
Recovery in the Mobile Wireless Environment
Using Mobile Agents

Sashidhar Gadiraju and Vijay Kumar, Member, IEEE

Abstract—Application recovery in Mobile Database Systems (MDS) is more complex because of an unlimited geographical mobility of

mobile units. The mobility of these units makes it tricky to store application log and access it for recovery. This paper presents an

application log management scheme, which uses a mobile-agent-based framework to facilitate seamless logging of application

activities for recovery from transaction or system failure. We compare the performance of our scheme with lazy, pessimistic, and

frequency-based schemes through simulation and show that compared to these schemes, our scheme reduces overall recovery time

by efficiently managing resources and handoffs.

Index Terms—MDS, mobile agents, PCS, coordinators, log unification, recovery.

�

1 INTRODUCTION

WIRELESS communication through PCS (Personal Com-
munication Systems) or GSM (Global System for

Mobile Communications) has become a norm of present
day society. Cell phones are more common than watches
and, in addition to being portable communication tools,
they have become Web browsing platforms. Telecommuni-
cation companies are continuously improving the commu-
nication qualities, security, availability, and reliability of cell
phones and trying to enhance its scope by adding data
management capabilities, which is highly desirable. Moti-
vated by such growing demand, we envision an informa-
tion processing system based on PCS or GSM architecture,
which we refer to as the Mobile Database System (MDS). It
is essentially a distributed client/server system where
clients can move around freely while performing their data
processing activities in connected, disconnected, or intermittent
connected mode. The MDS that we present here is a
ubiquitous database system where, unlike conventional
systems, the processing unit could also reach data location
for processing. Thus, it can process debit/credit transac-
tions, pay utility bills, make airline reservations, and other
transactions without being subject to any geographical
constraints. Since there is no MDS type of system available,
it is difficult to identify the transaction volume at mobile
units, however, the present information processing needs
and trends in e-commerce indicate that transaction work-
load at each mobile unit could be high and MDS would be a
useful resource to organizations and individuals alike.

Although MDS is a distributed system based on client
server paradigm, it functions differently than conventional
centralized or distributed systems and supports diverse
applications and system functionalities. It achieves such

diverse functionalities by imposing comparatively more
constraints and demands on MDS infrastructure. To
manage system-level functions, MDS may require different
transaction management schemes (concurrency control,
database recovery, query processing, etc.), different logging
scheme, different caching schemes, etc. The topic of this
paper is log management for application recovery through
the use of mobile agents.

Application recovery [25], [26], unlike database recovery,
enhances application availability by recovering the execu-
tion state of applications. For example, in MDS or in any
distributed system, a number of activities related to
transactions’ execution, such as transaction arrival at a
client or at a server, transaction fragmentation and their
distribution to relevant nodes for execution, dispatch of
updates made at clients to the server, migration of a mobile
unit to another cell (handoff), etc., have to be logged for
recovery. In recovery, the application recovery module
recreates the execution state of application, which existed
just prior to the failure and normal execution resumes.

Application recovery is relatively more complex than
database recovery because

1. there are a large numbers of applications required to
manage database processing,

2. presence of multiple application states, and
3. the absence of the notion of the “last consistent

state.”

This gets more complex in MDS because of

1. unique processing demands of mobile units,
2. the existence of random handoffs, and
3. the presence of operations in connected, discon-

nected, and intermittent connected modes.

Furthermore, it is not possible to store the entire log reliably
at one location and retrieve it efficiently, which makes it
very difficult to “see” the entire log for recovery. We argue
that for MDS, the use of conventional approaches for
managing log, even with modifications, would impose an
unmanageable burden on the limited channel capacity and,
therefore, reject their use.

180 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004

. The authors are with the School of Interdisciplinary Computing and
Engineering, Computer Networking, University of Missouri-Kansas City,
5100 Rockhill Road, Kansas City, MO 64110. E-mail: sgadiraju@acm.org
and kumarv@umkc.edu.

Manuscript received 25 Nov. 2002; revised 2 June 2003; accepted 21 July
2003.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number 12-112002.

1536-1233/04/$20.00 � 2004 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

In this paper, we take these challenges and present an
efficient logging scheme, which stores, retrieves, and
unify fragments of application log for recovery within
the constraints of MDS. We recognize and exploit the
unique processing capability of mobile agents for dealing
with geographical mobility and use them to develop our
log management scheme, which is scalable, that is, any
new application can be added or existing ones can be
deleted dynamically. We claim that our contribution
helps to develop robust and highly available mobile
information management systems, which are the back-
bone of e-commerce and m-commerce platforms. We are
motivated by the work presented in [29], [30] to use
mobile agents for system related problems. To the best of
our knowledge, no previous work has exploited the
unique processing capability of mobile agents in devel-
oping a log management scheme.

To show the superiority of our scheme, we compare its
performance with lazy, pessimistic, and frequency-based
schemes through simulation and report that, in all cases,
our algorithm minimizes wireless cost and time. We begin
with a reference architecture of MDS, which we have used
for developing our logging scheme.

2 REFERENCE ARCHITECTURE OF MOBILE

DATABASE SYSTEM AND TRANSACTION

EXECUTION

Fig. 1 illustrates our reference architecture of Mobile
Database System (MDS). It is a distributed multidatabase
client/server system based on PCS or GSM.1 We have
added a number of DBSs (database Servers) to incorporate
data processing capability without affecting any aspect of
the generic mobile network [3].

A set of general purpose computers (PCs, worksta-
tions, etc.) are interconnected through a high-speed wired
network, which are categorized into Fixed Hosts (FH) and
Base Stations (BS) or mobile support stations (MSS). One
or more BSs are connected with a BS Controller or Cell

Site Controller (BSC) [9], which coordinates the operation
of BSs using its own stored software program when
commanded by the MSC (Mobile Switching Center). We
also incorporate some additional simple data processing
capability in BSs to handle the coordination of transaction
processing.2

Unrestricted mobility in PCS and GSM is supported
by wireless link between BS and mobile units such as
PDA (Personal Digital Assistants), laptop, cell phones,
etc. We refer to these as Mobile Hosts (MH) or Mobile
Units (MU) [9], [12], which communicate with BSs using
wireless channels [9]. The power of a BS defines its
communication region, which we refer to as a cell. The
size of a cell depends upon the power of its BS and also
restricted by the limited bandwidth of wireless commu-
nication channels. Thus, the number of BSs in MDS
defines the number of cells. In reality, a high power BS is
not used because of a number of factors [9], [12] rather a
number of low power BSs are deployed for managing
movement of MUs. A MU may be in a powered off or
idle state (doze mode) or it may be actively processing
data and can freely move from one cell to another. When
a MU crosses a cell boundary, it is disconnected from its
last BS and gets connected to the BS of the cell it enters.
In such intercell movement, the handoff mechanism makes
sure that the boundary crossing is seamless and data
processing is not affected.

