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ABSTRACT
Secure group communication is an increasingly popular re-
search area having received much attention in recent years.
The fundamental challenge revolves around secure and ef-
ficient group key management. While centralized methods
are often appropriate for key distribution in large groups,
many collaborative group settings require distributed key
agreement techniques. This work investigates a novel ap-
proach to group key agreement by blending binary key trees
with Diffie-Hellman key exchange. The resultant protocol
suite is very simple, secure and fault-tolerant. Moreover, its
efficiency surpasses that of prior art.

1. INTRODUCTION
Fault-tolerant, scalable, and reliable communication ser-

vices have become critical in modern computing. An impor-
tant trend is to convert traditional centralized services (e.g.,
file sharing, authentication, web, and mail) into distributed
services spread across multiple systems and networks. Many
of these newly distributed and other inherently collabora-
tive applications (e.g., conferencing, white-boards, shared
instruments, and command-and-control systems) need se-
cure communication. However, experience shows that secu-
rity mechanisms for collaborative, dynamic peer groups tend
to be both expensive and unexpectedly complex. Note that
dynamic peer groups are different from non-collaborative,
centrally managed, one-to-many broadcast groups such as
those encountered in Internet multicast.

Although peer groups tend to be relatively small, group
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members may be spread throughout the Internet and must
be able to deal with arbitrary partitions due to network
failures, congestion, and hostile attacks. In essence, a group
can be split into a number of disconnected partitions each
of which must persist and function as an independent and
secure peer group.

Security requirements of collaborative peer groups present
interesting research challenges. Key management, as the
cornerstone of most other security services, presents the ini-
tial and formidable obstacle. Although centralized key man-
agement might initially appear attractive, it is inherently
unsuitable for dynamic peer groups. The reasons are as fol-
lows.

First, centralization violates the peer nature of the group
by concentrating all key generation in a single point, hence
centralizing trust, and replacing key agreement with key dis-
tribution. Second, a centralized key server becomes both a
single point of failure and an attractive attack target. Of
course, a key server can be sufficiently replicated and for-
tified to address these issues. However, we claim that it is
very costly (if not altogether impossible) to guarantee the
availability of a key server in any and all possible partitions
of a network, thus, each group member must be prepared to
become a key server. This raises a policy issue as far as the
criteria for selecting a member to act as a key server. Fur-
thermore, each new key server needs to establish a pairwise
secure channel with every other group member in order to
distribute keys. This can become prohibitively expensive.

For the above reasons, we focus on contributory key agree-
ment. In this work, we unify two important trends in group
key management: 1) the use of so-called key trees to effi-
ciently compute and update group keys and 2) the use of
group Diffie-Hellman key exchange to achieve provably se-
cure and fully distributed protocols. This yields a secure,
surprisingly simple and efficient key management solution.
Moreover, the resulting protocol suite is inherently robust
by virtue of being able to cope with cascaded (nested) key
management operations which can stem from tightly spaced
group membership changes. We believe this to be an issue
of independent interest.

The rest of this paper is organized as follows. Section 2
introduces our notation and terminology. Section 3 explains
our assumptions and requirements of the reliable group com-
munication system, while section 4 introduces the crypto-
graphic requirements of our group key agreement protocol.
The actual protocols are described in section 5 and refine-
ments are discussed in section 6. Section 7 treats the se-



curity, complexity, and implementation issues. The paper
concludes with the summary of previous and related work
in section 8.

2. NOTATION AND DEFINITIONS
We use the following notation:

N number of protocol parties (group members)
Mi i-th group member; i ∈ {1, . . . , N}
h height of a tree
〈l, v〉 v-th node at level l in a tree
Ti Mi’s view of the key tree

T̂i Mi’s modified tree after membership operation
p, q prime integers
α exponentiation base

Key trees have been suggested in the past for central-
ized group key distribution systems; the work of Wallner
et al. [17] is the earliest such proposal. One of the key
features of our work is the adaptation of key trees for use
in fully distributed, contributory key agreement. Figure 1
shows an example of a key tree. The root is located at
level 0 and the lowest leaves are at level h. Since we use
binary trees,1 every node is either a leaf or a parent of two
nodes. The nodes are denoted 〈l, v〉, where 0 ≤ v ≤ 2l − 1
since each level l hosts at most 2l nodes.2 Each node
〈l, v〉 is associated with the key K〈l,v〉 and the blinded key
BK〈l,v〉 = f(K〈l,v〉) where the function f() is modular ex-

ponentiation in prime order groups, i.e., f(k) = αk mod p
(analogous to the Diffie-Hellman protocol). Assuming a leaf
node 〈l, v〉 hosts the member Mi, then the node 〈l, v〉 has
Mi’s session random key K〈l,v〉. Furthermore, the mem-
ber Mi at node 〈l, v〉 knows every key along the path from
〈l, v〉 to 〈0, 0〉, referred to as the key-path and denoted
KEY ∗i . In figure 1, if a member M2 owns the tree T2,
then M2 knows every key {K〈3,1〉,K〈2,0〉,K〈1,0〉,K〈0,0〉} in
KEY ∗2 = {〈3, 1〉, 〈2, 0〉, 〈1, 0〉, 〈0, 0〉} and every blinded key
BK∗2 = {BK〈0,0〉, BK〈1,0〉, . . . , BK〈3,7〉} on T2. Every key
K〈l,v〉 is computed recursively as follows:

