work.

1.1 Overview of
the Methodology

Our proposed methodology is de-
picted in Fig. 1. First, an initial

Figure 1 The proposed design flow.

SystemC model is examined for po-
tentially reconfigurable parts. This
is done by inspecting data members
of SystemC modules. Suitable mem-
bers are encapsuled in certain C++
containers. This way an OSSS+R
model (for details, see Section 4)
is constructed. The model can be
simulated to obtain a trace covering
all assumed reconfiguration related
information. From this, the execu-
tion times for the reconfigurable
parts are extracted.

In parallel to this, a tool-based
synthesis of the OSSS+R model to
VHDL is performed. The result-
ing files can be synthesized with
FPGA vendor specific tools, e. g.,
using Xilinx early access partial re-
configuration design flow [14]. It is

not necessary to obtain a working
model. It is sufficient to obtain es-
timations for reconfiguration times
of the identified candidates.

In a third step, the initial Sys-
temC model is analyzed to extract
a so-called process graph. Next, the
designer specifies the architecture
template and mapping constraints
resulting in a so-called specification
graph [12]. Processes that might be
mapped onto FPGAs are passed to
the FPGA-level exploration which
determines optimal FPGA configu-
rations, as described below. These
configurations are inserted in the
architecture template and are con-
sidered during design space ex-
ploration. Using this specification
graph, the system-level design space
exploration phase determines an
optimal selection of resources as
well as an optimal mapping of
processes onto these hardware re-
sources by also considering effects
from dynamic hardware reconfigu-
ration (see Section 2). The design
space exploration is based on Multi-
Objective Evolutionary Algorithms
(MOEAs) and is able to optimize
multiple objectives, like cost, power
consumption, etc., simultaneously.
The result is an approximation set
of Pareto-optimal solutions, from
which a designer has to select a so-
lution for implementation.

For reconfigurable FPGAs, the
assigned set of tasks is partitioned by
an additional phase, the FPGA-level
exploration (step 5). In this phase,
we optimize the sequence of config-
urations in order to reduce the re-
configuration overhead. This FPGA
based design space exploration ex-
amines the reconfigurable nodes of
the graph and proposes solutions
for implementing the given set of
processes. It includes the task of de-
riving partitions that are suitable
for dynamic reconfiguration basi-
cally based on the execution time
and area estimation of step 1 and 2.
The key idea is to optimize configu-
rations by reducing communication
requirements, which also includes
an optimized order of configuration
steps. This is both done using the
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spectral method (see Section 3). Fi-
nally, the results are passed back to
the system-level design space explo-
ration.

The result of the system-level
design space exploration is a set of
Pareto-optimal solutions. However,
due to the nature of a quick ex-
ploration, the generated scoring of
these solutions is not as accurate
as one generated by an in-depth
examination. Therefore, the gen-
erated architecture graph and the
selected configurations are fed into
a model adaptation phase (step 6).
The resulting model is an executable
specification honoring the suggested
implementation advices. However,
this model does not cover soft-
ware parts. A further analysis by
OSSS+R simulation and synthesis to
bitstreams gives more detailed cost
figures. Based on this information,
a reliable selection among the re-
maining solutions can be made.

1.2 Related Work
This paper presents a novel ap-
proach for a tool-assisted design
flow including system-level and
FPGA-level design space exploration
as well as the synthesis of complex
systems with dynamically reconfig-
urable resources. Many publications
related to each of the subtasks
exist. However, to the best of our
knowledge, no seamless design flow
considering all these aspects exists
today. Hence, we discuss related
work of the phases of our design
flow only.

Different system-level design
space exploration tools are doc-
umented in the literature, cf. [8;
11]. Many of them use Multi-
Objective Evolutionary Algorithms
to perform the automatic explo-
ration. Some of the tools also use
simulation-based evaluation dur-
ing exploration. However, none of
them supports dynamically recon-
figurable hardware in the explo-
ration.

Temporal and spatial partition-
ing approaches focusing the execu-
tion of the partitioned algorithms
on FPGAs can be found, e. g., in [1;

4; 7; 13; 15]. These are all sophisti-
cated approaches to explore the run-
time reconfiguration capabilities of
modern FPGAs. However, only [4;
13] focus on optimization of com-
munication between partitions, i. e.,
reducing FPGA routing complex-
ity. In this work, we enhance the
approach of [4] by specifically con-
sidering precedence relations.