A DBS provides full database services and it commu-
nicates with MUs only through a BS. DBSs can either be
installed at BSs or can be a part of FHs or can be
independent to BS or FH. A MU is unable to provide
reliable storage as provided by conventional clients and, for
this reason, it usually relies on the static nodes (FH or BS) to
save its data. This is especially true for activities such as
recovery, logging, concurrency control, data caching, etc. It
is possible to install DBS at BSs, however, we argue against
this approach. Note that BS is a switch and it has specific
tasks to perform, which does not include database
functionality. To work as a database server, the entire
architecture of a BS (hardware and software) may have to
be revised, which would be unacceptable from a mobile
communication viewpoint. We argue that mobile database
functionality and wireless communication should be mod-
ular with minimum degree of overlap on their functionality.
For these reasons and for the reason of scalability, we
created DBSs as separate nodes on the wired network,
which could be reached by any BS at anytime.

We describe transaction execution on MDS to intro-
duce the problems of log management for application
recovery. We use a mobile transaction model referred to
as “Mobilaction,” which we developed [20]. Here, we
present only the main components of Mobilaction and
details can be found in [20].

A Mobilaction (Ti) is defined as Ti ¼ fe1; e2; . . . ; eng,
where ei is an “execution fragment.” Each ei represents a
subset of the total Ti processing. A Ti is requested at a MU,
it is fragmented [20], and are executed at the MU and at a

GADIRAJU AND KUMAR: RECOVERY IN THE MOBILE WIRELESS ENVIRONMENT USING MOBILE AGENTS 181

1. There are some difference in GSM and PCS architecture, however,
these diffferences do not affect MDS functionality and we refer to both
whenever necessary.

Fig. 1. A reference architecture of Mobile Database System (MDS).

2. Note that, in GSM [12], BSs do have additional data processing
capability so our assumption is in line with wireless system available
functionality.

set of DBSs. We refer to the MU where a Ti originates or
initiates as H-MU (Home MU) and the BS where H-MU
initially registered as H-BS (Home BS). Note that no
fragment of a Ti is sent to another MU for execution. This
is because, in MDS, a MU is a personal unit and its use is
controlled by its owner who can switch it off or disconnect
it from the network at any time. This could force the Ti to
fail unnecessary. Furthermore, other MUs may not have
necessary data to process the fragment generated by
another MU, in which case the fragment will end up at a
DBS. Also, transfer of eis to other MUs will incur wireless
communication overhead which could be prohibitive.

In MDS, like conventional distributed database systems,
a coordinator (CO) is required to manage the commit of Ti

[20] and its role can be illustrated with the execution of a Ti.
A Ti originates at H-MU and the H-BS is identified as the
holder of the CO of Ti. H-MU fragments Ti extracts its ei,
sends Ti � ei to the CO and begins processing ei. H-MU
may move to other cells during the execution of ei, which
must be logged for recovery. At the end of the execution of
ei, H-MU updates its cache copy of the database, composes
update shipment, and sends it to the CO. CO logs the
updates from H-MU.

Upon receipt of Ti � ei from H-MU, the CO splits Ti � ei
into ej’s ði 6¼ jÞ and sends them to a set of relevant DBSs for
execution. The H-MUmay suffer a handoff and the CO may
change. We explain later how a CO change is handled. Each
DBS processes its fragment and updates its own database.
Note that the presence of handoff may delay the execution
and commit of a Ti. In this situation, even a small Ti may
appear as a long-running Ti. Thus, the meaning of long-
running Ti on MDS could be 1) a small Ti (such as debit/
credit) may take a long time to run because of frequent
handoffs and 2) the Ti does access a large number of data
items, such as the preparation of bank customer monthly
statements, and takes a long time to execute in the absence
of any handoff. It is, however, meaningless to run statement
preparation transactions on MU and long-running transac-
tion in our case will be mostly of 1) type.

The size of information to be logged depends upon the
number of handoffs a transaction suffers. Each event has to
be recorded so that the information about the event and the
location of the event are known for recovery. We elaborate
this in later sections.

The selection of a component (BS, MU, DBS, and MSC)
for housing CO module for a Ti is crucial because it affects
its execution [20]. We argue that a MU is not a good choice
for housing a CO because of the following limitations:

1. no direct communication with other processing
nodes, especially with DBSs,

2. limited storage and reliability,
3. limited power supply,
4. unpredictable handoffs, and
5. limited availability.

However, in the case where Ti is entirely processed at the
H-MU, it can act as a CO. A DBS is a database server and is
not equipped with wireless communication capabilities,
which is necessary for a CO. This leaves us to select either a
BS or a MSC as a suitable candidate for housing COs. A
MSC controls a large number of BSs and manages all

handoffs. Adding coordinating responsibility will signifi-
cantly increase its communication overhead. Furthermore,
all BSs are well connected through the wired network,
which is an important requirement of CO. For these
reasons, we decided to select BS for coordinating transac-
tion execution, but not for executing a Ti or an ei because
doing so would be undermining the task of DBSs and
affecting the scalability of MDS. Note that the selection of
BS or MSC for coordination may only affect the perfor-
mance but not our scheme.

A MU may suffer handoffs during the processing of its
eis and Ti. During its movement, the MU will be
disconnected and connected with different BSs one at a
time, which will affect the connection of Ti with their CO
too. In [20], we proposed handling this 1) statically or
2) dynamically. In a static approach, once a BS is selected as
the location of Ti’s CO, it remains so until Ti commits. In a
dynamic method, the role of the CO changes with the
movement of the MU (see [20] for further detail).

We decided to use static approach for the management
of COs to minimize wireless communication overhead and
to minimize the cost of control data dispatch to new COs.
The problem with static approach is the increasing physical
distance between the MU and the BS holding the COs of its
Ti, which is likely to affect and hinder the communication
between them. We have managed to alleviate this problem
with our mobile agent-based framework, which we intro-
duce in Section 6.

3 RECOVERY PROBLEM SPECIFICATION

MDS recovery process is significantly more complex than
conventional systems mainly for the following reasons:

1. MUs’ stability. The unlimited portability of MUs
makes them vulnerable to all kinds of failure. For
example, it may run out of its limited battery power,
it may run out of its disk space, it may be affected by
airport security, or user may physically drop the
MU, and so on. Any of these events affect its
functionality and a recovery algorithm must take
these into consideration.

2. Limited wireless bandwidth. This severely affects
its communication capability. During recovery, a
MU may require communicating with BS or with
other MUs, but it may not get any free channel for
communication. This limitation could seriously
affect recovery.

3. Random Handoff. MUs may be subjected to handoff
randomly. A handoff may affect recovery mainly
because the location of the desired MU may not be
immediately available for communication.

