
TOWARDS A SCALABLE HYBRID SPARSE SOLVER �

ESMOND G. NG y
AND PADMA RAGHAVAN z

Abstract. Consider the solution of very large, sparse linear systems. The most popular
techniques can be broadly classi�ed as either \direct" or \iterative." When the sparse matrix
is symmetric and positive de�nite, direct methods use Cholesky factorization while iterative
methods rely on Conjugate Gradients. Our goal is to develop a scalable and memory-e�cient
hybrid of the two methods that can be implemented with high-e�ciency on both serial and
parallel computers and be suitable for a wide-range of problems. We discuss our overall design
with emphasis on performance and scalability issues and report on progress to date.

Key words. sparse matrix factorization, conjugate gradient, incomplete Cholesky, precon-
ditioners

AMS(MOS) subject classi�cations. 65F05, 65F50.

1. Introduction. The e�cient solution of large, sparse linear systems on
high-performance multiprocessors continues to be the subject of on-going research.
There is no single method that is consistently superior across application domains

and computing platforms. For example, for linear systems associated with elliptic
partial di�erential equations, domain decomposition methods provide a natural
and e�cient parallel formulation [4, 18]. However, domain decomposition relies
on close tie-ins to the discretization of partial di�erential equation and mesh for-

mulation. Consequently, it may not be suitable as a general-purpose \black-box"
sparse solver. Both Krylov subspace (KSP) solvers [2, 5, 10, 24, 52] and direct
solvers [7, 11] can be used as \black-box" solvers. But, once again, both classes of
methods have serious limitations. Direct solvers are not memory scalable; memory

requirement typically grows nonlinearly because some of the zero entries will be-
come nonzero. On the other hand, KSP iterative solvers are memory scalable and
are easily parallelized, but their convergence can be very slow or fail altogether
depending on the spectral properties of the sparse matrix. We contend that ro-

bust, scalable sparse solvers suitable for a wide variety of large-scale applications
on high-performance computers require a spectrum of methods that range from
pure iterative to pure direct methods. We are developing such parallel \exible,"

hybrid solvers, which are based on KSP with incomplete matrix factorization as
preconditioners. Our goal is to combine the inherent scalability and parallelism of
KSP iterative solvers with robust preconditioners obtained using data-structures,

� Work was supported in part by the Defense Advanced Research Projects Agency under
contracts DAAL03-91-C-0047, ERD9501310, and Xerox-MP002315, and by the Applied Math-
ematical Sciences Research Program, O�ce of Energy Research, U.S. Department of Energy
under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corp., and by the
National Science Foundation under grants NSF-ACI-97-21361 and NSF-CCR-98-18334.

y NERSC Division, Lawrence Berkeley National Laboratory One Cyclotron Road, MS 50F,
Berkeley, CA 94720 (EGNg@lbl.gov).

z 107 Ayres Hall, Department of Computer Science The University of Tennessee, Knoxville,
TN 37996-1301 (padma@cs.utk.edu).

1

algorithms, and graph-techniques from sparse direct solvers. Our solvers will be

implemented using the message-passing model and MPI [9], and will be portable
across high-performance multiprocessors and networks of workstations.

The designs and implementations of KSP solvers as well as direct solvers are
simpler and better understood for linear systems in which the coe�cient matrix is

symmetric and positive de�nite. Our design for a scalable hybrid solver focuses on
this class of matrices. For symmetric and positive de�nite matrices, the conjugate
gradient method is typically the most appropriate and the most reliable iterative
method. It is well understood and several implementations are available [41, 54].

One of the most popular and broadly-applicable preconditioners is obtained from
incomplete Cholesky (IC) factorization [5, 17, 34, 36]. If A = LLT is the Cholesky
factorization, then an incomplete Cholesky factor L̂ of A is obtained by discarding

some or all of the �ll in L. The main issue is that of developing an IC implemen-
tation that can be e�cient for a wide spectrum of preconditioning requirements,
i.e., from an L̂ with no more nonzero entries than in A to one with a substantial
fraction of the �ll in L. On parallel platforms another critical issue is that of

e�ciently applying the preconditioner. At each iteration, this amounts to using
parallel substitution schemes to solve systems of the form L̂y = b and L̂Tx = y.
Due to the large latency of communication on multiprocessors triangular solution
is typically very ine�cient. We plan to develop latency tolerant schemes to apply

the preconditioner L̂ using techniques that have proved successful for repeated
triangular solution using L.

The purpose of this paper is to describe our goals, the key performance and
scalability issues, and to report on progress to date. In particular, Section 2

provides background and Section 3 concerns e�cient IC implementations. Section 4
concerns exploiting parallelism for both constructing and applying the incomplete
Cholesky preconditioner. Section 5 contains some concluding remarks.

2. Background. We begin with an overview of sparse Cholesky factorization
followed by a description of the two main types of incomplete Cholesky factoriza-
tions.

Sparse Cholesky. As mentioned earlier, Cholesky factorization causes some
zero entries in A to �ll in and become nonzero in L. The amount of �ll in L depends
on the ordering (i.e., numbering) of rows/columns ofA. Consequently, the �rst step
in sparse Cholesky factorization is that of ordering the matrix to reduce �ll. The

second step is that of symbolic factorization, which determines the zero{nonzero
structure of L. Knowing the structure of L prior to numerical factorization will
allow an e�cient and compact data structure to be set up for storing the nonzero

entries in L. A variety of e�cient, graph-theoretic algorithms exist for the ordering
step [1, 13, 14, 31, 40] and the symbolic factorization steps [11, 15, 32]. The
third and the fourth steps are, respectively, numeric factorization and numerical
triangular solution using the precomputed data-structure.