There have been several ap-
proaches to model reconfigurable
hardware. For example, both simu-
lation and synthesis are supported
by JHDL [2], a Java based language
which allows a structural design de-
scription. The level of abstraction is
rather low, which is a disadvantage
during system-level design.

Due to the increasing popularity
of SystemC, we base our method-
ology on this modeling framework.
SystemC is a C++ based simulation
library. Basically, a SystemC model
is a C++ program that can be com-
piled using standard C++ compilers
and linked with the simulation li-
brary. Executing the binary results
in a simulation of the system.

In the following, we will present
the three phases of our methodology
in more detail, before applying the
methodology to an example.

2 System-Level Design Space
Exploration

The goal in Design Space Explo-
ration (DSE) is to find an opti-
mized allocation of hardware re-
sources and an optimized binding
of processes onto these resources.
The hardware resources to be con-
sidered at system-level are typic-
ally processors, ASICs, coprocessors,
busses, FPGAs with configuration
bit streams, etc. A very promis-
ing approach to automatic DSE is
to start from a specification in-
cluding a model of the application
as well as a model of the archi-
tecture template. Moreover, map-
ping constraints must be modeled
to specify that a process might
be implemented on a given re-
source. Such a system model is
called a specification graph in the
following. The specification graph

consists of a so-called process graph
that models the application to be
implemented by means of com-
municating processes, the so-called
architecture graph which models the
architecture template by means of
connected resources, and the map-
ping edges which model that a given
process can be implemented on
the connected resource (see [3]).
This specification graph is the in-
put to the automatic design space
exploration as depicted in Fig. 1.
The process graph is usually an
abstraction from some executable
application description. In the fol-
lowing, we will assume that the
process graph represents an applica-
tion given in the system description
language SystemC, which is com-
posed of modules connected by
channels. From such a SystemC de-
scription, a process graph can be
extracted automatically. To define
an appropriate architecture tem-
plate and mapping constraints, the
designer usually defines some pro-
cessors and additional hardware IP
cores which are connected using
a specific communication struc-
ture. Note that the communication
infrastructure in general depends
on the selected processor modules.
From a synthesis point of view,
it is mandatory to resort to spe-
cific platforms, i. e., specific pro-
cessors and communication media.
Moreover, hardware IPs should be
an one-to-one transformation of
SystemC modules. Such transform-
ation can be done manually or
automatically using high-level syn-
thesis tools. Note that defining the
mapping constraints requires either
a synthesis step or an estimation of
properties such as area and power
consumption, latency, throughput,
etc. A more detailed discussion on
defining the specification graph and
performing automatic synthesis is
provided in [12].

Given a specification graph, the
task of system-level design space
exploration can be formally de-
fined as the task of selecting nodes
from the architecture graph, i. e.,
resources are allocated, and map-
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ping edges are selected such that
(1) each process is connected to
exactly one resource through a map-
ping edge and (2) communicating
processes are bound to the same
or to directly connected resources.
The latter requirement ensures that
the communication demanded by
the application can be handled by
the allocated architecture. As there
exists more than a single possible
solution to this underlying decision
problem, we have to optimize the
solutions with respect to some ob-
jectives as area, power consumption,
etc.

As typically more than a sin-
gle objective function has to be
optimized during system design,
there does not exist a single opti-
mal solution in general. Thus, to
be precise, our goal in DSE is to
find the set of Pareto-optimal so-
lutions. In order to perform auto-
matic system-level DSE exploration,
so-called Multi-Objective Evolution-
ary Algorithms (MOEAs) have been
proven to perform well. In our
proposed design flow, we use an au-
tomatic DSE framework called Sys-
temCoDesigner [11]. SystemCoDe-
signer uses so-called hierarchical
architecture graphs to model the
mutual exclusion of different con-
figurations loaded on an FPGA. An
example of an FPGA with three as-

Figure 2 (a) FPGA with three associated configurations and (b) corresponding hierarchical archi-
tecture graph.

sociated configurations is shown in
Fig. 2(a). The corresponding hier-
archical architecture graph is shown
in Fig. 2(b).

