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Abstract: We propose a simple but efficient method for modifying Walsh-Hadamard 

sequences to achieve correlation properties suited for asynchronous DS CDMA 

applications. The proposed method can be used to minimize the mean square value of 

aperiodic cross-correlation or the mean square value of aperiodic autocorrelation, the 

maximum value of aperiodic cross-correlation functions, merit factor or other properties 

of the sequence set. The important feature of the method is that it modifies correlation 

properties of the sequence set, while preserving their orthogonality for the perfect 

synchronization. The proposed method can be applied to obtain bipolar, quadri-phase, 

or general polyphase sequences. 
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1. Introduction 
 
Walsh-Hadamard bipolar spreading sequences can be used for channel separation in 

direct sequence code division multiple access (DS CDMA) systems, e.g. [1]. They are 

easy to generate, and orthogonal [2] in the case of perfect synchronization. However, 

the cross-correlation between two Walsh-Hadamard sequences can rise considerably in 

magnitude if there is a non-zero delay shift between them. Unfortunately, this is very 

often the case for up-link (mobile to base station) transmission, due to the differences in 

the corresponding propagation delays. As a result, significant multi-access interference 

(MAI) [3] occurs which needs to be combated either by complicated multi-user 

detection algorithms [4], or reduction in bandwidth utilization. Moreover, due to their 

very regular structure, Walsh-Hadamard sequences are characterized with very poor 

auto-correlation properties. In real systems, this is alleviated by the use of scrambling 

codes on the top of Walsh-Hadamard sequences. These are normally very long codes 

having very distinctive peaks at zero in their auto-correlation functions. For example, in 

UMTS these cods are 218 bits long [5]. In addition to improving synchronization 

properties, scrambling also helps in reducing MAI. 

Another possible solution to this problem can be use of orthogonal polyphase spreading 

sequences, like those proposed in [6], which for some values of their parameters can 

exhibit a reasonable compromise between autocorrelation and cross-correlation 

functions. However, in most cases, the choice of the parameters is not simple. In 

addition, improving one of the characteristics is usually associated with a significant 

worsening of the others [6]. Polyphase spreading sequences are rather difficult to 

implement as this require an analog phase modulator.  



In [7], we proposed a method to optimize orthogonal polyphase spreading sequences for 

wireless data applications. That method can be also applied to modify correlation 

characteristics of bipolar or quadri-phase sequences. In this paper, we present an 

application of that method to modify Walsh-Hadamard spreading sequences in order to 

improve their properties in asynchronous applications. Such modified sequences are still 

orthogonal, but can exhibit much lower peaks in the aperiodic cross-correlation 

functions. Hence, the level of MAI can be significantly reduced, if they are applied in 

DS CDMA systems for up-link transmission. Moreover they are characterized with 

much lower values of out-of-phase aperiodic auto-correlation. Thus, the use of such 

modified sequences can facilitate a sequence acquisition process [4].  In addition, the 

spectral characteristics can be much more uniform for the whole set of the modified 

sequences than for the original set of Walsh-Hadamard sequences, allowing for more 

uniform spreading among different channels. 

The paper is organized as follows. In Section 2, we introduce the method used later to 

modify correlation characteristics of Walsh-Hadamard sequences. Section 3 introduces 

the correlation measures, which can be considered while modifying Walsh-Hadamard 

sequences for DS CDMA applications. The numerical examples of modification 

resulting in the sets of bipolar and quadri-phase sequence sets are given in Section 4 and 

Section 5, respectively, and Section 6 concludes the paper. 

2. Modification Method 
 
The Walsh-Hadamard sequences of the length N; N = 2n, n = 1,2, …, are often defined 

using Hadamard matrices HN [2], with  
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The resulting matrices HN are orthogonal matrices, i.e. for every N we have: 

 N
T
NN NIHH =   (3) 

where T
NH  is the transposed Hadamard matrix of order N, and NI  is the NN ×  unity 

matrix. The modification proposed here is achieved by taking another orthogonal 

NN ×  matrix DN, and the new set of sequences is based on a matrix WN, given by: 

 NNN DHW =   (4) 

The matrix WN is also orthogonal, since: 
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and because of the orthogonality of matrix DN, we have 

 N
T
NN kIDD =  (6) 

where k is a real constant. Substituting (6) into (5) yields 

 N
T
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T
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In addition, if k = 1, then the sequences defined by the matrix WN are not only 

orthogonal, but possess the same normalization as the Walsh-Hadamard sequences. 