K〈l,v〉 = (BK〈l+1,2v+1〉)
K〈l+1,2v〉 mod p

= (BK〈l+1,2v〉)
K〈l+1,2v+1〉 mod p

= αK〈l+1,2v〉K〈l+1,2v+1〉 mod p

= f(K〈l+1,2v〉K〈l+1,2v+1〉)

In other words, computing a key at 〈l, v〉 requires the knowl-
edge of the key of one of the two child nodes and the blinded
key of the other child node. K〈0,0〉 at the root node is the
group secret shared by all members. We note that this
value is never used as a cryptographic key for the pur-
poses of encryption, authentication or integrity. Instead,
such keys are derived from the group secret, e.g., by setting
Kgroup = h(K〈0,0〉) where h is a cryptographically strong
hash function.

For example, in figure 1, M2 can compute K〈2,0〉,K〈1,0〉
and K〈0,0〉 using BK〈3,0〉, BK〈2,1〉, BK〈1,1〉, and K〈3,1〉. The

1Note that the tree needs to be binary, since our protocol
uses the two-party Diffie-Hellman key exchange to derive a
node key from the contribution of the two children.
2Even though the key tree is not balanced, we assume a
perfectly balanced tree for node numbering. Thus, a node’s
〈l, v〉 left and right children have indexes 〈l + 1, 2v〉 and
〈l + 1, 2v + 1〉, respectively.
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Figure 1: Notation for tree

final group key K〈0,0〉 is:

K〈0,0〉 = α

(
αr3(αr1r2 )

)(
αr4(αr5r6 )

)
.

To simplify our subsequent protocol description, we intro-
duce the term co-path, denoted as CO∗i , which is the set of
siblings of each node in the key-path of member Mi For ex-
ample, the co-path CO∗2 of member M2 in figure 1 is the set
of nodes {〈3, 0〉, 〈2, 1〉, 〈1, 1〉}. Consequently, every member
Mi at leaf node 〈l, v〉 can derive the group secret K〈0,0〉 from
all blinded keys on the co-path CO∗i and its session random
K〈l,v〉.

3. GROUP COMMUNICATION AND GROUP
KEY AGREEMENT

As noted in the introduction, many modern collaborative
and distributed applications require a reliable group commu-
nication platform. The latter, in turn, needs specialized se-
curity mechanisms to perform – among other things – group
key management. This dependency (or need) is mutual since
practical group key agreement protocols themselves rely on
the underlying group communication semantics for protocol
message transport and strong membership semantics. Im-
plementing multi-party and multi-round cryptographic pro-
tocols without such support is foolhardy as, in the end, one
winds up reinventing reliable group communication tools.

In this section we begin with a brief discussion of reliable
group communication. Next, we summarize the relationship
between group membership events and group key manage-
ment protocols and conclude with the summary of desired
cryptographic properties.

3.1 Group Communication Semantics and
Support

There are two commonly used strong group communica-
tion semantics: Extended Virtual Synchrony (EVS) [11, 1]
and View Synchrony (VS) [7]. Both guarantee that: 1)
group members see the same set of messages between two
sequential group membership events, and, 2) the sender’s
requested message order (e.g., FIFO, Causal, or Total) is
preserved. VS provides a stricter service whereas EVS im-
plementations are generally more efficient.

The main difference between EVS and VS is that EVS
guarantees that messages are delivered to all receivers in
the same membership as existed when the message was orig-
inally sent on the network. VS, in contrast, offers a stricter



guarantee that messages are delivered to all recipients in the
same membership as viewed by the sender application when
it originally sent the message.

Providing the latter property requires an extra round
of acknowledgment messages from all members before in-
stalling a new membership. This need for acknowledgments
dictates that the groups be closed, only allowing members of
the group to send messages to it. However, the knowledge
that a message is received in the membership the sender
believed it was sent in makes implementing secure group
communication easier because every message is encrypted
with the same key as the receiver believes is current when
the message is delivered to them.

An implementation of any distributed fault-tolerant group
key agreement protocol requires VS. This is because, in or-
der to implement group key agreement on top of EVS would
require the key agreement protocol to incorporate and im-
plement semantics identical to those of VS in order to cor-
rectly keep state of which messages were sent using in which
key epoch. (Intuitively, this is because membership events
are unpredictable and each triggers an instance of a key
agreement protocol. Thus, multiple key agreement protocols
can overlap in time and cause instability unless significant
amount of state is kept within the key agreement proto-
col implementation.) For this reason, there is no particular
benefit to building key agreement on top of EVS semantics.

The issues surrounding implementation of key agreement
in dynamic peer groups are addressed in detail in [2]. Suf-
fice it to say that, in the context of this paper we require for
the underlying group communication to provide View Syn-
chrony (VS). However, we stress that VS is needed for the
sake of fault-tolerance and robustness; the security of our
protocols is in no way affected by the lack of VS.

3.2 Group Membership Events
A comprehensive group key agreement solution must han-

dle adjustments to group secrets subsequent to all member-
ship change operations in the underlying group communica-
tion system.