3.1 Application Log Management

One of the most important activities of any recovery
scheme is the management (creation, storing, and proces-
sing) of application log. An efficient recovery scheme
requires that the log management must consume mini-
mum system resources and recreate the execution
environment as soon as possible after MU reboots. For
application recovery, the H-MU and the server must

182 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004

build a log of the events that change the execution states
of Ti. Messages that change the log contents are called
write events [15]. The exact write events depend on the
application type. In general, the H-MU records events like

1. the arrival of a Ti,
2. the fragmentation of Ti,
3. the assignment of a CO to a Ti,
4. the mobility history of H-MU (handoffs, current

status of the log, its storage location, etc.), and
5. dispatch of updates to the DBSs.

The DBSs may record similar events in addition to events
relating to the commit of Ti.

In conventional distributed systems, log management is
straightforward since no mobility is involved and a single
stable storage area is available for storing log. In MDS, a
MU cannot be relied upon and, therefore, it is necessary to
store the log information at some stable place that can
survive MU failure. Schemes that provide recovery in PCS
failure use the BS where the MU currently resides for
storing the log [15], [17]. Note that managing log for PCS
failure is relatively easy because it does not support Ti

processing.
Our objective is to utilize the unique processing cap-

ability of mobile agents in managing application log for
efficient application recovery, which will conform to MDS
limitations and mobile discipline constraints. We aim to
achieve this conformity and desired efficiency by incorpor-
ating the following properties in our scheme:

1. communication overhead (wired/wireless) should
below,

2. recovery time should be minimal, and
3. easy deployment of recovery schemes in the net-

work.

Properties 1 and 2 are understood easily, but 3 needs some
explanation, which we provide in Section 5.

4 RELATED WORK

Works reported in [1], [7], [15], [17], [18], [21], [22], [28] deal
with recovery related issues in mobile systems. To the best
of our knowledge, none of these reports has investigated
these problems for highly dynamic systems such as MDS
and none has used mobile agent technology to develop
solutions. They mainly deal with distributed applications
(may or may not be database transactions) running on a
number of mobile devices.

Work reported in [21] discusses mobile systems with
low-bandwidth wireless communication as simple I/O
devices or as full-fledged database servers. Global check-
point-based schemes like [1] are not useful because they
consider mainly applications running on multiple MUs
unlike MDS where an ei of a Ti runs only on H-MU and all
other e0is execute on different DBSs. We need schemes that
perform efficient log management for a single MU. Hence,
asynchronous recovery schemes presented in [15], [17], [18],
[22] are better suited than schemes of [7], which require
synchronization messages between participating processes.

Lazy and Pessimistic schemes (asynchronous schemes)
are reported in [15]. In a lazy scheme, logs are stored in the

BS and, if the MUmoves to a new BS, a pointer to the old BS

is stored in the new BS. The pointers can be used during

failure to recover the log distributed over several BS. This

scheme has the advantage that it incurs relatively less

network overhead during handoff as no log information

needs to be transferred. Unfortunately, this scheme has a

large recovery time. In the pessimistic scheme, the entire log

and checkpoint records, if any, are transferred at each

handoff. Hence, the recovery is fast but each handoff

requires large volumes of data transfer.
The work reported in [17] presents two schemes based

on the MU’s movement and uses independent checkpointing

and pessimistic logging. In these schemes, the list of BSs

where the log is distributed is transferred during a handoff.

In the distance-based scheme, log unification is done when

the distance covered by MU increases above a predefined

value. In the frequency-based scheme, log unification is

performed when the number of handoffs suffered by the

MU increases above a predefined value. After unifying the

log, the distance or handoff counter is reset. These schemes

are a trade off between the lazy and the pessimistic

strategies.
We believe that the existing mobile network framework,

as suggested in the above papers, is not efficient for full-

fledged database transactions (Tis) running at DBSs and

MUs. In the above schemes, the location change of MU has

to be updated by DBSs, which would be a big disadvantage.

To overcome this, mobile IP was introduced. In [22], log

recovery based on the mobile IP architecture is described

where BSs store the actual log and checkpoint information

and H-BS or the home agent as defined in [13] maintains the

recovery information as MU traverses. This scheme has the

advantage that log management is easy and the DB servers

need not be concerned with the MU location update, but it

suffers when the MU is far away from home. Consequently,

recovery is likely to be slow if the home agent is far from the

MU. The other problem with using mobile IP is triangular

routing where all messages from the DB server to the MU

have to be routed through the home agent. This invariably

impedes application execution.
The schemes discussed so far do not consider the case

where a MU recovers in a BS different than the one in which

it crashed. In such a scenario, the new BS does not have the

previous BS information in its VLR and it has to access the

HLR to get this information [8], which is necessary to get

the recovery log. HLR access may increase the recovery

time significantly if it is stored far from the MU. A similar

disadvantage can be observed in the mobile IP scheme of

[22], where the MU needs to contact the home agent each

time the MU needs recovery.
In the next section, we first present the mobile-agent

paradigm and then a mobile agent-based architecture is

described for logging. This agent-based framework pro-

vides a platform for implementing our scheme based on the

distributed logging approach, which reduces recovery time

while keeping the total network cost manageable.

GADIRAJU AND KUMAR: RECOVERY IN THE MOBILE WIRELESS ENVIRONMENT USING MOBILE AGENTS 183

5 A MOBILE AGENT-BASED LOG

MANAGEMENT SCHEME

A mobile agent is an autonomous program that can move
from machine to machine in heterogeneous network under
its own control [2]. It can suspend its execution at any point,
transport itself to a new machine, and resume execution
from the point it stopped execution. An agent carries both
the code and the application state. Actually, the mobile
agent paradigm is an extension of the client/server
architecture with code mobility. Some of the advantages
of mobile agents as described in [10], which we want to
exploit are:

. Protocol Encapsulation. Mobile agents can incorpo-
rate their own protocols in their code instead of
depending on the legacy code provided by the hosts.

. Robustness and Fault Tolerance. When failures are
detected, host systems can easily dispatch agents to
other hosts. This ability makes the agents fault-
tolerant.

. Asynchronous and Autonomous Execution. Once
the agents are dispatched from a host, they can make
decisions independently and autonomously.

The last advantage stated above is particularly useful to
the wireless environment where maintaining a connection
throughout an executing Ti may not be economical or
necessary. In such cases, the agents can visit the destination,
perform any required processing, and bring the final data to
the origin thereby removing the need for a continuous
wireless connection. For example, an agent can take a
Mobilaction from a MU, execute it at the most suitable node
(could be remote), and bring the result to the MU.

Agents do have disadvantages and the one, which is
likely to affect our scheme, is its high migration and
machine load overhead [4]. This overhead must be
minimized for improving the performance and, in our
architecture, we achieve this by using agent services with
“only when needed approach.”

It is not possible to develop a scheme, which optimizes
the performance at all levels and in all different situations.
For this reason, some recovery schemes improve the
performance by targeting to minimize the communication
overhead, some might concentrate on total recovery time,
some may optimize storage space, etc. Thus, each scheme
involves certain trade offs.