However, other correlation properties of the sequences defined by WN can be 

significantly different to those of the original Walsh-Hadamard sequences.  



From equation (4) it is not clear how to chose the matrix DN to achieve the desired 

properties of the sequences defined by the WN. In addition, there are only a few known 

methods to construct the orthogonal matrices, such as those used for the Hadamard 

matrices themselves. However, another simple class of orthogonal matrices are diagonal 

matrices with their elements di,j fulfilling the condition: 
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 To preserve the normalization of the sequences, the elements of DN, being in general 

complex numbers1, must be of the form: 
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where the phase coefficients φm; m = 1, 2, …, N, are real numbers taking their values 

from the interval [0, 2π), and 12 −=j . The values of φm; m = 1, 2, …, N, can be 

optimized to achieve the desired correlation and/or spectral properties, e.g. minimum 

out-off-phase autocorrelation or minimal value of peaks in aperiodic cross-correlation 

functions. 

3. Correlation Measures 
 
In order to compare different sets of spreading sequences, we need a quantitative 

measure for the judgment. Therefore, we introduce here some useful criteria, which can 

be used for such a purpose. They are based on correlation functions of the set of 

sequences, since both the level of multiaccess interference and synchronization 

                                                 
1 When elements of the matrix DN are complex numbers, the simple transposition (• )T must be substituted 
by a Hermitian transposition (• )H, i.e. transposition and taking complex conjugate of the elements of DN. 



amiability depend on the cross-correlations between the sequences and the 

autocorrelation functions of the sequences, respectively. There are, however, several 

specific correlation functions that can be used to characterize a given set of the 

spreading sequences [3], [8], [12].  

In 1969, Anderson and Wintz [13] published one of the first detailed investigations of 

the asynchronous DS CDMA system performance. They obtained a bound on the 

signal-to-noise ratio at the output of the correlation receiver for a CDMA system with 

hard-limiter in the channel. They also clearly demonstrated in their paper the need for 

considering the aperiodic cross-correlation properties of the spreading sequences. Since 

that time, many additional results have been obtained (e.g. [3] and [14]), which helped 

to clarify the role of aperiodic correlation in asynchronous DS CDMA systems. 

For general polyphase sequences }{ )(i
ns  and }{ )(l

ns of length N, the discrete aperiodic 

correlation function is defined as [12]:  
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where ∗• ][  denotes a complex conjugate operation. When }{ )(i
ns = }{ )(l

ns , Eqn. (11) 

defines the discrete aperiodic auto-correlation function. 

Another important parameter used to assess the synchronization amiability of the 

spreading sequence }{ )(i
ns  is a merit factor, or a figure of merit [15], which specifies the 



ratio of the energy of autocorrelation function main-lobes to the energy of the auto-

correlation function side-lobes in the form: 
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In DS CDMA systems, we want to have the maximum values of aperiodic cross-

correlation functions and the maximum values of out-of-phase aperiodic autocorrelation 

functions as small as possible, while the merit factor as great as possible for all of the 

sequences used. 