We distinguish among single and multiple member oper-
ations. Single member changes include member addition or
deletion. The former occurs when a prospective member
wants to join a group and the latter occurs when a member
wants to leave (or is forced to leave) a group. While there
might be different reasons for member deletion – such as
voluntary leave, involuntary disconnect or forced expulsion
– we believe that group key agreement must only provide the
tools to adjust the group secrets and leave the rest up to the
higher-layer (application-dependent) security mechanisms.

Multiple member changes also include addition and dele-
tion. We refer to the multiple addition operation as group
merge, in which case two or more groups merge to form a sin-
gle group. We refer to the multiple leave operation as group
partition, whereby a group is split into smaller groups. A
group partition can take place for several reasons of two of
which are fairly common:

1. Network failure – this occurs when a network event
causes disconnectivity within the group. Conse-
quently, a group is split into fragments some of which
are singletons while others (those that maintain mu-
tual connectivity) are sub-groups.

2. Explicit (application-driven) partition – this occurs

when the application decides to split the group into
multiple components or simply exclude multiple mem-
bers at once.

Similarly, a group merge be either voluntary or involuntary:

1. Network fault heal – this occurs when a network event
causes previously disconnected network partitions to
reconnect. Consequently, groups on all sides (and
there might be more than two sides) of an erstwhile
partition are merged into a single group.

2. Explicit (application-driven) merge – this occurs when
the application decides to merge multiple pre-existing
groups into a single group. (The case of simultaneous
multiple-member addition is not covered.)

At the first glance, events such as network partitions and
fault heals might appear infrequent and dealing with them
might seem to be a purely academic exercise. In practice,
however, such events are common owing to network miscon-
figurations and router failures. In addition, in the environ-
ment of ad hoc wireless communication, network partitions
are both common and expected. In [11], Moser et al. of-
fer some compelling arguments in support of these claims.
Hence, dealing with group partitions and merges is a crucial
component of group key agreement.

In addition to the aforementioned membership operations,
periodic refreshes of group secrets are advisable so as to limit
the amount of ciphertext generated with the same key and
to recover from potential compromises of members’ contri-
butions or prior session keys. This is discussed in the next
section.

4. CRYPTOGRAPHIC PROPERTIES
There are four important security properties encountered

in group key agreement. (Assume that a group key is
changed m times and the sequence of successive group keys
is K = {K0, . . . ,Km}).

1. Group Key Secrecy – this is the most basic property.
It guarantees that it is computationally infeasible for
a passive adversary to discover any group key.

2. Forward Secrecy – (not to be confused with Perfect
Forward Secrecy or PFS) guarantees that a passive
adversary who knows a contiguous subset of old group
keys cannot discover subsequent group keys.

3. Backward Secrecy – guarantees that a passive adver-
sary who knows a contiguous subset group keys cannot
discover preceding group keys.

4. Key Independence – the strongest property. It guar-
antees that a passive adversary who knows a proper
subset of group keys K̂ ⊂ K cannot discover any other
group key K̄ ∈ (K − K̂).

The relationship among the properties is intuitive. Either
of Backward or Forward Secrecy subsumes Group Key Se-
crecy and Key Independence subsumes the rest. Also, the
combination of Backward and Forward Secrecy yields Key
Independence.

Our definitions of Backward and Forward Secrecy are
stronger than those typically found in the literature. The
two are often defined (respectively) as [16, 13]:



• Previously used group keys must not be discovered by
new group members.

• New keys must remain out of reach of former group
members.

The difference is that the adversary here is assumed to be a
current or a former group member. Our definition addition-
ally includes the cases of inadvertently leaked or otherwise
compromised group keys. We refer to the above as Weak
Forward Secrecy and Weak Backward Secrecy, respectively.

In this paper we do not consider implicit key authentica-
tion as part of the group key management protocols. All
communication channels are public but authentic. The lat-
ter means (as discussed later in the paper) that all messages
are digitally signed by the sender using some sufficiently
strong public key signature method such as DSA or RSA.
All receivers are required to verify signatures on all received
messages. Since no other long-term secrets or keys are used,
we are not concerned with Perfect Forward Secrecy (PFS)
as it is achieved trivially.

5. TGDH PROTOCOLS
In this section, we introduce the four basic protocols that

form the TGDH protocol suite: join, leave, merge, and par-
tition. These protocols all share a common framework with
the following notable features:

• Each group member contributes its (equal) share to
the group key, which is computed as a function of all
shares of current group members.

• This share is secret (private to each group member)
and is never revealed.

• As the group grows, new members’ shares are factored
into the group key but old members’ shares remain
unchanged.

• As the group shrinks, departing members’ shares are
removed from the new key and at least one remaining
member changes its share3.

• All protocol messages are signed by the sender. (We
use RSA for this purpose).