The DSE using MOEAs can be
sketched as follows: A so-called pop-
ulation of individuals is optimized
iteratively during exploration. Each
individual represents a solution and
is encoded as a so-called chromo-
some. In our case, the chromosome
consists of two parts. The encod-
ing of the allocation of resources
and configurations is done using bit
strings. Each bit corresponds to a re-
source or a configuration indicating
its allocation (1) or deallocation (0).
The binding is encoded in a set of
priority lists. To each process an
ordered list is associated which sorts
the outgoing mapping edges. Map-
ping edges are selected from these
lists according to (i) their priority
(the position in the list) and (ii)
their ability to contribute to a feas-
ible solution. Both, the bit string
and the priority lists, are changed
from iteration to iteration through
genetic operations, i. e., mutation
and crossover. Only the fittest so-
lutions according to a given fitness
function are placed in the next pop-
ulation (iteration).

In Multi-Objective Optimiza-
tion, the fitness function depends
on the objective values of a solu-

tion as well as the objective values of
other solutions in order to generate
Pareto-optimal and highly diverse
solutions. In particular, to deter-
mine the objective values like la-
tency or throughput, in our design
methodology, we integrate a Sys-
temC simulation. Here, our VPC-
approach (Virtual Processing Com-
ponents) is used to simulate the
timing behavior of a complex sys-
tem at the system-level with a task
accurate granularity [17]. In later
design phases (model adaptation
phase), we will use the OSSS+R li-
brary for a cycle accurate simulation
of the dynamic hardware reconfigu-
ration. In turn, this simulation will
provide more accurate parameters
for the system-level model.

However, to be useful in a seam-
less design flow, a designer needs
to know good FPGA configurations
to be considered during system-level
design space exploration. For this
purpose, we propose the integration
of temporal partitioning algorithms
into the design space exploration.
This can be done by extracting the
subgraph of the process graph pos-
sibly mapped onto an FPGA and
construct optimized configurations
for this partial application. This is-
sue is discussed next.

3 FPGA-Level Design Space
Exploration

Run-time reconfiguration of FPGAs
allows to reuse the same hardware
for multiple processes, which are
dynamically loaded as bitstreams
on FPGAs. Moreover, algorithms
divided into mutually exclusive con-
figurations allow their execution
even if the total area requirements
exceed the available area.

An essential means for exploit-
ing run-time reconfiguration is the
adequate derivation of the configu-
rations. For this purpose, we need
a suitable method to partition the
process graphs introduced in Sec-
tion 2 into configurations. We iden-
tify the communication between the
partitions as important costs, as we
often have only a limited amount
of communication resources passing
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the partition boundaries. Addition-
ally, storing of intermediate data
should be reduced. Thus, we use
a method to partition the data
flow graphs with respect to com-
munication requirements. This task
of deriving optimal configurations
is called the FPGA-level design
space exploration (see Fig. 1). The
methods applied are based on the
spectral analysis of the input graphs
as proposed in [10] for VLSI design.
The method re-arranges graphs in
space respecting the communica-
tion by a quadratic objective func-
tion of the distances between nodes
(wire length model). Its output is
a communication optimized place-
ment suggestion.

For spectral placement, the in-
put graph must be given as the
Laplacian matrix B, derived from
the connection matrix C and the de-
gree matrix D (B=D – C). Our goal
is to minimize the sum of squared
distances between the nodes. There-
fore, we apply the Lagrange multi-
plier method with the k Lagrange
multipliers λ1, λ2, ..., λk. The solu-
tion are B’s Eigenvectors associated
to the k smallest non zero Eigen-
values. These Eigenvectors place the
vertices in space, whose communi-
cation is now optimized concerning
the wire length.

We use this result for cluster-
ing the graphs. Such clusters are
meaningful references for the mu-
tual exclusive configurations, as they
comprise few external communica-
tion. Additionally, the location of
the clusters in space helps to arrange
the partitions on the FPGA. How-
ever, as the spectral method ignores
the direction of edges and therefore
does not respect precedence con-
straints, we use a combination of
the spectral method and temporal
scheduling in order to derive mutual
exclusive configurations that can be
loaded in sequence onto FPGAs.

Therefore, we have applied
two different partitioning methods.
While the first improves an idea
presented for coarse grain recon-
figurable devices [6], the second
one requires an intermediate clus-

tering step done via biologically
inspired algorithms. Both use tem-
poral scheduling methods to finally
derive the partitions.