The bit error rate (BER) in a multiple access environment depends on the modulation 

technique used, demodulation algorithm, and the signal-to-noise power ratio (SNR) 

available at the receiver. Pursley [3] showed that in case of a BPSK asynchronous DS 

CDMA system, it is possible to express the average SNR at the receiver output of a 

correlator receiver of the ith user as a function of the average interference parameter 

(AIP) for the other K users of the system, and the power of white Gaussian noise present 

in the channel. The SNR for ith user, denoted as SNRi, can be expressed in the form: 

 

5.0

1
,3

0

6
1

2
SNR

−

≠
= 


















+= ∑
K

ik
k

ik
b

i
NE

N
ρ  (13) 

where Eb is the bit energy, N0 is the one-sided Gaussian noise power spectral density, 

and ρk,i is the AIP, defined for a pair of sequences as 

 )}1(Re{)0(2 ,,, ikikik µµρ +=  (14) 

The cross-correlation parameters µk,i(τ) are defined by: 
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However, following the derivation in [16], ρk,i for polyphase sequences may be well 

approximated as: 
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In order to evaluate the performance of a whole set of M spreading sequences, the 

average mean-square value of cross-correlation for all sequences in the set, denoted by 

RCC, was introduced by Oppermann and Vucetic [8] as a measure of the set cross-

correlation performance: 
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A similar measure, denoted by RAC was introduced in [8] for comparing the auto-

correlation performance: 
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The measure defined by (15) allows for comparison of the auto-correlation properties of 

the set of spreading sequences on the same basis as the cross-correlation properties. It 

can be used instead of the figures of merit, which have to be calculated for the 

individual sequences.  

For DS CDMA applications we want both parameters RCC and RAC to be as low as 

possible [8]. Because these parameters characterize the whole sets of spreading 



sequences, it is convenient to use them as the optimization criteria in design of new 

sequence sets. In the considered numerical examples, maximum value of aperiodic 

cross-correlation functions since this parameter is very important when the worst-case 

scenario is considered. We will then look into the both parameters RCC and RAC. 

Sequence selection criteria, not based on the correlation characteristics, can be 

envisaged as well. 

4. Application to Bipolar Sequences 
  
From the implementation point of view, the most important class of spreading 

sequences are bipolar or bi-phase sequences, where the φm; m = 1, 2, …, N, can take 

only two values 0 and π. This results in the elements on the diagonal of DN being equal 

to either ‘+1’ or ‘-1’. Even for this bipolar case, we can achieve significantly different 

properties of the sequences defined by the WN than those of the original bipolar 

sequences of the same length. 

To find the best possible modifying diagonal matrix DN we can do an exhaustive search 

of all possible bipolar sequences of length N, and choose the one, which leads to the 

best performance of the modified set of sequences. However, this approach is very 

computationally intensive, and even for a modest values of N, e.g. N = 32, it is rather 

impractical. Hence, other search methods, like a random search, must be considered. 

By applying a Monte Carlo algorithm [17], [18] to N = 32, and looking for a minimum 

value of the peaks in the aperiodic cross-correlation functions, Cmax, in 1000 random 

draws, we have found the sequence: 

 ++]+++++++++++--++++---+--+-+--++[=S  (19) 

where, for the simplicity, ‘+’ and ‘-‘ correspond to ‘+1’ and ‘-1’, respectively.  



The sequence S leads to the following parameters of the modified set of sequences: 

0.9738
8925.0
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C
. 

For the comparison, the corresponding parameters of the original set of Walsh-

Hadamard sequences of length N = 32 are as follows: 

0.7873
5938.6
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. 

It is visible, that a significant improvement has been achieved in terms of reducing the 

value of Cmax and RAC. This improvement has been offset by a slight increase in the 

value of RCC. The matrix W32 defining the modified sequence set equals to: 
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In Fig. 1, we present the plot of the upper limits for the peak magnitudes of aperiodic 

cross-correlation functions for the set of Walsh-Hadamard sequences and the set of 

sequences defined by the matrix W32. These plots illustrate the significant decrease in 



the peak magnitudes of the cross-correlation functions that can be achieved through the 

proposed modification. Fig. 2 illustrates a major improvement that can be achieved in 

auto-correlation properties of the modified sequences compared to the original Walsh-

Hadamard sequences. For the modified sequences, a clear peak is present for the perfect 

sequence alignment with no other significant peaks for any non-zero shift. This is not 

the case for Walsh-Hadamard sequences. As a result, no additional scrambling would be 

required for synchronization of a system utilizing sequences defined by the matrix W32.  