Upon each membership change, all members in the result-
ing group independently update the tree structure. Since we
assume that the underlying communication system provides
view synchrony (see section 3), all members who correctly
execute the protocol, recompute the identical key tree after
a membership event. The following fact describes the mini-
mal requirement for a group member to compute the group
key:

Fact 1. Any member can compute the group key from its
secret share and all the blinded keys on the co-path.4

3This prevents the group from reusing old keys. For exam-
ple, if a member joins and immediately leaves, the group key
would be the same before the join and after the leave. Al-
though, in practice, this is not always a problem and might
even be a desirable feature, we choose to err on the side
of caution and change the key. In more concrete terms,
changing the key upon all membership changes preserves
key independence [16, 3].
4We introduce the notion of co-path in section 2.

Since each member knows at least its own secret share
(and perhaps other keys on the key path to the root), it
can compute the intermediate keys on its key path, and
eventually, the group (root) key. Similar to other tree-based
schemes [18, 17], each member knows all the keys on the
path from its leaf to the root. Minimally, as expressed in
fact 1, each member knows all the blinded keys on the co-
path. In our protocol, however, each member knows all the
blinded keys in the key tree, which makes the subsequent
protocols we present more efficient.

In our protocol, a group member might take on a special
role, which can involve to compute keys and to broadcast the
blinded keys to the group, for example. Any member in the
group can take on this responsibility, we call this member
sponsor.5 The sponsor who handles the membership change
is determined differently for each membership event.

Despite the separate descriptions that follow, we describe
a single protocol that handles all key adjustments in sec-
tion 6.

5.1 TGDH Membership Events
As discussed in section 3, a group key agreement scheme

needs to provide key adjustment protocols stemming from
membership changes. TGDH includes protocols in support
of the following operations:

• Join: a new member is added to the group

• Leave: a member is removed from the group

• Merge: a subgroup is added to the group

• Partition: a subgroup is split from the group

• Key refresh: the group key is updated

The following sections (5.2 to 5.5), present the four pro-
tocols. In each section, we assume that every member can
unambiguously determine the sponsors and the insertion lo-
cation in the tree (in case of an additive event). Note that
the key refresh operation is, in fact, a special case of the leave
protocol, without any members leaving the group, where the
rightmost shallowest member changes it key share.

5.2 Join Protocol
Assume that the group has n users: {M1, . . . ,Mn}. The

new member Mn+1 initiates the protocol by sending a join
request message that contains its own blinded key BK〈0,0〉.
This message is separate from any JOIN messages generated
by the underlying group communication system, although,
in practice, the two might be combined for efficiency’s sake.

When current group members receive this message, they
first determine the insertion node in the tree. The insertion
node is the shallowest rightmost node, where the join does
not increase the height of the key tree. Otherwise, (if the
key tree is well balanced), the new member joins to the root
node. The sponsor is the rightmost leaf node in the subtree
rooted at the insertion node. Next, the sponsor creates a
new intermediate node and a new member node, and pro-
motes the new intermediate node to be the parent of both
the insertion node and the new member node. After up-
dating the tree, the sponsor computes the new group key,

5The terms group controller or group leader would be a mis-
nomer because they are too strong in this context.



since it knows all the necessary blinded keys. After com-
puting the group key, the sponsor broadcasts the new tree
which contains all blinded keys.6 All other members update
their trees accordingly and compute the new group key (see
fact 1).

Figure 2 shows an example of member M4 joining to a
group, where the sponsor M3 performs the following actions:

1. renames node 〈1, 1〉 to 〈2, 2〉

2. generates a new intermediate node 〈1, 1〉 and a new
member node 〈2, 3〉

3. promotes 〈1, 1〉 as the parent node of 〈2, 2〉 and 〈2, 3〉

Since all members know BK〈2,3〉 and BK〈1,0〉, M3 can
compute the new group key K〈0,0〉. Every other member
performs step 1 and 2, but cannot compute the group key
in the first round. Upon receiving the blinded keys, every
member can compute the group key.

<2,0> <2,1>

<1,0> <1,1>

<0,0>

M M

M

1 2

3

Sponsor
<2,0> <2,1>

<1,0> <1,1>

<0,0>

M M M
1 2 3

<2,2> <2,3>

M4

New Intermediate Node

New Member

Tree T3 Tree T3

Figure 2: Tree updating in join operation

5.3 Leave Protocol
Assume that we have n members and a member Md leaves

the group. In this case, the sponsor is the right-most leaf
node of the subtree rooted at the leaving member’s sibling
node. In the leave protocol every member updates its key
tree by deleting the leaf node corresponding to Md. The
former sibling of Md is promoted to replace Md’s parent
node. The sponsor picks a new secret share, computes all
keys on its key path up to the root, and broadcasts the new
set of blinded keys to the group. This information allows all
members to recompute the new group key.

Assuming the setting of figure 3, if member M3 leaves
the group, every member deletes nodes 〈1, 1〉 and 〈2, 2〉.
After updating the tree, the sponsor M5 picks a new key
K〈2,3〉, recomputes K〈1,1〉,K〈0,0〉, BK〈2,3〉 and BK〈1,1〉, and

broadcasts the updated tree T̂5 with BK∗5 . Upon receiv-
ing the broadcast message, all members compute the group
key. Note that M3 cannot compute the group key, though
it knows all the blinded keys, because its share is no longer
part of the group key.