Assume that A has been appropriately ordered to reduce �ll, and consider
the zero{nonzero structure of the corresponding Cholesky factor L. The columns

2

of L often can be grouped into \supernodes." Each supernode contains a set of

consecutive columns that have essentially the same zero{nonzero structure. More
speci�cally, if a supernode contains columns i, i+1, : : :, j, then the lower triangular
submatrix of L induced by these columns and the corresponding rows is dense.
Moreover, within these columns, the entries in a row numbered larger than j are

either all nonzero or all zero. In other words, all the nonzero entries from the
columns in a supernode form a dense lower trapezoidal submatrix. Consequently,
the zero{nonzero structure of all the columns of a supernode can be represented by
that of, for example, the �rst column of the supernode. Thus, a supernode partition

allows a very compact representation of the zero{nonzero structure of L. Another
important advantage of a supernode partition is that the dense block structure
can be exploited so that sparse Cholesky factorization can be expressed in terms

of dense matrix operations; the dense matrices correspond to the dense blocks
induced by the supernodes. This allows the use of cache-e�cient computational
kernels as in BLAS [27], and it reduces the amount of indirect addressing. The
reader is referred to [39] for further details on use of dense matrix kernels in the

implementation of sparse Cholesky factorization. A supernode partition can be
computed very e�ciently from the zero{nonzero structure of A during the symbolic
factorization step [15, 30]. An example of a \supernode partition" of a matrix A

is shown in Figure 1. The matrix corresponds to the model �ve-point 7� 7 �nite-

di�erence grid. We use this problem as an illustrative example in later sections as
well.

Incomplete Cholesky. Two popular schemes for computing incomplete
Cholesky preconditioners are: the level-of-�ll approach [35] and the drop-threshold

approach [37, 56].
The level-of-�ll method (henceforth, ICL) is best described using the notion of

�ll-paths in the graph model of sparse Cholesky factorization [42, 47]. The reader

is referred to the book by George and Liu for graph terminology and basic concepts
in sparse Cholesky factorization [11]. The undirected graph of A, denoted byG(A),
has vertices numbered 1; 2; : : : ; n corresponding to the rows/columns of A. There
is an edge in G(A) joining vertices i and j (i 6= j) if and only if Aij 6= 0. A path

in G(A) from vertex i to vertex j is called a �ll-path if all intermediate vertices on
the path are numbered less than min(i; j). Using an inductive argument, it is easy
to show that an element Lij (i > j) is nonzero if and only if there is a �ll-path
between vertices i and j in G(A) [48]. De�ne the length of a �ll-path to be the

number of edges on the path. Note that �ll-paths are not unique; for each Lij 6= 0
there may be more than one �ll-path between vertices i and j in G(A).

For ICL using k levels of �ll, we permit o�-diagonal entry L̂ij 6= 0 if and only
if there is at least one �ll-path in G(A) connecting vertices i and j with length less

than or equal to k+1. Note then that the zero{nonzero structure of L̂ using level-
of-�ll is well de�ned given an integer k � 0 and an ordering of the columns/rows
(hence a numbering of the vertices of G(A)). Thus, the zero{nonzero structure

of L̂ can be determined using \symbolic" techniques independent of the actual

3

�

�

���

�

�

���

� �� ��

��������

�� �����

�

�

���

�

�

���

� �� ��

��������

�� �����

�� � ��� � �� ��

�� �� � ��� �� ��� ���

�� � �� � ��� � ���

�

�

���

�

�

���

� �� ��

��������

�� �����

�

�

���

�

�

���

� �� ��

��������

�� �����

�� � ��� � �� ��

�� �� � ��� �� ��� ���

�� � �� � ��� � ���

� �� � � � � �� � � � � � � ��

���� � � � � ���� � � � � � ���

��� � � � �� �� � � � �� � ���

�� � � � � � � � � � �� �� � � �� � � � ��� � � ���

� �� � � � �� � � � � ��� � � � ���

���� � � � � � ��� � � � � � � � � � ���

��� � � � � � �� � � � � � � � � � � ���49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1 2 3 4
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6

7

8
91
0
1
2
3

4

5

6
7
8
92
0
1

2

3
4
5
6
7
8

9

3
0

1

Fig. 1. Supernodes in a matrix de�ned on a 7� 7 nine-point grid ordered by nested dis-
section. (Each � and � represents a nonzero in A and a �ll in L, respectively. Numbers
over diagonal entries label supernodes.)

4

numerical values. With a predetermined zero{nonzero structure of L̂ available,
one computes, retains, and manipulates only the nonzero entries in the incomplete

Cholesky factor. However, as we will see later, the complexity of the \incomplete
symbolic factorization" is proportional to the number of oating-point operations
required to compute the incomplete Cholesky factorization numerically. Unlike the
complete Cholesky factorization, the incomplete Cholesky factor may not possess

any supernodal structure.
The drop-threshold approach is a numeric approach; henceforth we refer to

it as ICT. Consider a left-looking or inner-product Cholesky factorization. The
current column is computed as it is in complete Cholesky factorization, using

updates from earlier columns of the factor and �nally scaling by the diagonal
element. However, nonzero entries in the computed column that have magnitudes
smaller than a given threshold are discarded [37, 56]. There are several ways to
de�ne and use the threshold. For example, the threshold can be simply a non-

negative value or a non-negative factor relative to some measure of the size of A
(such as the norm of A or maxi;j jAijj). Other restrictions can also be imposed,
such as discarding from each column all but some m nonzero entries satisfying the

threshold condition [51], where m is typically a small constant such as �ve or ten.