When these issues are taken into consideration, it
becomes necessary to build a framework that supports the
implementation of the existing schemes and should also be
able to support any new scheme. The framework should
support the activation/deactivation of a scheme depending
on the particular environment in which it offers best
performance. Such a framework should abstract the core
BS software (which handles the registration, handoff, etc.
activities) from handling the recovery procedures, thus
allowing for better recovery protocols to be implemented
without the need for changing the core software. The
framework may also support a rapid deployment of the
recovery code without much human intervention. In our
MDS, the CO module resides in the BS. It splits Ti’s into ei’s
if necessary, and sends some of them to a set of DBSs. This

requirement asks for specific intelligence to be embedded in
the BS code.

Ti’s initiated by MU may use different kinds of commit
protocols like 2-phase commit or 3-phase commit or TCOT
(Transaction Commit On Timeout) [20]. The CO module
needs to support all of these. If such a module at a BS does
not support a particular protocol, then there should be an
easy way to access such code. An extension to this is that,
when a new efficient protocol is introduced, all BSs should
be able to upgrade to this as easily as possible and with little
or no human intervention.

From the perspective of MU log recovery, we need an
architecture which supports intelligent logging and able to
incorporate any future developments without any diffi-
culty. Most papers suggest the BS as the stable storage for
the MU logs. Some recovery schemes specify that the logs
move along with the MU through a multitude of BSs. The
new BS should be able to handle the logs in the same way as
the previous one did or log inconsistency might result.

We argue that the flexibility and constraints mentioned
above could be successfully incorporated on a mobile-
agent-based architecture under which the code necessary
for recovery and coordination can be embedded in the
mobile agents. The CO can be modeled as a mobile agent
and can be initiated by the MU itself if necessary. If during a
handoff the new BS does not support a specific logging
scheme, then the agent in the previous BS which supports
this can clone itself and the new replica can migrate to the
current BS without any manual intervention. The same
technique can be used in quickly populating the BSs with
any new protocols. The mobile agent with the new protocol
embedded in it can be introduced in any BS and it can
replicate and migrate to other BS.

We present an architecture where we use mobile agents
to provide a platform for managing logging. The architec-
ture supports the independent logging mechanisms. We
assume that each BS supports the functionality of mobile
agents. We describe our architecture in terms of various
agents and their logical functions required in the frame-
work, but we do not describe the implementation details:

. Bootstrap agent (BsAg). This agent addresses a BS
failure. Any agent that wishes to recover should
register with the bootstrap agent. The BS initiates the
bootstrap agent. Once loaded, this agent starts all the
agents that have registered with it. These agents are
coded in such a way that when they are started, they
have the capability to read the log information they
have created and act accordingly. The need for such
an agent may be obviated if the mobile agent
provides an automatic revival of the agents with
their state intact.

. Base Agent (BaAg). This agent decides which
logging scheme to use in the current environment.
Such functionality can be decided by its own
intelligence or can be given as an input. For every
MU, the BA creates an instance of an agent that
handles the recovery of Mobilactions based on the
relevant logging scheme.

. HomeAgent (HoAg).This agent handlesMobilactions
for each H-MU. It is responsible for maintaining log

184 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004

and recovery information on behalf of H-MU. H-MU
sends log events to this agent, which is responsible for
storing them on the stable storage of the BS. TheHoAg
is a BS interface to the MU for Mobilactions.

. Coordinator Agent (CoAg). This is the coordinator
agent residing at each BS.

. Event Agent (EvAg). In addition to the above
framework, the BS provides mobile agents with an
interface to the various events taking place like
registration of a MU, failure of a MU, handoff of MU,
etc. The need for such a support arises because we
try to abstract away the core BS functions from
application recovery support. When any MU suffers
handoff, its HoAg should know about it so that it can
perform the required operations. The EvAg is the
interface for the BS to the agent framework for
dissemination of such information.

. Driver Agent (DrAg). The migration of a mobile
agent during a handoff, involves the movement of its
code and the actual data as explained in the previous
section. This might generate considerable overhead
[4] even if the actual log transfer is not much. To
manage this, we introduce driver agents (DrAg) and
Section 5.2 describes its working.

5.1 Interaction of CoAg and HoAg

A MU sends Mobilaction to its HoAg, which forwards it to
the corresponding CoAg. If the CoAg needs to contact the
MU, it does so through the MU’s corresponding HoAg.
When CoAg sends a write event to theHoAg, it stores it in its
local store before sending it to the MU. Similarly, if any
events come to the MU through user input, MU sends the
corresponding log messages to the HoAg.

5.2 Action of Agents when Handoff Occurs

The HoAg moves along with the MU to the new BS in a
handoff. Based on schemes like lazy and frequency-based,
the agent may or may not take the stored logs along with it
to the new BS. Instead of the whole HoAg with all its
intelligence for log unification, interaction with the CoAg,
etc., when a handoff occurs, a driver agent (DrAg) is sent
along with the necessary log information to the new BS. The
DrAg has a very light code whose main function is to see
whether the code for HoAg is present in the new BS. If so, it
requests the resident BaAg in the new BS to create an
instance of the HoAg for this MU. If any compatible code is
not present, then the DrAg sends a request to the previous
BS’s BaAg, which clones the necessary HoAg and sends the
copy to the new BS.

When MU moves out of a BS, its log information is not
deleted automatically, but it is stored unless notified
otherwise by the agent of the MU. This facilitates the
unification of logswhen logs are distributed over a set of BSs.

6 FORWARD STRATEGY

All schemes reviewed earlier have assumed instant
recovery of the MU after a failure, but [8] acknowledges
the possibility where the MU might crash in one BS and
recover in another BS. We define the time interval
between the MU failing and its subsequent rebooting as

Expected Failure Time (EFT). Our scheme concentrates on
such scenarios where the EFT is not so trivial that the
recovery occurs instantaneously.

BS detects the failure of a MU and agents do not play any
part in such detection. For example, if the communication
between two MUs breaks down because of the failure of one
of the MUs, then the corresponding BS will immediately
know about this event. Similarly, BS also knows which MU
has executed power-down registration, which MU has
undergone a handoff, and so on. A BS also continuously
pages its MUs (Sprint PCS system pages it’s MUs after
every 10 to 15 minutes without generating any overhead
[24]) to learn their status and a MU also continuously scans
the air by using its antenna to detect the strongest signal.

If the MU suffers a handoff, then the communication
with the last BS is not broken until the connection with the
new BS is established (soft handoff). These features of PCS
allow MDS to detect MU failure. Thus, while a MU is
executing its ei’s, its status is continuously monitored by the
BS and any change in MU’s situation is immediately
captured by the Event Agent interface. Since this detection
is system dependent, EFT (Expected Failure Time) tends to be
an approximate value. The detection can be passed on to the
HoAg in many ways. The MDS can provide an interface,
which would allow the agents to wait for an event. Another
approach would be to provide an agent with a readable
system variable which would be set on any such event. The
agent will periodically poll the variable to check if it is set.
Both approaches are possible and easy to implement in
languages such as Java in which many agent systems like
IBM’s Aglets and General Magic’s Odyssey have been
developed [6].