5.4 Partition Protocol
Assume that a network fault occurs in a group with n

members {M1, . . . ,Mn}. From the viewpoint of each re-
maining member, this appears as a concurrent leave of multi-
ple members. Our partition protocol is a multi-round proto-

6Alternatively, we may broadcast only blinded keys which
have been changed after the join to reduce the bandwidth.
However, we need to send, at least, the whole tree to the
new member in this case.

<2,0> <2,1>

<1,0> <1,1>

<0,0>
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<2,2> <2,3>
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<3,6> <3,7>

M M4 5
Sponsor

Figure 3: Tree updating in leave operation

col which runs until every member computes the new group
key.

In the first round, every remaining member updates its
tree by deleting all partitioned members and their respective
parent nodes. The procedure for deletion is as follows:

All leaving nodes are sorted in the order of depth.
Starting at the deepest level, each pair of leaving sib-
lings is collapsed into its parent which is then marked
as leaving. This node is re-inserted into the leaving
nodes list. This is repeated until all leaving nodes are
processed.
The resulting tree has a number of leaving (leaf) nodes
but every such node has a remaining sibling node.
Now, for each leaving node we identify a sponsor using
the same criteria as described in section 5.3.

Each sponsor then computes the keys and blinded keys on
its key-path as far up the tree as possible. Then, each spon-
sor broadcasts the set of new blinded keys. Upon receiving
a broadcast, each member checks whether the message con-
tains a new blinded key. This procedure iterates until all
members obtain the group key. (A member can compute
the group key if it has all the blinded keys on its co-path.)

for all Msi
T̂si(BK

∗
si

)
−−−−→ {M1, . . . ,Mn}

round 1 to h′ + 1 : update tree Tsi to get T̂si

Figure 4: Partition Protocol
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Figure 5: Tree updating in partition operation

To prevent reusing the old group key, one of the remaining
members needs to change its key share. In the first round



of the partition protocol the shallowest rightmost sponsor
changes its share.

Figure 5 shows an example where all remaining members
delete all nodes of leaving members and compute the keys
and blinded keys in the first round. In the figure on the
right, M5 and M6 cannot compute the new group key, since
they lack the blinded key BK〈1,0〉. However, M3 broadcasts
BK〈1,0〉 in the first round. Hence, every member knows all
blinded keys and can compute the group key. As explained
above, before computing K〈1,1〉, M6 changes its share K〈2,3〉.

If a member Mi computes the group key in round h′, then
all other members can compute the group key, at the latest,
in round h′+1, since Mi’s broadcast message contains every
blinded key in the key tree. Hence, every member can detect
the completion of the partition protocol independently.

5.5 Merge Protocol
As we discuss in section 3, network faults can partition a

group into several subgroups. After the network faults heal,
subgroups may re-merge. We describe the merge protocol
for two merging groups.

In the first round of the merge protocol, each sponsor
(the rightmost member of each group) broadcasts its tree
information with all blinded keys to the other group. Upon
receiving this message, all members can uniquely and inde-
pendently determine the merge position of the two trees. If
the two trees have the same height, we join one tree to the
root node (insertion node) of the other tree.7 Otherwise, the
trees are of different height and we join the shallower tree
to the deeper tree. The insertion node can be: 1) the right-
most shallowest node (not necessarily a leaf node), where
the join does not increase the height of the tree, and 2) the
root node, if join to any other node increases the height of
the key tree.8

The rightmost member of the subtree rooted at the joining
location becomes the sponsor of the key update operation.
The sponsor computes every key on the key-path and the
corresponding blinded key. It, then, broadcasts the tree with
the blinded keys to the other members. All members now
have the complete set of blinded keys, which allows them to
compute all keys on their key path.

Figure 7 shows an example, where the sponsors M2 and
M7 broadcast their trees (T2 and T7) containing all the
blinded keys, along with BK∗2 and BK∗7 . Upon receiving
these broadcast messages, every member checks whether it
is the sponsor in the second round. Every member in both
groups merges two trees, and then M2, the sponsor in this
example updates the key tree and computes and broadcasts
blinded keys.

5.6 Tree Management
Modular exponentiation is an expensive operation in

TGDH. The number of exponentiations for membership
events varies, depending on the tree structure. For example,
if a single member or a subtree merges to the root node of
the current tree, then exactly two modular exponentiations
are required. If a key tree is balanced, and a member joins to
a leaf node, then the number of exponentiations is dlog2 ne
where n is the current number of users. Hence, it is easy to
see that joining to the root always requires the minimal num-

7To impose an ordering on the two trees, we compare the
identifiers of the sponsors.
8The rationale for this policy is explained in section 5.6.

Ms1 in
Ts1(BK∗s1)
−−−−→ Ms2 in

{M1, . . . ,Mn} Ts2(BK∗s2)
←−−−− {Mn+1, . . . ,Mn+k}

Round 1: request for merge by both groups

{M1, . . . ,Mn+k} T̂s′(BK∗s′)←−−−− M ′s

Round 2: update tree Ts′ to get T̂s′ and broadcast it

Figure 6: Merge Protocol
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Figure 7: Tree updating in merge operation

ber of exponentiations for additive membership operations.
If n members join to the root, however, the resulting tree
becomes unbalanced (similar to a linked list). If a member
in the deepest node leaves the group, n− 1 exponentiations
are required to update the group key. However, if a key tree
is fully balanced, the number of exponentiations is dlog2 ne.
These examples indicate that a well-balanced key tree re-
duces the expected cost of leaves. Our heuristic to keep
the tree balanced is to choose the insertion node of a join
or merge operation as the rightmost shallowest node, which
does not increase the height (see also sections 5.2 and 5.5).