Because of the nonlinear character of the cost function it is difficult to assess how far 

the obtained result is from the global minimum without performing the exhaustive 

search. Calculating the theoretical lower bound for the aperiodic cross-correlation and 

aperiodic out-of-phase auto-correlation magnitudes can give some insight into this. The 

best-known bound is due to Welch [19], and states that for any set of M bipolar 

sequences of length N 
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where ci-oop denotes the out-of-phase aperiodic autocorrelation value. In the considered 

case of 32 sequences of length 32 the Welch bound is equal to 0.1261. A more tighter 

bound was given by Levenshtein [20], and is expressed by: 
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In the considered case, the Levenshtein bound is equal to 0.1410. It must be noted here 

that both Welch and Levenshtein bounds are derived for sets of bipolar sequences where 

the condition of orthogonality for perfect synchronization is not imposed. Hence, one 



can expect that by introducing the orthogonality condition, the lower bound for the 

aperiodic cross-correlation and aperiodic out-of-phase auto-correlation magnitudes must 

be significantly lifted.  

In Fig. 3 and Fig. 4, we present the simulation results for the 32 channel asynchronous 

DS CDMA system utilizing pure Walsh-Hadamard sequences and the sequences 

defined by the matrix W32, respectively. In both cases, we had simulated the same 

number of 8 randomly chosen simultaneous active users, and transmitted the same 

number of 524-bit frames in each of the 32 possible channels. The results have been 

then averaged across the 32 channels. The transmission channel was assumed to be an 

AWGN channel with an Eb/N0 = 20 dB. It can be seen that not only the average BER 

drops by almost 50% in the case of the modified sequences, but what is even more 

significant, the maximum number of errors in the frames from 219 for Walsh-Hadamard 

to 54 for the modified sequences. 

5. Application to quadri-phase sequences 
 
From the implementation viewpoint, another important class of spreading sequences are 

complex valued, quadri-phase sequences. Those four phases being: 

2
,,

2
,0 4321

πφπφπφφ −====  

correspond to the sequence elements taking complex values of: 

jssjss −=−=== 4321 ,1,,1 , 

respectively. 

To find the appropriate values of phase coefficients φm; m = 1, 2, …, N, (see Eq. (10)), 

for N = 32, we used the random search, as in the case of bipolar sequences. Again, we 



searched for the minimum value of the maximum peak magnitudes in the aperiodic 

cross-correlation functions, Cmax, using Monte Carlo approach. The minimum value of 

Cmax, achieved after 1000 trials, was 0.3658 for the vector P of phase coefficients  

 ]1332224233132341334344111223323[
]32,,1;[

=
== KmmφP

 (23) 

where the numbers 1, 2, 3, and 4, denote the phases 0, π/2, π, and -π/2, respectively. 

Thus the diagonal of the matrix D32 equals to: 

]111111111111111111[ −−−−−−−−−−−−−−−−− jjjjjjjjjjjjjj  

As in the bipolar case, it is difficult to judge how far the obtained result is from the 

global minimum without performing the exhaustive search. Contrary to the bipolar case, 

the theoretical bound given by Levenshtein in [21] for complex valued sequences 

cannot be used here even as a guideline, since our sequence elements cannot be any 

complex number but they can take only four values, 1, -1, j, and –j. 

The mean square correlation measures of the developed quadri-phase sequence set are: 
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and in Fig.5 and Fig.6, we present the upper limits for the peak magnitudes of aperiodic 

cross-correlation functions and aperiodic auto-correlation functions, respectively. It is 

clearly visible, that the achieved sequences exhibit better properties than the original 

Walsh-Hdamard sequences.  

Because of the reduced value of Cmax compared with both original Walsh-Hadamard 

sequences and the modified bipolar sequences considered in the previous Section, one 

can expect shorter error bursts in the system utilizing these quadri-phase sequences. 



This has been confirmed by simulation of a DS CDMA system as in the previous 

Section, with the only difference being the spreading sequences used.  As expected, the 

maximum number of errors in 524-bit frames dropped to 28, and we achieved a further 

reduction in an average BER, reduced to BER = 0.0012. This can be noticed in Fig.7, 

which shows the distribution of a number of errors in the transmitted frames for the 

simulated 32 channel system. 