Since handoff does not occur in the above case as pointed
out in [8], the new BS does not know the location of the old
BS. This situation leads to the new BS contacting the Home
Location Register (HLR) for the previous BS. The schemes
presented in [8], [15], [17], [18] build upon such support.
This might be a hindrance to fast recovery if the HLR
happens to be far from the querying BS. Actually, the Visitor
Location Register (VLR) is first queried for the previous BS
information (Fig. 1), which is stored in VLR if both BSs
happen to fall under the control of the same VLR. If BSs are
under different VLRs, then the HLR of the MU has to be
queried. Such information is stored in the HLR when a MU
first registers with a BS.

In the lazy scheme provided in [8], the BS starts building
up the log immediately upon failure of MU. In the schemes
presented in [17], the MU explicitly issues a recover call to BS
and BS begins the log unification. This raises certain
questions in the event of the MU crashing and recovering
in different BSs. If the log is to be unified immediately upon
a failure, then it might be necessary for the new BS to wait
for the old BS to finish its unification and then present its
log. If the failure time is large or the total log size is small,
then unification will be over by the time the new BS queries
the previous BS. In such a case, recovery can be fast.

In the case of a relatively small EFT (Expected Failure Time)
or a large log size (to be unified), the new BS must wait first
for the unification and then for the actual log transfer. This
results in increased recovery time and network cost. In such

GADIRAJU AND KUMAR: RECOVERY IN THE MOBILE WIRELESS ENVIRONMENT USING MOBILE AGENTS 185

cases, it might be preferable for the log unification to be done
in the new BS if the list of BSs where the log is distributed is
known. Such list is transferred in schemes provided in [17]
and not for those in [8]. In the approach where the log is
unified after a recovery call, the recovery time might not be
small enough if the log size to be unified is small. In this case,
the unification has to begin after getting the list of BSs
involved, from the previous BS. Also, if the MU has not
migrated to a new BS before recovery, then log has to be
unified, which is likely to increase the recovery time.

Here, we present two schemes that help in reducing the
recovery time. Our scheme of log unification is based on the
number of handoffs which have occurred since the last log
unification or the start of the transaction, whichever is later.
The log is unified periodically when the number of handoffs
occurred crosses a predefined handoff_threshold.

When a handoff occurs, the “Trace” information is
transferred from the old BS to the new BS. This trace
information is an ordered list of elements giving informa-
tion about the BSs involved in storing MU’s log. Each
array element consists of two values; 1) the identify of
this BS (BS ID) and 2) the size of the log stored at
BS IDiðLog SizeiÞ. When a handoff occurs, then BS ID
of the new BS and a Log Size value of zero are added to
the end of the trace. The Log Size value is updated
whenever MU presents BS with some log information.
Some optional parameters can also be present in the trace
information that we discuss in the next paragraph. Since
the trace does not contain the actual log contents and is
mostly an array of BSs’ identities and log sizes, it does
not present a significant overhead during the handoff.

The scheme also assumes the presence of EFT (expected
failure time) value. This value can be stored as an
environment attribute accessible to HoAg of the MU at BS.
If such support cannot be given by the system, then HoAg
can also estimate EFT from MU’s activities. If the agent
estimates the EFT, then this value is also stored in the trace
information. When the system detects MU failure, it
intimates the agent framework through the Event Agent
interface. This agent notifies the appropriate HoAg that
starts the EFT clock. This clock is stopped to get the
Recorded_EFT value, when the HoAg receives a MU recovery
call, which can come from the MU in the same BS or from a
different BS in which the MU has recovered. In either case,
the agent residing in BS where the EFT clock is started
estimates EFT as the new

EFT ¼ ðK1 �Recorded EFT Þ þ ðK2 � EFT Þ;

where K1 þK2 ¼ 1.
The new EFT is a weighted sum of the previous EFT and

the Recorded_EFT. K1 indicates the reliance on the
Recorded_EFT while K2 indicates the reliance on the
previously calculated EFT. The values of K1 and K2 are
functions of the environment. In a network where the
failure time is relatively stable, K2 is given more weight and
in a network where the failure time varies frequently, K1

can be given more weight.
To improve storage utilization, unnecessary records

from the log are deleted. This garbage collection is done
upon log unification. When a MU log is unified at a BS, a

garbage_collect message is sent to all the BSs hosting the
MU logs as specified in the trace BS_ID list. The previous
BSs purge these logs on receiving this message. The BS_ID
and the Log_Size lists are erased from the trace information
at the current BS to reflect the unification and a single
entry is created in the trace with the current BS id and the
unified log size. Note that garbage collection is not an
integral part of our scheme, it is here to improve the
performance.

6.1 Forward Log Unification Scheme

In this section, we explain when to start log unification
upon a failure. We first define the actions in BS when a MU
fails. Since the trace information contains the size of the log
stored at different BSs, the HoAg can estimate the time for
log unification based on the network link speed and the
total log size. We call this the Estimated Log Unification Time
(ELUT),3 which can be measured as:

MaxfBSi Log Size=Network link Speed
þ Propagation Delayg;

for all BSs in trace.
The exact characterization of the ELUT value depends on

many other factors. i.e., whether the BSs are located in the
same VLR area or different areas, queuing delay, etc. The
HoAg should take into consideration as many parameters
available from the system as possible to estimate the ELUT
accurately.

Log unification is started if ð� � ELUT Þ <¼ EFT or else
it is deferred until a recovery call is heard from the MU. The
Unification factor “�” describes what fraction of the log
unification will be done by the time the failure time of the
MU comes to an end. The default value can be kept as 1,
which indicates that we start log unification only if it can be
totally completed by the time the MU is expected to
complete its reboot. If the MU reboots in a different BS
while the log is being unified in the previous BS, it has to
wait for the unification to complete.

Variations of this scheme are possible if the HoAg can
estimate the effective handoff time. Based on this value, if
there is still a long time for the next handoff, then the log
unification can start immediately upon a failure, as it is
more probable that the failed MU will recover in the BS
where it failed rather than in any other BS.

In the event that log unification is not performed because
ð� � ELUT Þ > EFT , the HoAg waits for the MU to recover.
If the recovery happens in the same BS, log unification
starts, but if the MU reboots in a different BS, then the HoAg
transfers the trace information and the log stored at this BS
when requested. In this case, the new BS has to perform the
log unification after getting the trace information from the
previous BS. Note that this trace contains the newly
calculated EFT value.