3. An E�cient IC Implementation. We begin with some comments on
the advantages and disadvantages of the two types of incomplete Cholesky factor-

ization in terms of (1) e�ciency of the implementation, and (2) e�ectiveness of the
preconditioning. We then provide an overview of our cache-e�cient implementa-
tion and discuss its performance.

Computing an incomplete Cholesky factor using the drop-tolerance approach

(ICT) is similar to performing the numerical factorization step in complete Cholesky.
The only di�erence is that nonzero entries with small magnitude are discarded by
applying a threshold condition. It therefore seems natural that the ordering step

for limiting �ll is essential for ICT, as it is for complete factorization. However,
unlike complete sparse Cholesky factorization, the zero{nonzero structure of L̂ is
revealed only during numeric factorization. Hence, there is no direct counterpart
to the symbolic factorization step for ICT.

At �rst glance, computing an incomplete Cholesky factorization using level-
of-�ll (ICL) and computing the sparse complete Cholesky factorization appear to
be remarkably similar as well. In both cases, after the ordering step, the zero{
nonzero structure of the factor can be determined using symbolic techniques so

that a compact data structure can be set up for storing the nonzero entries. Next
we can perform numerical factorization using the predetermined data structure.
However, a major di�erence between ICL and sparse complete Cholesky factor-
ization lies in the cost of symbolic factorization. For sparse complete Cholesky

factorization, the symbolic factorization step is typically very e�cient and takes
relatively little time. This is because it can exploit the supernodal structure [32],
which can be computed very e�ciently from the structure of A. On the other

hand, the columns of an ICL generally do not share common sparsity structure

5

and hence do not possess any supernodal structure. That is, the technology for

identifying and exploiting supernodes in L will not applied directly to L̂. Thus
a symbolic scheme for computing the zero{nonzero structure of L̂ in ICL must
maintain the lengths of the shortest �ll-paths, and must essentially simulate nu-
merical incomplete factorization. Consequently the symbolic phase has the same

time complexity as numeric incomplete factorization.
When comparing the quality of preconditioning provided by ICL with that

provided by ICT, much depends on the nature of the sparse matrices and in par-
ticular on the applications where the matrices come from. In our earlier work we

evaluated the performance of ICL and ICT on the set of sparse matrices described
in Section 5 [16]. We concluded that ICT preconditioners generally are more robust
and have a wider range of applicability than ICL preconditioners. As a result our

recent work has focused on e�cient implementations of ICT. In future, we plan
to revisit ICL with the goal of developing a suitable approximation which can be
used in a preprocessing step followed by our ICT scheme.

Based on our experience with sparse complete Cholesky factorization, imple-

menting ICT in a column-by-column manner will not be cache e�cient on modern
computers; a blocked scheme is essential for reducing indirect indexing and making
good use of the memory hierarchy. We have therefore designed and implemented
a blocked version of ICT, which exploits technology developed for sparse direct

solvers. In particular, it attempts to take advantages of dense matrix kernels. Like
complete sparse Cholesky factorization, we perform the ordering step to limit �ll.
However, as discussed earlier, there is no direct counterpart to the symbolic fac-
torization step. Since our goal is to develop a blocked ICT algorithm that can be

implemented using dense matrix kernels, we decided to use the supernodal struc-
ture in a complete sparse Cholesky factor as a means to produce the blocks that
are needed in ICT. Thus, prior to computing the ICT we compute the supernodal

partitioning, as well as perform the complete symbolic factorization (for L).
The numerical phase of our ICT scheme is left-looking, and the computation is

organized in terms of blocks of columns that have essentially identical zero{nonzero
structure. The block structure in L̂ is derived from the supernodal structure in

the complete Cholesky factor L. The strategy for dropping nonzero entries is
designed so that a block-column structure is preserved in L̂. We provide further
details below. First, note that dropping nonzero elements in individual columns
(as described in the previous paragraph) will not in general result in blocks of

columns with essentially the same sparsity structure (as in a supernode). Few
columns, if any, could be combined to form nontrivial supernodes. To deal with
this problem, we modify the drop-threshold strategy to use not only the magnitude
of the nonzero entries but also the supernodal structure of the complete Cholesky

factor L. Consider a set of columns of L̂ corresponding to a supernode of L. In
our blocked ICT, we either drop or retain an entire row of nonzero entries (within
the set of columns). Then the entire row in the set of columns is retained even

if only one element does not satisfy the drop-threshold condition. This blocked

6

version of the drop-threshold criterion is obviously more restrictive than the non-

blocked version. In particular, it is highly undesirable to apply the drop-threshold
criterion to a large supernode (which can be as large as the square-root of the
matrix dimension for many 2-dimensional �nite element matrices) since it will
be more unlikely for all the nonzero entries to satisfy the dropping criterion. To

alleviate this problem, we subdivide each supernode into blocks of either 1, 2, 4,
or 8 columns and organize the computation around these blocks. (Thus, a block-
size of 1 is equivalent to a non-blocked column-oriented ICT.) We have found that
block sizes greater than or equal to 16 typically lead to more �ll, and hence more

operations, o�setting the reduction in run-time from cache-e�ciency.
Our implementation of blocked ICT requires storage for L̂, storage for the

zero{nonzero structure of L̂ (that exploits the block structure), and storage for the

temporary array in which new columns of L̂ are computed. Our implementation
can use a variety of drop threshold criteria as well as allow other features such as
diagonal-modi�cation, etc.