6. Discussion of BER results 
 
Albeit in theory, the increase in the value of RCC for the modified sequences compared 

with the original Walsh-Hadamard sequences should lead to an increase in the level of 

MAI [3], this has not been the case observed in the simulation for neither bipolar nor 

quadri-phase sequences. To contrary, we experienced a drop of around 50% in the 

average BER. Such a behaviour is caused by the fact that in our simulation we assumed 

the carrier phases and relative time shifts staying constant for all users during the 

transmission of a single 524-bit frame. The results obtained in [3] assume that the 

phases and delays are randomly changed for every transmitted bit. However, the 

simulated scenario reflects more accurately the realistic situation where users remain 

continuously active for at least duration of one frame. This means that the relative 

delays and the carriers’ phases are not randomly changed for every single bit but remain 

constant for the whole frame. In such a case, the very high value of Cmax = 0.9688 for 

Walsh-Hadamard sequences causes a very high number of errors, i.e. up to 219 of 

erroneous bits, in some of the received frames. Such large number of errors in some 

frames has an adverse impact on the average BER, as has been observed.  

In addition, if one considers application of a forward-error-control (FEC) mechanism 

for real time services, minimization of the number of errors per received frame seems 



even more important than achieving a low BER with some of received frames being 

error free and others having a very high number of errors. In such cases, improvement 

of a worst case MAI reflected in the value of Cmax is much more important than 

improving of an average MAI reflected by the RCC. 

7. Conclusions 
 
In [7] we presented a simple method to modify orthogonal spreading sequences to 

improve their correlation properties for asynchronous applications, while maintaining 

their orthogonality for perfect synchronization. The method leads, in general, to the 

complex polyphase sequences but can also be used to obtain real bipolar sequences. In 

this paper, we showed that the method could be successfully applied to design 

orthogonal bipolar or quadri-phase sequences exhibiting good properties in case of 

asynchronous DS CDMA operation with the set of Walsh-Hadamard sequences of a 

given length being a starting point. The presented examples indicate that significant 

improvements can be achieved in transmission quality if, instead of the original Walsh-

Hadamard sequences, the sequences designed using the proposed method are employed. 

In addition, because of much better auto-correlation characteristics, an additional 

scrambling might not be required for synchronization purposes. 

In both considered cases, i.e. bipolar and quadri-phase sequences, there are only limited 

numbers of modifications possible for a given sequence length. Unfortunately, 

examining all of them becomes impractical even for a modest sequence length, e.g. N = 

32. In the paper, we used Monte Carlo technique to find the appropriate modifications. 

However, other, more advanced search methods may produce even better designs. 
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Figure 1: Maximum magnitudes of peaks in the cross-correlation functions for the 

whole sets of spreading sequences of length 32; Walsh-Hadamard sequences – dotted 

line, modified bipolar sequences- solid line. 
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Figure 2: Maximum magnitudes of peaks in the auto-correlation functions for the 

whole sets of spreading sequences of length 32; Walsh-Hadamard sequences – dotted 

line, modified bipolar sequences- solid line.
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Figure 3: Histogram of a number of errors in transmitted frames for the DS CDMA 

system utilizing Walsh-Hadamard spreading sequences. 
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Figure 4: Histogram of a number of errors in transmitted frames for the DS CDMA 

system utilizing spreading sequences defined by the matrix W32.
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Figure 5: Maximum magnitudes of peaks in the cross-correlation functions for the 

whole sets of spreading sequences of length 32; Walsh-Hadamard sequences – dotted 

line, modified quadri-phase sequences- solid line. 
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Figure 6: Maximum magnitudes of peaks in the auto-correlation functions for the 

whole sets of spreading sequences of length 32; Walsh-Hadamard sequences – dotted 

line, modified quadri-phase sequences - solid line. 
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Figure 7: Histogram of a number of errors in transmitted frames for the DS CDMA 

system utilizing modified quadri-phase spreading sequences.  