6.2 Forward Notification Scheme

This scheme addresses the issue of time spent in getting the
previous BS information from the HLR. To overcome this,

186 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004

3. The actual log unification time is difficult to calculate and that is the
reason why we try to estimate it. The expression given is a simple way to
estimate it without complicating the recovery.

we propose a scheme involving forward notifications. When a
MU fails in a particular BS and if the actual failure time
(total duration before MU is rebooted) is not too high, there
is a high probability that the MU will recover in a BS that is
in the same VLR or in a BS that is in adjacent VLRs. Our
scheme is based on this premise, which is admissible
because a VLR is generally assigned to a whole city covered
by a number of BSs [12]. Thus, a VLR and its adjacent VLRs
cover a large area and the situation where the MU reboots
in a nonadjacent VLR does not occur frequently. If the MU
happens to restart in a nonadjacent VLR, then it must have
been extremely mobile and most of the recovery schemes
are not designed for such an unrealistic situation. The other
implication is that the MU had been in the failed state for a
longer period and so it is likely that the CO could have
decided to abort the Mobilaction.

We assume that each VLR stores MU’s status information
(normal, failed, and forwarded). A number of situations may
arise and we explain the action of the system in each case.

Action of the system when a MU fails. When a MU fails,
its corresponding HoAg informs the VLR about this failure.
The VLR first changes the status of MU in its database from
normal to failed. The VLR then issues a message containing
its own identity (e.g., identity of the VLR that sends this
message), the identity of the failed MU, and the identity of
the BS in which the MU crashed to its adjacent VLRs that
the MU has failed. The adjacent VLRs store these messages
until explicit denotify messages are received. The MU is
recorded in these adjacent VLRs with the status as
forwarded. We describe the various scenarios that may arise
when the MU reboots.

Case 1: The MU reboots in the same BS where it

crashed. In this scenario, the HoAg informs the VLR that the
MU has recovered. The VLR then issues a denotify message
to all the adjacent VLRs indicating that the forward
notification information is no longer valid. The status of the
MU is changed back to normal from failed.

Case 2: The MU reboots in a different BS but in the

same VLR. First, the MU registers with the BS and the
registration message is logged on to the corresponding
VLR. This VLR identifies the status of the MU as failed and
then it proceeds as in Case 1 and sends denotify messages to
the adjacent VLRs. The status of the MU is changed back to
normal from failed. The new BS then proceeds to perform log
unification from the previous BS.

Case 3: The MU reboots in a different BS and a

different VLR. The MU requests for registration. The
corresponding VLR identifies the MU as a forward notified
MU and returns the identity of the previous BS and the
identity of the VLR to the HoAg of the MU in the recovered
BS. The BS then proceeds to perform log unification from
the previous BS. Simultaneously, the new VLR sends a
recovered message to the previous VLR regarding the
recovered status of the MU and also sends a registration
message to the HLR regarding the registration of the MU in
the new location. The status of the MU is changed to normal
from forwarded in the new VLR. Upon receiving the recovered
message, the previous VLR sends a denotify message to all
adjacent VLRs except the one in which the MU recovered
and removes the registration of the MU from itself as well.

In the situation where the MU recovers in a nonadjacent
VLR that has not received the forward notifications, the
new BS has to get the previous BS information from the
HLR and then send the previous VLR a recovered message.
Upon receiving this message, the previous VLR acts similar
to the previous VLR of Case 3.

The forward notification scheme is unsuitable if the MU
suffers failures with a very small EFT. In that case, the MU
recovers in the same BS where it failed. Hence, the forward
notifications and subsequent denotifications generate com-
munication overhead. To alleviate this, we might delay the
sending of these notifications immediately on failure of the
MU. TheHoAgwaits for an initial buffer time before it notifies
the VLR regarding the failed status of the MU. This time can
be estimated by the HoAg in a way similar to the estimation
of ELUT without compromising the performance.

We can reduce the overhead further if we can reduce the
number of recipients of the notifications. If notifications are
sent to only those VLRs, the BSs of which are nearer to the
BS in which the MU fails, the communication overhead can
be reduced.

7 PERFORMANCE STUDY

We compare the performance of our scheme with lazy and
pessimistic [15] and the frequency-based movement scheme
[17]. The distance-based movement scheme [17] is quite
similar to the frequency-based scheme and, hence, we do
not include it in our simulations. In this section, we first
present the simulation model and later discuss the
performance results.

7.1 Simulation Model

We have assumed an MDS structure with 6� 6 BSs (Base
Station) arranged in a grid fashion with each cross point in
the grid representing a BS. According to this model, all BSs
have equal area and each BS has at most eight adjacent
neighbors. Initially, 100 MUs (Mobile Unit) are randomly
distributed among these 36 BSs so that, on the average, these
BSs have been combined into groups of nine (3� 3 grid)
where each group represents a MSC (Mobile Switching
Center) and a VLR attached to it. This presents us with four
MSCs of equal size, each with nine BSs. Our objective in such
grouping is to show the effect of forward notifications on the
migration of MUs between BSs of different MSCs. The
grouping of nine allows the MSC configuration of eight
border BSs (which have borders with BSs from a different
MSC) and one internal BS. In reality, there are many internal
BSs, but we provide for the minimal configuration. The
grouping of four (2� 2 grid) does not provide for any
internal BS and, hence, we do not consider it.

Each MU suffers handoff and failure according to a
Poisson process with rates of �h and �f , respectively. The
failure time at each failure is exponentially distributed with
a mean of 1=�EFT . Each MU sends log data to the
corresponding registered BS with a time interval of mean
1=�c, which is exponentially distributed. The log size
transferred at each log event is constant and is equal to
CL. At any instant, the MU is involved in a single
Mobilaction, with each Mobilaction containing CT log events
to be stored in the BS stable storage. Checkpoints are not

GADIRAJU AND KUMAR: RECOVERY IN THE MOBILE WIRELESS ENVIRONMENT USING MOBILE AGENTS 187

generated in the simulation and only message logs are used.

When a Mobilaction ends, the corresponding logs are

deleted from the stable storage. The cost of transferring a

single log event on the wireless channel is � � CL, where � is

the wireless link cost factor. Similarly, we define wired link

cost factors �1 and �2, where �1 is the cost factor on wired

links for inter-MSC message transfer while �2 is the cost

factor for intra-MSC message transfers. We differentiate

between �1 and �2 because inter-MSC BSs message transfer

has to traverse the additional PSTN link (see Fig. 1), which

is not required in an intra-MSC BSs message transfer.
The messages exchanges among relevant components of

MDS are shown in Fig. 2. A MU consists of a Mobilaction

generator shown as MGen, which generates log events.
These events are sent to FIFO queue MQ. Transmission of
an event from MQ does not start until its previous event is
completely transferred from MQ. The BS receives the events
from MQ through an input queue InQ and stores the events
in the stable storage (SS). These events are deleted from the
storage when garbage-collection requests are issued by
other BSs. Such requests from other BSs are not stored in the
SS. When BS needs to communicate with other BSs or MUs,
the message is sent to the OutQ and the log events are sent
to the stable storage to be stored. The InQ and OutQ are
operated in a round-robin manner.