The detailed performance of our blocked ICT code is described in [38]. We

summarize some of the highlights in this report. Our test suite consisted of 18 ma-
trices from three di�erent application areas. The �rst six are bcsstkmatrices that
arise from �nite-element methods in structural mechanics (see the Harwell-Boeing
collection [6]). The next six spa-dis matrices are from visible-surface interpo-

lation in a regularization framework using thin-plate and membrane splines [19].
The last six xerox matrices are from a materials science simulation used at Xerox
Corporation. We discuss performance relative to a direct solver using Cholesky
factorization. Thus, the performance of the direct solver (either time or number

of nonzero entries) is set at 1; the hybrid is better if the time for ICTCG or the
size of L̂ is smaller than 1. We consider best cases over a range of threshold val-
ues; the best cases are either (1) least total time instances (ICTCG) or (2) least

�ll instances. Table 1 contains geometric means for the best-case instances. On
average, with block-size 8 (block size 1), our least-storage ICTCG requires 51%
(137%) more execution time than the direct solver with 26% (15%) the storage
requirement. The largest block-size gives the best ICTCG time performance, re-

quiring on average approximately the same time as direct solution but with 50%
fewer nonzero entries. The unblocked code requires on average 87% more time
than direct solution with 72% fewer nonzero entries.

On average our hybrid results in performance improvement, but in some in-

stances a signi�cant amount of the �ll in L is required for convergence. In these
instances, a direct method (given su�cient memory) is typically faster because it
can make better use of the cache and does not have the overheads of threshold-
ing. Now unblocked ICTCG is noticeably slower than blocked ICTCG; for such

problems it may be useful to consider even larger block-sizes in combination with
adaptations of the block-threshold condition. Figure 2 shows in detail the relative
performance of ICT and ICTCG for two hard-to-precondition problems from the

test-suite.

7

Table 1

Average (relative) values for best instances with respect to jL̂j and ICTCG time (MMD
orderings).

blocksizes ! 1 2 4 8 1 2 4 8

Geometric Means of Relative Performance Measures

min. relative nonz. relative ICTCG time
bcsstk 0.24 0.29 0.32 0.36 3.17 2.58 2.76 2.60
spadis 0.72 0.77 0.80 0.82 3.64 2.48 2.05 1.82
xerox 0.02 0.04 0.05 0.06 1.16 0.70 0.73 0.73

overall 0.15 0.20 0.23 0.26 2.37 1.65 1.60 1.51
min. relative ICTCG time relative nonzeroes

bcsstk 2.68 2.08 1.76 1.59 0.40 0.49 0.63 0.75
spadis 3.63 2.37 1.79 1.55 0.73 0.83 0.90 0.94

xerox 0.68 0.54 0.47 0.46 0.08 0.10 0.14 0.18
overall 1.87 1.38 1.14 1.04 0.28 0.34 0.43 0.50

4. Parallel Implementation Issues for Incomplete Cholesky Factor-

ization. On multiprocessor systems, an implementation of incomplete Cholesky

factorization (ICT) should be cache-e�cient on each processor as well as utilize
the large-grain parallelism from sparsity. Perhaps, a more important issue is that
of e�ectively applying the incomplete factor as a preconditioner.

To design an e�cient parallel ICT algorithm we again exploit technology that

has been developed for parallel complete sparse Cholesky solvers. Recent work by
us and other researchers shows that scalable, parallel implementations of sparse
Cholesky factorization are possible via the development of new schemes that use
sophisticated distributed dense matrix kernels [3, 20, 21, 22, 25, 26, 33, 44, 46,

45, 49, 50, 53, 55, 57]. The resulting codes are typically more complicated than a
parallel implementation of the conjugate gradient algorithm.

We describe our strategy for parallel implementation in terms of a \compute-

tree." Without loss of generality, assume the compute-tree is a complete binary
tree with as many leaves as the total number of processors. Columns of the matrix
A are assigned to the nodes in the compute-tree such that those associated with
a given node will depend only on the columns associated with the descendants of

this node. In terms of computing ICT, each leaf node now represents computations
on a subset of columns of A that are independent of the subsets assigned to the
other leaf nodes. More generally, if two nodes in the compute-tree are at the same
level, then the two subsets of columns assigned to these two nodes are independent

of each other. Such a design will reduce the communication requirements. By the
same token, the columns in a supernode (or a block within a supernode, if the
supernode is further divided) should be assigned to a single node in the compute-
tree. At levels other than the leaves, each node of the compute-tree represents

processors cooperating to compute the columns associated with this node. The

8

0.6 0.7 0.8 0.9 1 1.1
0

1

2

3

4

5

6

7

8

(1)

(2)

(4)

(8)

bcssstk25

relative nonzeroes

rel
ativ

e I
CT

 tim
e

0.8 0.9 1 1.1
0

1

2

3

4

5

6

7

8

(1)

(2)