6. SELF-STABILIZATION AND FAULT TOL-
ERANCE

In this section we address perhaps the most interest-
ing and important feature of the proposed protocol suite,
namely, self-stabilization.

6.1 Protocol Unification
Although described separately in the preceding sections,

the four TGDH operations: join, leave, merge and partition,
actually represent different strands of a single protocol. We
justify this claim with an informal argument below.

Obviously, join and leave are special cases of merge and
partition, respectively. It is less clear that merge and parti-
tion can be collapsed into a single protocol, because in either
case, the key tree changes and the remaining group members
lack some number (sometimes none) of blinded keys which
prevents them from computing the new root key. When a
partition occurs, the remaining members (in any surviving
fragment) reconstruct the tree where some blinded keys are
missing. In case of a merge, let us suppose that a taller
(deeper) tree A is merged with a shorter (shallower) tree
B. Similar to a partition, all members formerly in A con-
struct the new tree where some blinded keys – those in B



– are missing. (This view is symmetric since the members
in B see the same tree but with missing blinded keys in the
subtree A.)

We established that both partition and merge initially re-
sult in a new key tree with a number of missing blinded keys.
In case of merge, the missing blinded keys can be distributed
in two rounds. This is because a sponsor in both of A and B
broadcasts its own subtree including all blinded keys. Any
member in a given subtree can compute the new root key
after receiving both broadcasts. The case of partition is very
similar except that the missing blinded keys are not concen-
trated in a new subtree (as in merge) but are, in the most
general case, spread all around. As we discuss in section 5.4,
every member reconstructs the key tree after a partition in
at most h rounds, where h is the tree height. The merge
scenario can be viewed as a special case of partition that
always completes in two rounds.

receive msg (msg type = membership event)
construct new tree
while there are missing blinded keys

if (I can compute any missing keys)
compute missing blinded keys
broadcast new blinded keys

endif
receive msg (msg type = broadcast)
update current tree

endwhile

Figure 8: Unified protocol pseudocode

This apparent similarity between partition and merge al-
lows us to lump the protocols stemming from all membership
events into a single, unified protocol. Figure 8 shows the
pseudocode. The incentive for this is threefold. First, uni-
fication allows us to simplify the implementation and min-
imize its size. Second, the overall security and correctness
are easier to demonstrate with a single protocol. Third, we
can now claim that (with a slight modification) the TGDH
protocol is self-stabilizing and fault-tolerant as discussed be-
low.

6.2 Cascaded Events
Since network disruptions are random and unpredictable,

it is natural to consider the possibility of so-called cascaded
membership events. (In fact, cascaded events and their im-
pact on group protocols are often considered in group com-
munication literature, but, alas, not often enough in the
security literature.) A cascaded event occurs, in its simplest
form, when one membership change occurs while another is
being handled. Event here means any of: join, leave, parti-
tion, merge or a combination thereof. For example, a par-
tition can occur while a prior partition is being dealt with,
resulting in a cascade of size two. In principle, cascaded
events of arbitrary size can occur if the underlying network
is highly volatile.

We claim that the TGDH partition protocol is self-
stabilizing, i.e., robust against cascaded network events.
This is quite rare as most multi-round cryptographic proto-
cols are not geared towards handling of such events. In gen-
eral, self-stabilization is a very desirable feature since lack
thereof requires extensive and complicated protocol ”coat-
ing” to either 1) shield the protocol from cascaded events,
or 2) harden it sufficiently to make the protocol robust

with respect to cascaded events (essentially, by making it
re-entrant).

The high-level pseudocode for the self-stabilizing protocol
is shown in figure 9. The changes from figure 8 are minimal.

receive msg (msg type = membership event)
construct new tree
while there are missing blinded keys

if (I can compute any missing keys)
compute missing blinded keys
broadcast new blinded keys

endif
receive msg
if (msg type = broadcast)

update current tree
else (msg type = membership event)

construct new tree
endwhile

Figure 9: Self-stabilizing protocol pseudocode

Instead of providing a formal proof of self-stabilization
(which we omit due to page limitations) we demonstrate it
with an example. Figure 10 shows an example of a cascaded
partition event. The first part of the figure depicts a parti-
tion of M1, M4, and M7 from the prior group of ten members
{M1, . . .,M10}. This partition normally requires two rounds
to complete the key agreement. As described in section 5.4,
every member constructs the same tree after completing the
initial round. The middle part shows the resulting tree. In
it, all non-leaf nodes except K〈2,3〉 must be recomputed as
follows:

1. First, M2 and M3 both compute K〈2,0〉, M5 and M6

computeK〈2,1〉 whileM8,M9 andM10 computeK〈1,1〉.
All blinded keys are broadcasted by each sponsor
M2,M5 and M8.

2. Then, as all broadcasts are received, M2,M3,M5 and
M6 compute K〈1,0〉 and K〈0,0〉. The blinded keys are
broadcasted by the sponsor M6.