In detail, the first method uses
the first two non zero Eigenvectors
to derive the x and y coordinates
of a geometrical arrangement of
the tasks. As in [4], we use the
third Eigenvector as reference for
our temporal partitioning. There-
fore, we iteratively derive bisections
of the graph based on the ordering
given by this Eigenvector. The data
flow between each newly generated
pair of subgraphs is homogenized
by means of applying a modified
version of the Kernighan Lin algo-
rithm, which prefers to move tasks
that reduce the amount of wrongly
directed edges. Finally, two adjacent
partitions will have edges in one di-
rection only and a schedule using
temporal algorithms can be derived.

In contrast, the second method
is based on two Eigenvectors and
a biologically inspired clustering
methodology. The spectral analy-
sis serves as basis for a biologi-
cally inspired intermediate cluster-
ing, which assigns the nodes to be
clusterhead or member of cluster ac-
cording to division of labor ants.
The stimulus of deciding the mem-
bership is calculated by virtue of
the distance of nodes in the spectral
arrangement. Resource limitations
help us to reduce the search space.
After deriving the intermediate clus-
ters, we decide on the final parti-
tioning by referring to the temporal
ordering of the task set. Clusters will
become valid, if their precedence
constraints can be fulfilled by al-
ready scheduled clusters. Otherwise,
the violating tasks will be removed
and added to future clusters by re-
specting resource constraints.

To conclude, we partition by re-
ferring to spacial (spectral method)
and temporal (temporal algorithm)
information. The configurations are
mutually exclusive and can be dis-
tributed to the system-level DSE. In
order to finally derive the best size
for the configurations, we rely on
the iterative behavior of our overall

design methodology. After simulat-
ing and synthesizing, we gain trace
or gate count information valuable
for the next iteration within our
design flow (ref. to Fig. 1). This ap-
proach of nested intervals allows to
approximate the solution.

4 Simulation and Synthesis
In our design flow, OSSS+R serves
as a representation of a given solu-
tion and is the base for evaluation
(see Fig. 1). OSSS (Oldenburg Sys-
tem Synthesis Subset) [9] is a mod-
eling library for SystemC.

Traditionally, hardware descrip-
tion languages only support static
design elements. In short, hardware
does not change over time. Ad-
ditionally using the OSSS+R [16]
library extends the set of available
primitives already available in OSSS
by further ones suitable for dynamic
components. Using these primitives
enables simulation of reconfigurable
aspects (hence the +R in the name)
at a high level of abstraction.

As soon as dynamic partial re-
configuration is used in a non-
trivial way, resource conflicts are
likely to occur. A device’s reconfigu-
ration port cannot be used to load
multiple bitstreams on the device
in parallel and the reconfigurable
areas cannot contain multiple logic
configurations in parallel. There-
fore they form limited resources
which may be used mutually ex-
clusive only. OSSS+R has dedicated
primitives for such resources. Bor-
rowed from its C++ roots, it has
class datatypes and therefore treats
the resources as objects. Addition-
ally, these special objects provide
built-in scheduling abilities.

We model the tasks to be ex-
ecuted as contexts. Contexts are
always members of SystemC mod-
ules with an infinite lifetime. From
a functional point of view, they
behave like ordinary C++ objects.
The designer may express access to
these objects anywhere in his code
without restriction. During runtime
however, only a subset of contexts is
available per instant. This discrep-
ancy is hidden to the designer by
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automatically deciding which con-
texts to disable and which to enable
while the system operates. There-
fore, online scheduling is done by
a distributed set of arbiters, which
are inferred automatically. It is pos-
sible to select among a set of pre-
defined scheduling algorithms or
specify custom ones, e. g., to imple-
ment specifications as given by the
FPGA-level exploration.

As a result of this approach, the
programmer targets a virtual de-
vice which seems to be larger than
the real device the functionality is
mapped to. The device appears to
provide all contexts in parallel but in
fact switches between them on the
fly. This is very much similar to the
concept of virtual memory for mi-
croprocessors.

Note that this simulation is
different from that in the system-
level design space exploration phase.
The former is more abstract and
less timing-accurate in order to
be fast. On the other hand, the
OSSS+R simulation may even be
cycle-accurate when given precise
timing information for the recon-
figuration phase. The precision is
required for the optimizations in
the FPGA-level design space explo-
ration.

5 Simulated Architecture
We start with a given ordered set
of partitions. For each task within
the partition we annotated a core
execution time and a reconfigura-
tion time. Since the partitions are
chosen in a way that there are
no inter-partition dependencies be-
tween tasks, we completely config-
ure all tasks of a given partition to
the device. Once done, all tasks are
started. Whenever a set of tasks is
being executed, the next partition is
concurrently configured to another
device. As soon as both task execu-
tion and configuration are finished,
the two FPGAs switch execution and
configuration steps.