(4)
(8)

dis120

relative nonzeroes

rel
ativ

e I
CT

 tim
e

0.6 0.7 0.8 0.9 1 1.1
0

1

2

3

4

5

6

7

8

(1)
(2)

(4)

(8)

bcssstk25

relative nonzeroes

rel
ativ

e I
CT

CG
 tim

e

0.8 0.9 1 1.1
0

1

2

3

4

5

6

7

8

(1)

(2)

(4)
(8)

dis120

relative nonzeroes

rel
ativ

e I
CT

CG
 tim

e

Fig. 2. Performance of ICT and ICTCG for block-sizes 1,2,4 and 8.

processors associated with the node are exactly those processors associated with
the leaves of the subtree rooted at this node. Thus, all processors participate at
the root node of the compute-tree, while at one level below, two disjoint processor

groups of half the total size work on each node and so on. This approach is similar
to the \subtree-to-subcube" idea in [12].

In broad terms this compute-tree can represent two di�erent parallel sparse
Cholesky schemes. As explained earlier, columns in a supernode form a dense lower

trapezoidal submatrix. Consider a column k associated with the lower trapezoidal
submatrix at a compute-tree node a. Such a column typically needs to be updated
by suitable multiples of columns associated with several nodes in the subtree rooted
at a. The manner in which this data-dependency is handled results in either a

column-oriented approach or a multifrontal scheme.
In a column-oriented approach the computation of column k reects the data-

9

dependency on several columns in the subtree rooted at a. First, columns in the

trapezoidal matrix are block-wrap mapped to the processors assigned to node a.
For a block-size of �, the �rst � columns are assigned to the �rst processor, the
next � columns to the second processor and so on. Updates to column k from
earlier columns in the subtree rooted at a (and hence on several processors) are

collected in a \fan-in" manner. Each processor computes and accumulates updates
to column k from all columns it owns; it then sends this (in the form of a vector) to
the processor assigned column k. Hence updates to column k fan-in from processors
in the subtree at a. This is considered the best form of implementing a parallel

column-oriented sparse Cholesky factorization [3]. Figure 3 relates the compute-
tree to the column-oriented factorization scheme for a matrix corresponding to
the 7 � 7 model �nite-di�erence grid. The same approach can be applied to a

left-looking implementation of ICT.

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����������������

������������
������������
������������
������������

������������
������������
������������
������������
������������

40-42(p0..p3)

p0 p3p1 p2

43-49

43-49

19-21

43-49

(p0..p1) (p2..p3)

(p0..p1) (p2..p3)

(p0..p3)

p1 p2 p3p0

Fig. 3. The compute-tree for 4 processors for a sparse matrix associated with a 7X7

grid is shown on the left; in a column oriented fan-in scheme this compute-tree represents
operations on blocks of columns as shown on the right. Computing a column at the root,
typically involves updates using columns associated several nodes in the subtree below the
root.

In a multifrontal scheme the data-dependency is modi�ed at the expense of

extra storage. Each compute-node is now associated with (i) a dense lower trape-
zoidal submatrix corresponding to columns in the supernode and (ii) a triangular
matrix to hold updates from the columns in the supernode (lower trapezoidal
submatrix) to columns in supernodes belonging to the ancestors. Now the two

submatrices can be combined to give one larger lower triangular matrix at each
compute node. Figure 4 relates the compute-tree to a multifrontal scheme for a
matrix corresponding to the 7 � 7 grid. Now consider computations for columns

10

in the supernode associated with compute-node a. First the update portion of the

matrices at the children nodes of a are assembled into the matrix associated with
a. Next the columns in the supernode at a are processed by performing dense-
distributed parallel Cholesky. Finally, updates from the columns formed are accu-
mulated into the �nal triangular portion to be used at later ancestor nodes. Hence

in a multifrontal scheme, updates from earlier columns are propagated through a
stack of update matrices. This allows computation at a node to more closely match
dense-distributed Cholesky. Now each dense triangular matrix associated with a
compute-node could be distributed to the processors involved in several ways. The

matrix could be wrap-mapped using small blocks of columns or distributed in a
block-cyclic manner; the latter reduces the volume of communication and typically
leads to better performance [20].

(p0..p3)

(p0..p1) (p2..p3)

p0 p1 p2 p3

40-42(p0..p3)

p0 p3p1 p2

43-49

19-21

43-49

(p0..p1) (p2..p3)

43-49

Fig. 4. The compute-tree for 4 processors for a sparse matrix associated with a 7X7 grid
is shown on the left; in a multifrontal scheme this compute-tree represents operations on
triangular dense matrices as shown on the right. Computations at the root involve assem-
bling the shaded submatrices at the child nodes and then performing a dense- distributed
Cholesky decomposition.

It is somewhat tricky to implement ICT using the multifrontal approach. The
main issue is managing the stack; i.e., what updates should be accumulated for
later use at ancestor supernodes. Dropping elements a�ects the matrix shape; the

matrix will no longer be dense. Hence one of the advantages of the multifrontal
scheme (dealing with dense matrices) will be lost. Furthermore the stack storage
can be substantial, especially for sparse matrices associated with three-dimensional
grids. At this stage we are experimenting with a serial implementation of a limited-

stack multifrontal ICT to see if this approach could be made feasible.
A parallelization of a column-oriented ICT seems more natural. We plan

11

to implement a blocked fan-in ICT. If the supernode involves n columns on p

processors, then we wrap-map the columns in blocks of sizes of 1, 2, 4, or 8. The
processor owning a block would receive and apply updates from other processors
before applying the block-threshold condition.