3. Finally, all broadcasts are received and M8,M9 and
M10 compute K〈0,0〉.

Suppose that, in the midst of handling the first partition,
another partition (of M3 and M8) takes place. Note that,
regardless of which round (1,2,3) of the first partition is in
progress, the departure of M3 and M8 does not affect the
keys (and blinded keys) in the subtrees formed by M9 and
M10 as well as M5 and M6. All remaining members update
the tree as shown in the rightmost part of figure 10. The
blinded key of K〈1,0〉 is the only one missing in all members’
view of the tree. It is computed by M2,M5 and M6 and
broadcasted by M6. When the broadcast is received, all
members compute the root key.

The only remaining issue is whether a broadcast from the
first partition can be received after the notification of the
second (cascaded) partition. Here we rely on the underlying
group communication system to guarantee that all mem-
bership events are delivered in sequence after all
outstanding messages are delivered. In other words, if
a message is sent in one membership view and membership
changes while the message is not yet delivered, the member-
ship change must be postponed until the message is delivered
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Figure 10: An Example of Cascaded Partition

to the (surviving) subset of the original membership. This
is essentially a restatement of View Synchrony (as discussed
in section 3).

7. DISCUSSION

7.1 Security
Recall that we defined the desired security properties in

section 4. Our goal is to show that TGDH offers group key
secrecy as well as weak forward and backward secrecy.

Group key secrecy means that even an attacker who knows
all blinded keys cannot derive the group key. This property
has been proven in the random-oracle model [5]. The proof
itself can be found in a companion technical report [8]. (Due
to size constraints we are unable to include it in this paper.)
We also refer the reader to the proof of Becker and Wille [4].
Their group key is very similar to our TGDH key and the
accompanying proof is applicable to TGDH. In brief, they
show that group key secrecy is reducible to the Decision
Diffie-Hellman (DDH) problem [10].

We now give an informal argument that TGDH satisfies
weak forward and backward secrecy. We first consider weak
backward secrecy, which states that a new member who
knows the current group key cannot derive any previous
group key.

The group key secrecy property implies that the group key
cannot be derived from the blinded keys alone. At least one
secret key K is needed to compute all secret keys from K
up to the root key. Hence, we need to show that the joining
member M cannot obtain any keys of the previous key tree.
First, M picks its secret share r, blinds it and broadcasts
αr as part of its join request. Once M receives all blinded
keys on its co-path, it can compute all secret keys on its key
path. Clearly, all these keys will contain M ’s contribution
(r); hence, they are independent of previous secret keys on
that path. Therefore, M cannot derive any previous keys.

Similarly, we show that TGDH provides weak forward se-
crecy. When a member M leaves the group, the rightmost
member of the subtree rooted at the sibling node changes its
secret share, M ’s leaf node is deleted and its parent node is
replaced with its sibling node. This operation causes all of
M ’s contribution to removed from each key on M ’s former
key path. Hence, M only knows all blinded keys, and the
group key secrecy property prevents M from deriving the
new group key.

7.2 Implementation
TREE API is a group key agreement API implementing

the cryptographic primitives of TGDH. The underlying com-
munication system is assumed to deal with group communi-
cation and network events such as merges, partitions, fail-
ures and other abnormalities. TREE API is small and it
contains only the following three function calls:

• tree new user generates a group context for a new
group member (including its secret share).

• tree merge req is called by each sponsor when a merge
occurs. The output (new key tree) is then broadcast
to the merging group. This function performs no cryp-
tographic operations.

• tree cascade is the core function of TREE API. Ev-
ery group member calls this function following a mem-
bership event. The function is called repeatedly until
the group key is computed.

As mentioned in section 6, tree cascade provides robust-
ness against cascaded network events. Since TREE API
does not provide its own communication facility, the robust-
ness of the API was tested by simulating random events on
a single machine running all group members.

We use OpenSSL 0.9.4 [12] as the underlying crypto-
graphic library. Note that we set f(x) = (αx mod p) mod q
where x ∈ Zq so as to enhance the efficiency of our protocol.

7.3 Complexity Analysis
This section analyzes the communication and computa-

tion costs for join, leave, merge and partition protocols of
TGDH. Our analysis considers the following costs: number
of rounds, number of messages, number of exponentiations,
and height of the key tree. Each cost can be further classified
into serial and total cost. The former assumes paralleliza-
tion within each protocol round and represents the greatest
cost incurred by any participant in a given round. The total
cost is simply the sum of all participants’ costs in a given
round.

We compare our protocol to the authenticated contribu-
tory group key agreement scheme GDH.2 described in [3].
To the best of our knowledge, GDH.2 of the Cliques proto-
col suite is the only other protocol that provides contribu-
tory authenticated group key agreement, supports dynamic
membership events, and handles both partitions and merges.



Operations Join Leave
Protocol GDH.2 TGDH GDH.2 TGDH
Rounds 2 2 1 1
Broadcasts 1 2 1 1
Total messages 2 2 1 1
Max bandwidth N 2N N − 1 2N − 2

Table 1: Communication Cost

However, GDH.2 has very different communication seman-
tics. (In particular, merge is relatively expensive in GDH.2,
whereas partition is relatively expensive in TGDH.)