We study the performance of the various schemes in

terms of the following costs:

. CH : Handoff log management cost. It is the sum of
message transfer cost (actual log and/or trace
information) between the BSs during a single hand-
off and the resulting control messages (acknowl-
edgements). For the lazy scheme, this cost is just the
cost of creating the link to the previous BS. No log
information is transferred. For the pessimistic
scheme, this cost includes the cost of transferring
the total log, and the cost of acknowledgement. For
the movement and forward schemes, this cost
includes the cost of Trace information, possibly log
transfer cost (including log request cost), and
acknowledgement cost.

. CR: It is the cost for log retrieval or log unification
cost incurred by the BS where a failed MU reboots.
CR is a measure of the recovery cost and can be
represented as

CR ¼ Cost for log requestsþ Cost for log transfers

þ Cost for log unification waiting:

Note that C_R includes the transfer cost of control
messages issued by the BS needed to request the log
from other BSs where the log is distributed and the
actual log transfer cost from those BSs. If a MU
reboots in BS2 after a failure, but its log unification is
still continuing at BS1 (its previous base station),
then CR includes the additional cost of waiting for
the log unification to completed at BS1. Such a
scenario can occur if immediately after a handoff, the
MU fails while the log is being unified because the
number of handoffs crosses the handoff_threshold
(observe that this threshold can be taken as 0 in the
pessimistic scheme, and as 8 in the lazy scheme).
This scenario also occurs if a MU suffers a second
failure and moves to a different BS while recovering
from a previous failure. CR does not include the cost
for the subsequent transmission of the unified log to
the MU over the wireless channel, as this cost is the
same for different schemes.

. CF : Failure Cost. It is the sum of costs included from
the point a MU completely recovers from a failure to
the next failure point when the BS is ready to
transmit the unified log to MU. In other words, it is
the total cost of recovering from a single failure. It
includes any handoff costs that may occur, cost for
forward notifications if any, the forward log unifica-
tion cost (which is zero for the movement scheme),
and the subsequent cost of sending the log to the BS
where the MU reboots.

Table 1 lists the input parameter values that drive the
simulator. We obtained the values of these parameters from
sources like [15], [17], [20] and decided the values of the
failure rate and the log transfer time for a log size of 1 over
the wired and wireless channels. The simulations for
movement and forward schemes are performed with the
handoff_threshold of five. We set the failure time as 10, which
is the time required for sending a single log message over
the wireless channel from the MU to its HoAg in the BS. The
upper range of handoff rate is set at 0.2 as any larger value
results in excessive handoff drops as the failure time has a
mean of 10. Even then, some handoffs are completely
processed as the handoff rate follows a Poisson process and
may some times be greater than its mean value. But, such

188 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004

Fig. 2. Simulation model.

handoffs are very few for the results to be meaningful. The

handoffs are also dropped as it would not be possible to

completely transfer the logs during the handoff in schemes

like pessimistic. The EFT (Expected Failure Time) para-

meters are set so as to give more importance to the previous

EFT value.

7.2 Simulation Results and Discussion

7.2.1 Effect of Handoff Rate �h on Handoff Cost CH

Fig. 3 shows the relationship between handoff rate and
handoff cost. The CH increases with the handoff rate. This
can be attributed to the fact that a Mobilaction log may be
distributed in multiple intra-MSC BSs. The handoff cost
(CH) is the lowest for the Lazy scheme because no log or
significant trace information is carried during a handoff
and, hence, its cost does not vary with a change in �h. The
pessimistic scheme fares the worst as it carries the whole log
during each handoff. Both the movement scheme and forward

scheme have nearly the same handoff cost. The forward
scheme incurs marginally more cost than the movement
scheme because of the additional information of the log
sizes in the trace information. The difference in the costs
between the two schemes is too small to observe at lower
handoff rates, but it is visible at high �h when the number of
BSs traversed and recorded in the trace information is more.

7.2.2 Effect of Handoff Rate, �h, on Log

Retrieval Cost CR

Fig. 4 shows the relationship between handoff rate and
handoff cost. The Lazy scheme has the worst performance for
CR and is affected significantly with an increase in the
handoff rate. This is because the number of BSs over which
the log is spread increases rapidlywith handoff rate resulting
in increased recovery cost. Moreover, log recovery is
sequential as there is no BS list in lazy scheme. Every BS
has to contact the previous BS for log. The pessimistic scheme
has the best performance because the log is already
transferred during the handoff, but the cost increases with
�h. This is because the probability of MU crashing in one BS

GADIRAJU AND KUMAR: RECOVERY IN THE MOBILE WIRELESS ENVIRONMENT USING MOBILE AGENTS 189

TABLE 1
Simulation Input Parameters

Fig. 3. Handoff cost with handoff rate. Fig. 4. Cost of log retrieval with handoff.

and comes up in another BS increases where the log has to be
transferred from the previous BS. Themovement scheme fares
better than the Lazy scheme due to the periodic log
unification. The forward scheme performs better than move-
ment because at lower �h, the forward unification helps in
reducing the recovery cost. The effect of forward notification
is not much as it is more likely that the MU comes up in the
same BS as it has failed. But, at higher handoff rates, the
forward notification also helps in reducing the recovery time.

7.2.3 Effect of Handoff Rate �h on the Failure Cost CF

Fig. 5 shows the relationship between handoff rate and

failure cost. We observe that the failure cost for a single

failure is largest for the pessimistic scheme. This is because of

complete log transfer at each handoff. As the handoff rate

increases, so does the failure cost because the number of

handoffs per failure increase. The lazy scheme performs

better than the pessimistic scheme because log unification

happens only on failure. However, as �h increases, CF value

increases rapidly because the cost for log unification rises

with the number of BSs involved in storing the log. The

movement scheme performs best among all the schemes

because of its periodic log unification, which reduces the

recovery time without increasing the handoff costs sig-

nificantly. The forward scheme has a slightly greater cost

than the movement cost because of the forward notifica-

tions and the subsequent denotifications. The forward

unification contributes to the increase in the failure cost,

but it has the advantage of reducing the recovery time.

8 CONCLUSION

In this paper, we presented a mobile agent-based frame-

work for supporting application recovery in a mobile,

wireless environment. We presented the forward strategy for

improving the recovery time in situations where the failure

time is nontrivial. Our framework is not restricted to the

forward scheme, but it can support previous independent

logging schemes. The simulation results show that the

forward scheme improves the recovery time with a fairly

consistent behavior in all the parameters simulated.

ACKNOWLEDGMENTS

This research is supported by the US National Science
Foundation under grant no. IIS 19979453.

REFERENCES

[1] A. Acharya and B.R. Badrinath, “Checkpointing Distributed
Applications on Mobile Computers,” Proc. Third lnt’l Conf. Parallel
and Distributed Information Systems, pp. 73-80, 1994.