Let us focus now on the issue of applying an ICT as a preconditioner in parallel

for conjugate gradient iterations. For direct methods, only two triangular systems
have to be solved to obtain the solution for each right-hand side vector. It is
well known, however, that sparse triangular systems are di�cult to parallelize
well because of data dependency and because of the relatively small number of

operations. The e�ect is more pronounced in the case of parallel ICCG since
repeated parallel solutions of sparse triangular systems will typically be required
to apply the incomplete Cholesky factor as a preconditioner. This may be true

even for a single right-hand side vector. Thus, triangular solution can become a
serious bottleneck in parallel ICCG. The triangular solutions in the local-phase
can be performed as e�ciently as in the serial case. But triangular solutions in the
distributed-phase may cause signi�cant slowdown.

On message-passing multiprocessor systems, multiplying a vector by a matrix
can perform more than ten times faster than solving a triangular system of the
same order that uses the most sophisticated substitution scheme [23]. We thus
propose to improve the performance of triangular solutions in the distributed-phase

by new innovative methods that replace a triangular solution by a matrix-vector
multiplication.

40-42(p0..p3)

p0 p3p1 p2

phase

Local
phase

Distributed

43-49

43-49

19-21

43-49

(p0..p1) (p2..p3)

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 291

Structure of L

Fig. 5. The structure of L for a 7X7 2-dimensional grid and its associated compute-tree
for 4 processors; shaded triangular portions of supernodal submatrices in the distributed
phase are a�ected by Selective Inversion for speeding up solves.

Figure 5 shows the 4-processor implementation of the solution step for a sparse

12

matrix corresponding a 7� 7 model �nite-di�erence grid. The triangular solutions

involve the shaded parts of supernodal matrices. When the supernodal submatrix
at a node in the distributed phase is relatively dense, we can use our \selective
inversion" (SI) scheme [46]. Selective inversion inverts the dense diagonal block
in each dense submatrix (corresponding to a supernode), which is then used to

replace substitution by distributed matrix-vector multiplication. As shown in [46],
the scheme leads to ideal scalability and e�ciency at a slight overhead of comput-
ing the inversion. The inversion overhead for complete sparse Cholesky factor is
limited to under 6% of the cost of factorization for representative sparse matrices

corresponding to 2- and 3-dimensional grids. We expect the overhead for inversion
with ICT to behave similarly.

Recall than in parallel fan-in ICT, we will drop rows within column blocks

based on a threshold condition. Consequently, the resulting supernode submatrix
could be relatively sparse. Now applying SI to the top triangular part would make
it dense. Hence, we plan to adapt SI by limiting inversion to smaller blocks within
the supernode. Consider a node with n columns to be computed using a subset

of processors of size p. A sequence of diagonal blocks of size �p are inverted (�
is the block-size of 1,2,4 or 8.) This may cause a small amount of extra �ll than
in the incomplete factor. A triangular solution is performed in n=(�p) steps; each
step involves matrix-vector multiplication with the inverse to compute values of

the solution. These values are in turn used to update the solution vector for the
the next block. With a suitable data-assignment to processors, the matrix-vector
multiplication is done with no communication and then a vector of the update
is accumulated for the next step. This accumulation can be done using clever

pipelining techniques such as those in [8, 28, 29]. We believe this will lead to
greater data parallelism compared to distributed substitution while decreasing the
latency related cost signi�cantly. This scheme is illustrated in Figure 6.

Figure 7 shows the performance SI for a sequence of �nite element matri-
ces de�ned on regular meshes. The matrix dimensions have been chosen so that
the amount of work in computing the triangular solution per processor is roughly
constant. Here, we are showing the performance of solving a linear system us-

ing the complete sparse Cholesky factorization. The data shown are the ratios
tSI=tstd. Here tstd is the time to compute the factorization and to perform trian-
gular solution(s) using the standard approach, while tSI is the time to compute
the factorization, the selective inverse, and to perform triangular solution(s) using

the selective inverse. The top curve corresponds to the case when no right-hand
side was provided. The remaining curves correspond to the cases when the num-
ber of right-hand sides were 1, 2, 4, and 8, respectively. The �gure con�rms that
indeed there can be signi�cant savings in time when selective inverse is employed

in computing the solutions. The savings become more pronounced as the number
of right-hand sides increase.

Based on the results from complete sparse Cholesky factorization, we conjec-

ture that triangular solutions with ideal parallelism in the local-phase followed by

13

=

(a) (b) (c) (d)

Fig. 6. The modi�ed SI scheme for a supernodal matrix; (a) shows the scheme with
complete factorization, the entire matrix is dense and the inverted portion is shown in a
darrker shade, (b) shows the sparser supernodal matrix in ICT, (c) shows that SI applied
as is would cause the triangular part to become dense, and (d) shows our adaptation
using the inversion of a sequence of smaller triangular blocks.

a suitable low-overhead substitution replacement scheme for the distributed-phase

will have the desired result, namely, a scalable, high-performance method to ap-
ply ICT factors over a wide range of �ll-in to accelerate parallel CG. Signi�cant
implementation and experimentation is required before we can test our conjecture.

5. Conclusions. We have outlined in this paper our design of a scalable
sparse solver, which can be considered as a hybrid of a direct method (using
Cholesky factorization) and an iterative method (using preconditioned conjugate

gradients). The goal is to develop a robust and high-performance solver that can
be used in a wide variety of applications requiring the range from pure iterative to
pure direct methods. The key is to leverage technology that has been developed
for sparse direct methods.