The overhead of TGDH depends on the structure of the
key tree. The number of exponentiations depends on the
height and density of the key tree, the depth of the joining
point (or leaving node), and the number of leaving members
in case of partition. For this reason, we analyze the protocol
overhead by fixing the maximum number of members.

Figure 11(a) compares the number of exponentiations for
a join event in TGDH (with a fully-balanced tree) and
GDH.2. As expected, TGDH costs O(logn) exponentia-
tions. The graph also shows that the number of exponen-
tiations in TGDH depends on the position of the joining
points. Figure 11(b) shows the number of serial exponenti-
ations when joining to a random tree of N members. The
average nears a constant value, since the joining point in a
random tree is near the root. Based on these graphs, the
computation overhead of TGDH is lower than that GDH.2.
The computation cost of leave is also smaller than GDH.2. A
comparison of the communication cost is summarized in ta-
ble 1. The communication cost for join in TGDH is slightly
more expensive than that of GDH.2.

The cost of partition is particularly interesting, since
TGDH is a multi-round protocol whereas a partition in
GDH.2 is handled in a single round. We measure this cost
after generating a uniform random partition. For this ex-
periment, we consider partitions that split the group into
two sub groups, since this case reflects the highest cost. To
split the group, we first pick a random number x uniformly
in the interval {1, . . . , N − 1}. We then pick x members
randomly to form each sub group. Next, we compute the
cost of partition for both groups which gives us two sample
costs. The average and maximum numbers are computed
from these samples.

As figure 11(c) illustrates, the number of serial expo-
nentiations is small, compared to N − d exponentiations
of GDH.2, where d is the number of leaving members.
The communication cost (total number of messages in fig-
ure 11(d) and the number of rounds in figure 11(e)) for par-
tition is noticeably larger than that of GDH.2. Note that
TGDH is less efficient for subtractive events, but more ef-
ficient for additive events.9 Figure 11(f) shows the average
and maximum height of the key tree after merge operations.
The results indicates the logarithmic height of the key tree.

8. RELATED WORK
Group key management protocols come in two differ-

ent flavors: contributory key agreement protocols for small

9In GDH.2, merge requires k + 2 rounds and O(kn) expo-
nentiations, where k is the number of new members.
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Figure 11: Cost Comparison

groups and centralized, server-based key distribution pro-
tocols for large groups. Since the focus of this work is on



group key agreement protocols, we only consider the latter
below.

In one of the early results, Steer et al. propose a group
key agreement protocol – referred to as STR [15] – based
on the extension of the two-party Diffie-Hellman (DH) key
exchange. This protocol is of particular interest since its
group key structure is similar to that in TGDH.

Kn = αNn(α
Nn−1...(α

N3(αN2N1 ))···
).

STR is well-suited for adding new group members as it takes
only two rounds and two modular exponentiations. Mem-
ber exclusion, however, is relatively difficult (for example,
consider excluding N1 from the group key).

A more recent result is due to Burmester and Desmedt[6].
They construct an efficient protocol which takes only three
rounds and two modular exponentiations per member to
generate a group key. This efficiency allows all members
to re-compute the group key for any membership change by
performing this protocol. However, according to [16], most
(at least half) of the members need to change their session
random on every membership event. The group key in this
protocol is different from STR and TGDH:

Kn = αN1N2+N2N3+...+NnN1 .

Becker and Wille analyze the minimal communication
complexity of contributory group key agreement in general
[4] and propose two protocols: octopus and hypercube. Their
group key has the same structure as the key in TGDH. For
example, for eight users their group key is:

Kn = α(αα
r1r2αr3r4 )(αα

r5r6αr7r8 ).

The Becker/Wille protocols handles join and merge oper-
ations efficiently, but the member leave operation is ineffi-
cient. Also, the hypercube protocol requires the group to be
of size 2n (for some integer n); otherwise, the efficiency slips.

Steiner et al. address dynamic membership issues [3, 16]
in group key agreement and propose a family of Group Diffie
Hellman (GDH) protocols based on straight-forward exten-
sions of the two-party Diffie-Hellman. GDH provides con-
tributory authenticated key agreement, key independence,
key integrity, resistance to known key attacks, and perfect
forward secrecy. Their protocol suite is fairly efficient in
leave and partition operation, but the merge protocol re-
quires as many rounds as the number of new members to
complete key agreement.

Perrig extends the work of one-way function trees (OFT,
originally introduced by McGrew and Sherman [9]) to de-
sign a tree-based key agreement scheme for peer groups [13].
However, this work lacked the facilities for handling group
partitions and merges.

Rodeh et al. [14] propose a distributed group key distri-
bution protocol. It tolerates network partitions and other
network events. In this protocol, a specific group member
(leader) chooses the group key and distributes it to all other
members, hence the protocol does not offer contributory key
agreement. Furthermore, it requires the leader to establish
N − 1 secure two-party channels between itself and other
group members in order to securely distribute the new key.
Maintaining such channels in dynamic groups can be ex-
pensive (O(N) new channels need to be set up if the group
leader leaves) since setting up each channel involves a sepa-
rate two-party key agreement.
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