[2] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and G. Cybenko,
“AgentTCL: Targeting the Needs of Mobile Computers,” IEEE
Internet Computing, vol. 1, no. 4, 1997.

[3] M.H. Dunham and A. Helal, “Mobile Computing and Databases:
Anything New?” SIGMOD Record, vol. 24, no. 4, pp. 1-9, Dec. 1995.

[4] G. Eleftheriou and A. Galis, “Mobile Intelligent Agents for
Network Management Systems,” Proc. London Comm. Symp., 2000.

[5] T. Imielinski and B.R. Badrinath, “Mobile Wireless Computing:
Solutions and Challenges in Data Management,” Comm. ACM,
pp. 19-27, Oct. 1994.

[6] J. Kiniry and D. Zimmerman, “A Hands-On Look at Java Mobile
Agents,” IEEE Internet Computing, vol. 1, no. 4, pp. 21-30, 1997.

[7] R. Koo and S. Toueg, “Checkpointing and Rollback-Recovery for
Distributed Systems,” IEEE Trans. Software Eng., vol. 13, no. 1,
pp. 23-31, 1987.

[8] P. Krishna, N.H. Vaidya, and D.K. Pradhan, “Recovery in
Distributed Mobile Environments,” Proc. IEEE Workshop Advances
in Parallel and Distributed Systems, Oct. 1993.

[9] R. Kurupppillai, M. Dontamsetti, and F.J. Cosentino, Wireless PCS.
McGraw-Hill, 1997.

[10] D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile
Agents,” Comm. ACM, vol. 42, no. 3, 1999.

[11] L. Alvisi and K. Marzullo, “Message Logging: Pessimistic,
Optimistic, Causal and Optimal,” IEEE Trans. Software Eng.,
vol. 24, no. 2, pp. 149-159, Feb. 1998.

[12] M. Mouly and M.-B. Pautet, The GSM System for Mobile
Communications. pp. 100-102, Cell & Sys Publications, 1992.

[13] C. Perkins, “Mobile Networking through Mobile IP,” IEEE Internet
Computing, pp. 58-69, Jan. 1998.

[14] P.A. Bernstein, “Concurrency Control and Recovery in Database
Systems,” pp. 226-236, 2003, www.research.microsoft.com/pubs/
ccontrol.

[15] D.K. Pradhan, P. Krishna, and N.H. Vaidya, “Recovery in Mobile
Environments: Design and Trade-Off Analysis,” Proc. 26th Int’l
Symp. Fault-Tolerant Computing (FTCS-26), June 1996.

[16] F.D. Schlichting and F.D. Schneider, “Failstop Processors: An
Approach to Designing Fault-Tolerant Distributed Computing
Systems,” ACM Trans. Computer Systems, vol. 1, no. 3, pp. 222-238,
1983.

[17] T. Park, N. Woo, and H.Y. Yeom, “An Efficient Recovery Scheme
for Mobile Computing Environments,” Proc. Eighth Int’l Conf.
Parallel and Distributed Systems, 2001.

[18] T. Park and H.Y. Yeom, “An Asynchronous Recovery Scheme
Based on Optimistic Message Logging for Mobile Computing
Systems,” Proc. 20th Int’l Conf. Distributed Computing Systems,
pp. 436-443, Apr. 2000.

[19] V. Kumar and M.H. Dunham, “Defining Location Data Depen-
dency, Transaction Mobility and Commitment,” TR 98-cse-1,
Southern Methodist Univ., Feb. 1998.

[20] V. Kumar, M.H. Dunham, N. Prabhu, and A.Y. Seydim, “TCOT–A
Timeout Based Mobile Transaction Commitment Protocol,” IEEE
Trans. Computers, vol. 51, no. 10, pp. 1212-1218, Oct. 2002.

[21] V.R. Narasayya, “Distributed Transactions in a Mobile Computing
System,” Proc. IEEE Workshop Mobile Computing Systems and
Application, June 1994.

[22] B.. Yao, K.F. Ssu, and W.K. Fuchs, “Message Logging in Mobile
Computing,” Proc. IEEE Fault-Tolerant Computing Symp. pp. 294-
301, June 1999.

[23] Y.-B. Lin and I. Chlamtac, Wireless and Mobile Network Architec-
tures. Wiley Computer Publishing, 2001.

[24] Personal communication and Sprint PCS communication
document, 2001.

[25] R. Barga and D. Lomet, “Phoenix: Making Applications Robust
(demo paper),” Proc. ACM SIGMOD Conf., June 1999.

[26] D. Lomet and G. Weikum, “Efficient Transparent Application
Recovery In Client-Server Information Systems,” Proc. ACM
SIGMOD, June 1998.

190 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004

Fig. 5. Cost of failure with handoff.

[27] D.B. Lomet, “Application Recovery: Advances Toward an Elusive
Goal,” Proc. Workshop High Performance Transaction Systems (HPTS
’97), Sept. 1997.

[28] C.P. Martin and K. Ramamritham, “Recovery Guarentees in
Mobile Systems,” Proc. Int’l Workshop Data Eng. for Wireless and
Mobile Access, pp. 1-7, Aug. 1999.

[29] G. Samaras, K. Karenos, P.K. Chrysanthis, and E. Pitoura, “VISMA
Extendible Mobile-Agent Based Services for the Materialization
and Maintenance of Personalized and Sharable Web Views,” Proc.
14th Int’l Workshop Database and Expert Systems Applications (Dexa
’03), pp. 974-979, 2003.

[30] S. Weissman Lanzac and P.K. Chrysanthis, “Personalized In-
formation Gatherinf for Mobile Database Clients,” Proc. Ann.
Symp. Applied Computing, pp. 49-56, Mar. 2002.

Sashidhar Gadiraju received the BE degree
from the Osmania University, Hyderabad, India,
and the MS degree from the University of
Missouri, Kansas City, both in computer science.
He worked as a programmer at Children’s Mercy
Hospital and Clinics from 2002 to 2003. His
research interests include mobile computing,
database systems, computer networking, and
bioinformatics.

Vijay Kumar is a professor of computer science
at the University of Missouri at Kansas City. His
research areas are mobile computing, sensor
technology, data warehousing, workflow, Web,
and computational biology. He has published
papers in the ACM Transactions on Database
Systems, the IEEE Transactions on Knowledge
and Data Engineering, the IEEE Transactions on
Computers, the IEEE Transactions on Mobile
Computing, Information Systems, Data and

Knowledge Engineering, etc., and conferences such as ICDE, COMAD,
COMPSAC, etc. He has served as program chair, conference chair, and
as a program committee member on a number of national and
international conferences and workshops. He has written three books
on database systems. He is a member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GADIRAJU AND KUMAR: RECOVERY IN THE MOBILE WIRELESS ENVIRONMENT USING MOBILE AGENTS 191