Our results on the serial implementation of blocked ICTCG and the parallel
implementation of selective inversion scheme for sparse triangular solution are
encouraging. We are currently in the process of completing the implementation of

our parallel ICTCG using the strategies discussed in this paper. We will report
the results elsewhere when they become available.

REFERENCES

[1] P. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886{905.

14

0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

log(p), p = # of processors

ra
ti
o

s
 o

f
ti
m

e
s

fact
fact + 1 soln
fact + 2 soln
fact + 4 soln
fact + 8 soln

Fig. 7. Performance of selective inversion for di�erent number of right-hand sides.
The matrices are �nite element matrices de�ned on regular meshes. The dimensions of
the matrices were chosen so that the amount of work per processor for each triangular
solution is roughly constant. The ratios are tSI=tstd. Here tstd is the time to compute the
factorization and to perform triangular solution(s) using the standard approach, while tSI
is the time to compute the factorization, the selective inverse, and to perform triangular
solution(s) using the selective inverse.

15

[2] S. F. Ashby and M. K. Seager, A proposed standard for iterative solvers, Tech. Rep.
UCRL-102860, Numerical Mathematics Group, Computing and Mathematics Division,
Lawrence Livermore Lab., January 1990.

[3] C. Ashcraft, S. Eisenstat, J. W.-H. Liu, B. Peyton, and A. Sherman, A compute-
ahead implementation of the fan-in sparse distributed factorization scheme, Tech. Rep.
ORNL/TM-11496, Oak Ridge National Laboratory, Oak Ridge, TN, 1990.

[4] T. F. Chan and B. Smith, Domain decomposition and multigrid algorithms for elliptic
problems on unstructured meshes, Tech. Rep. CAM 93{42, University of California at
Los Angeles, 1993.

[5] P. Concus, G. Golub, and D. O'Leary, A generalized conjugate gradient method for
the numerical solution of elliptic partial di�erential equations, in Sparse Matrix Com-
putations, J. R. Bunch and D. J. Rose, eds., Academic Press, 1976, pp. 309{332.

[6] I. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1{14.

[7] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,
Clarendon Press, Oxford, 1986.

[8] S. C. Eisenstat, M. T. Heath, C. S. Henkel, and C. H. Romine, Modi�ed cyclic
algorithms for solving triangular systems on distributed-memory multiprocessors, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 589{600.

[9] M. P. I. Forum, MPI: A message -passing interface standard, Tech. Rep. CS-94-230,
Computer Science Dept., Univ. of Tennessee, Knoxville, April 1994.

[10] R. Freund and N. Nachtigal, QMR: A quasi-minimum residual method for non-
Hermitian linear systems, Numerische Mathematik, 60 (1991), pp. 315{339.

[11] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive De�nite
Systems, Prentice-Hall Inc., Englewood Cli�s, New Jersey, 1981.

[12] A. George, J. W.-H. Liu, and E. G.-Y. Ng, Communication results for parallel sparse
Cholesky factorization on a hypercube, Parallel Computing, 10 (1989), pp. 287{298.

[13] J. A. George, Nested dissection of a regular �nite element mesh, SIAM J. Numer. Anal.,
10 (1973), pp. 345{363.

[14] J. A. George and J. W.-H. Liu, An automatic nested dissection algorithm for irregular
�nite element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053{1069.

[15] J. Gilbert, E. Ng, and B. Peyton, An e�cient algorithm to compute row and col-
umn counts for sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 1075{1091.

[16] J. Gilbert, E. Ng, B. Peyton, and P. Raghavan, Performance of ICCG, Tech. Rep.
UTK-CS-97-381, Department of Computer Science, University of Tennessee, Knoxville,
TN 37996-1301, 1997.

[17] G. Golub and C. V. Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1996.

[18] W. Gropp and D. Keyes, Complexity of parallel implementation of domain decomposition
techniques for elliptic partial di�erential equations, SIAM J. Sci. Comput., 9 (1988),
pp. 312{326.

[19] B. Guo and J. Liu, Direct visible surface interpolation, tech. rep., York University, De-
partment of Computer Science, North York, Ontario, Canada, M3J 1P3, 1997.

[20] A. Gupta and V. Kumar, A scalable parallel algorithm for sparse matrix factorization,
Tech. Rep. 94-19, Department of Computer Science, University of Minnesota, Min-
neapolis, MN, 1994. A short version submitted for Supercomputing '94.

[21] A. Gupta, E. Rothberg, E. Ng, and B. W. Peyton, Parallel sparse Cholesky fac-
torization algorithms for shared-memory mutliprocessor systems, in Advances in Com-
puter Methods for Partial Di�erential Equations|VII, R. Vichnevetsky, D. Knight, and
G. Richter, eds., International Association for Mathematics and Computers in Simula-
tion (IMACS), 1992, pp. 622{628.

[22] T. R. Harrold, A portable scalable implementation of multifrontal cholesky on distributed
memory machines, tech. rep., Dept. of Computer Science, Univ. of Tennessee, July 1997.

16

[23] M. Heath and P. Raghavan, Parallel sparse triangular solution, in IMA Volumes in
Mathematics and its Applications, R. Gulliver, M. Heath, R. Schreiber, and P. Bjorstad,
eds., vol. 105, Springer-Verlag, 1998, pp. 289{306.