Configuration and execution of
tasks are controlled from within the
FPGA. This is where the simula-
tion is done with a greater degree

of detail than the simulation used in
the exploration step. Here we con-
sider task-interactions for schedul-
ing and handshaking at a cycle-
accurate level.

The smallest considered recon-
figurable area on each FPGA is
capable of containing one task. As-
sociated with it is a control process
requesting the demand for recon-
figuration whenever a new task
has to be prepared. This request
covers a handshaking with a per-
device infrastructure, that in turn
performs arbitration and reconfigu-
ration. Since there are multiple pro-
cesses that may concurrently request
reconfiguration, that infrastructure
performs arbitration of requests,
too.

After configuration, each con-
trol process uses the single bus to
fetch its input tokens. The bus is
shared, and therefore has an arbiter,
too. The data tokens calculated by
a task are consumed by other tasks.

Figure 3 Parts of design flow tested in this work.

Since the tokens get destroyed by re-
configuration, they must have been
fetched prior to this. This is pos-
sible, if the consumer is located in
the same or subsequent partition.
For consumers in later partitions,
the tokens are stored in a dedicated
location for that purpose. In that
case both storing and fetching data
involve a bus transaction and there-
fore consume time.

6 Results
The integration of the above pro-
posed evaluation and simulation
steps is done on an exemplary de-
sign (see Fig. 3). In order to test
the integration, we apply gener-
ated process graphs using the TGFF
framework [5] and define manu-
ally architecture graphs. Estima-
tions for execution and reconfig-
uration times are provided again
by the TGFF framework. The re-
sulting specification graph is used
as input to the system-level de-
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sign space exploration where in
a first step, optimized configura-
tions are determined by applying
the spectral method. Selected solu-
tions from the system-level design
space exploration are assessed using
OSSS+R where reconfiguration is
simulated on a cycle-accurate ba-
sis. In the following, we present
first results which are promising
and motivate us to further work
on our integrated design methodol-
ogy.

In detail, we used an example
with the following parameters: Ini-
tially, a process graph was generated
by the TGFF framework consisting
of 60 processes. Additionally, TGFF
provides a randomly constructed arc
set representing data dependencies,
which are modeled by 80 commu-
nication processes in the process
graph. Our architecture model uses
491 nodes to represent three busses
connecting 8 FPGAs where each
FPGA holds 60 hardware modules
for task execution distributed over
up to 9 configurations. The pro-
cesses are annotated by TGFF with
types for which in turn execution
and configuration times are pro-
vided. Additionally, each data de-
pendency consumes time. 720 map-
ping edges are contained in this
particular example resulting in 1092

possible bindings which prohibits
exact methods in design space ex-
ploration.

The system-level design space
exploration using SystemCoDe-
signer was performed using the
following parameters: 100 chil-
dren are created from 100 parents
in each iteration. The popula-
tion size is 400 individuals. Three
objectives, namely area, power con-
sumption, and latency have been
minimized. After 400 iterations,
we obtained 14 non-dominated
individuals. The exploration re-
quired about 12 hours on a Linux
workstation with a 3200 MHz
PentiumTM 4 Processor and 1 GB of
RAM.

Thereby, the FPGA-level design
space exploration was used to gen-
erate configurations for the FPGA

nodes. Both techniques described in
Section 3 produced reasonable re-
sults that could be fed back to
the system-level design space explo-
ration.

Finally, OSSS+R benchmarks
for the most promising individuals
were generated. Their detailed tim-
ing analysis returns two values each.
The first value represents an initial
iteration, assuming completely in-
validated reconfigurable areas. The
second value describes subsequent
iterations. These iterations show
a lower latency since some partial
configuration steps may be omit-
ted. This is the case when task
types for one location match in the
first and the last step of an itera-
tion.

7 Conclusion
In this paper we presented a con-
cept for a tool-assisted design space
exploration approach for systems
containing dynamically hardware
reconfigurable resources. We start
with a system-level description. The
flow assists the designer by dis-
tributing the tasks onto multiple
devices. Additionally, the configura-
tions designated to be implemented
on reconfigurable devices are en-
hanced to make use of the reconfig-
uration capability. The final output
is an implementation proposal and
aids the designer during synthe-
sis.
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