[24] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear sys-
tems, J. Res. Nat. Bur. Stand., 49 (1952), pp. 409{436.

[25] G. Karypis and V. Kumar, Parallel multilevel graph partitioning, Tech. Rep. 95-036,
Department of Computer Science, University of Minnesota, Minneapolis, MN, May
1995.

[26] S. Kratzer, Massively parallel sparse matrix computations, Tech. Rep. SRC-TR-90-008,
Supercomputing Research Center, Bowie, MD 20715, 1990.

[27] C. L. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subpro-
grams for fortran usage, ACM Trans. Math. Software, 5 (1979), pp. 308{323.

[28] G. Li and T. Coleman, A parallel triangular solver for a hypercube multiprocessor, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 458{502.

[29] , A new method for solving triangular systems on distributed memory message passing
multiprocessors, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 382{396.

[30] J. Liu, E. Ng, and B. Peyton, On �nding supernodes for sparse matrix computations,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 242{252.

[31] J. W.-H. Liu,Modi�cation of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141{153.

[32] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134{172.

[33] R. Lucas, Solving planar systems of equations on distributed-memory multiprocessors, PhD
thesis, Department of Electrical Engineering, Stanford University, 1987.

[34] T. A. Manteuffel, An incomplete factorization technique for positive de�nite linear sys-
tems, Math. Comput., 34 (1980), pp. 473{497.

[35] J. A. Meijerink and H. A. Van der Vorst, An iterative solution methods for which the
coe�cient matrix is a symmetric M-matrix, Math. Comput., 31 (1977), pp. 148{162.

[36] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditioned con-
jugate gradients, ACM Trans. Math. Software, 6 (1980), pp. 206{219.

[37] , Solving sparse symmetric sets of linear equations by preconditioned conjugate gradi-
ents, ACM Trans. Math. Software, 6 (1980), pp. 206{219.

[38] E. Ng, B. Peyton, and P. Raghavan, A blocked incomplete cholesky preconditioner
for hierarchical-memory computers, in Proceedings of the Fourth IMACS International
Symposium on Iterative Methods, 1999. To appear.

[39] E. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor
computers, SIAM J. Sci. Comput., 14 (1993), pp. 1034{1056.

[40] E. G. Ng and P. Raghavan, The performance of greedy ordering heuristics for sparse
Cholesky factorization, SIAM J. Matrix Anal. Appl., (1998). To appear.

[41] T. C. Oppe, W. D. Joubert, and D. Kincaid, ITPACKV 2D User's Guide, Tech. Rep.
CNA-232, Center for Numerical Analysis, The University of Texas at Austin, May 1989.

[42] S. Parter, The use of linear graphs in Gaussian elimination, SIAM Review, 3 (1961),
pp. 364{369.

[43] P. Raghavan, Distributed sparse matrix factorization: QR and Cholesky decompositions,
PhD thesis, Department of Computer Science, Pennsylvania State University, University
Park, PA, 1991.

[44] , Distributed sparse Gaussian elimination and orthogonal factorization, SIAM J. Sci.
Comput., 16 (1995), pp. 1462{1477.

[45] , Parallel ordering using edge contraction, Parallel Computing, 23 (1997), pp. 1045{
1067.

[46] , E�cient parallel triangular solution with selective inversion, Parallel Processing Let-
ters, 8 (1998), pp. 29{40.

[47] D. Rose, A graph-theoretic study of the numerical solution of sparse positive de�nite sys-
tems of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic

17

Press, 1972, pp. 183{217.
[48] D. Rose, R. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on

graphs, SIAM J. Comput., 5 (1976), pp. 266{283.
[49] E. Rothberg, A parallel implementation of the multiple minimum degree heuristic. Pre-

sentation, Fifth Siam Conference on Applied Linear Algebra 1994, Snowbird, Utah.
[50] E. Rothberg, Performance of panel and block approaches to sparse Cholesky factorization

on the iPSC/860 and Paragon multiprocessors, tech. rep., Intel Supercomputer Systems
Division, 14924 N. W. Greenbrier Parkway, Beaverton, OR 97006, September 1993.

[51] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Num. Lin. Alg. Appl., 1
(1994), pp. 387{402.

[52] Y. Saad and M. Schultz, GMRES: A generalized minimum residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856{869.

[53] R. Schreiber, Scalabilty of sparse direct solvers, in Proc. of the IMA Workshop on Graph
Theory and Sparse Matrices, Springer-Verlag, 1992.

[54] B. Smith, L. McInnes, and W. Gropp, PETSc 2.0 user's manual, Tech. Rep. ANL-
95/11 - Revision 2.0.22, Mathematics and Computer Science Division Argonne National
Laboratory, Argonne IL 60439, 1997.

[55] C. Sun, E�cient parallel solutions of large sparse SPD systems on distributed memory
multiprocessors, Tech. Rep. CTC-92-TR-102, Advanced Computing Research Institute,
Center For Theory and Simulation in Science and Engineering, Cornell University,
Ithaca, NY 14853, August 1992.

[56] Z. Zlatev, Use of iterative re�nement in the solution of sparse linear systems, SIAM J.
Numer. Anal., 19 (1982), pp. 381{399.

[57] E. Zmijewski, Sparse Cholesky Factorization on a Multiprocessor, PhD thesis, Department
of Computer Science, Cornell University, August 1987.

18

