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Abstract. Instruction caches typically consume 27% of the total power in mod-
ern high-end embedded systems. We propose a compiler-managed instruction
store architecture (K-store) that places the computation intensive loops in a scratch-
pad like SRAM memory and allocates the remaining instructions to a regular
instruction cache. At runtime, execution is switched dynamically between the
instructions in the traditional instruction cache and the ones in the K-store, by
inserting jump instructions. The necessary jump instructions add 0.038% on an
average to the total dynamic instruction count. We compare the performance and
energy consumption of our K-store with that of a conventional instruction cache
of equal size. When used in lieu of a 8KB, 4-way associative instruction cache,
K-store provides 32% reduction in energy and 7% reduction in execution time.
Unlike loop caches, K-store maps the frequent code in a reserved address space
and hence, it can switch between the kernel memory and the instruction cache
without any noticeable performance penalty.

1 Introduction

Low power is a very important design criterion in the design of a very large number
of embedded computing systems. Caches consume over 50% of the total energy of an
embedded system [11]. The energy consumed by the instruction cache is of particular
importance since an instruction is fetched every cycle. While numerous low-power in-
struction cache designs have been proposed in the literature, recent trends in research
[3][7][9] have been directed towards customizing caches for embedded system applica-
tions. Examples of such customized instruction cache architecture include loop-cache
like architectures [3][4] that place frequently executed loops on a special, smaller sized
instruction cache.

It is a well-known observation that a software program spends 90% of its execution
time in executing 10% of the code: a feature known as the 90–10 rule. The 90/10 (or
80/20) rule is even more relevant in embedded applications than desktop ones. In one
of our previous works [17], we identified and quantified the execution kernels in a large
number of embedded programs. The execution kernel is defined as a set of functions
and/or loops that together account for a substantial percentage of the overall execution
time. We found that the execution kernels often possessed a high execution density
(execution count per unit size). Table 1 summarizes the kernel sizes for applications
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Table 1. Kernel and Program sizes, in bytes, and Static and Dynamic contributions of the Kernel
for applications in the MediaBench and NetBench suites

Code Kernel Program Kernel Kernel
Size (B) Size (B) % static % dynamic

DRR 740 22511 03.28 45.12
Jpegencode 1996 102975 01.93 54.91
url 1688 11271 14.90 58.29
Unepic 2440 29727 08.20 59.40
Dh 1001 54563 01.83 66.51
Md5 7124 12895 55.24 66.57
G721enc 2470 250439 00.99 67.81
G721dec 2296 250439 00.91 68.67
Mpegencode 1576 96263 01.63 68.75
Tl 2336 20223 11.55 70.70
Mpegdecode 704 68035 01.03 79.12
Crc 584 7483 07.80 87.22
Adpcmencode 916 8091 11.32 96.17
Adpcmencode 1216 8192 14.84 97.12

from the MediaBench [8] and NetBench [10] benchmark suites. From the data reported
the vast majority of kernels were less than 4KB in size and most of these were less than
2KB which is well within the size of a scratchpad memory as is commonly available in
embedded processors [5]. Table 1 also shows the percentage contribution of the kernel
to the total program size (static) and to the execution time (dynamic).

Let us consider the frequently executed code for the Diffie-Hellman Key exchange
(DH) application [10] shown in Table 1. The kernel for this application constitutes
66.51% of the total dynamic instruction count and it contains a most frequent function
(NN DigitMult) that takes up nearly 35% of the total execution time. Hence, any loop-
cache like architecture executing such applications must cache both loops and function
calls. Accommodating such functions in loop-cache like architecture often increases
the size requirement of a loop cache. Scratchpad memories take up much lesser area
and consume nearly 40% lesser power than instruction caches of equal size [2] and
consequently, they are ideal alternatives to loop caches.

In this paper we propose an instruction store architecture that is designed to exploit
specific features of execution kernels in embedded applications. We call it the Kernel
Store or K-Store. The main idea in the K-store is that a scratchpad like memory is used
to store the execution kernel (both loops and functions) of the application: This kernel
memory is therefore a fast SRAM memory at the level of the cache that can be accessed
in one cycle. Unlike the cache it does not have to support tag arrays. The remainder of
the application is stored in main memory and is accessed in the traditional way via an
instruction cache. The system software is modified to support the kernel memory by in-
serting jumps where appropriate in the code. The compiler maps the kernel instructions
to a separate region in the address space and hence, facilitates easy detection of these
instructions during run-time.

Traditional loop cache architectures [3][4][9] cannot store frequently executed func-
tion calls inside the loop cache. K-Store overcomes this limitation by caching the kernel
code (both functions and loops) in a tagless scratchpad memory. A 8KB direct-mapped
basic K-store provides 28% reduction in energy while a 8KB, direct mapped supple-
mental K-Store provides 32% reduction in energy when used in lieu of a conventional
instruction cache of equal size.



184 D.C. Suresh, W.A. Najjar, and J. Yang

The rest of this paper is organized as follows. Section 2 illustrates the design of
our K-Store architecture. In section 3, we describe our experimental framework. In
Section 4, we discuss the results and evaluate the energy and performance of K-Store
architecture. We provide a list of related research work in section 5. In section 6, we
present concluding remarks.

2 K-Store Design

The K-Store architecture consists of two components: the kernel memory and the in-
struction cache. Figure 1 shows the block diagram of our K-Store architecture: The
K-Store consists of both the kernel memory and the instruction cache. During run-time,
instruction block requests are intercepted by a logic circuit, which identifies whether
the requested address belongs to the kernel space or the non-kernel space.

Fig. 1. K-store Architecture

By examining just a few bits of the instruction address during program execution,
we can determine whether the instruction address lies in the kernel space or in the non-
kernel space. For example, let us assume that for a given application, the compiler has
mapped the kernel code in the address range of 4096 to 8192 bytes. We need a circuit
to identify these kernel instructions at runtime. Figure 2 illustrates the operation of a
logic circuit used to identify kernel instructions in this case. Here, the bit values in bit
positions 1–12 are not useful in identifying the kernel instructions (don’t care). When
the 13th LSB is high and all the remaining bits from the 14th to the Most Significant
Bit (MSB) are zeros, we can conclude that the instruction is a kernel instruction. A low
value in all of the bit positions from 14th to the MSB can be easily detected through the
use of a five-levels of 2-input nor gate. While using 0.18-micron process technology,
the access time of an 8k, 4-way set associative cache with block size of 32 bytes, as
obtained using the CACTI tool [18], is 1.28 ns. A five level gate delay in 0.18-micron
process technology typically amounts to 0.3 ns [14]. Hence, for a 500 MHz system
(cycle time = 2 ns), the kernel detection logic can be easily accommodated within the
same cycle. As shown earlier in Table 1, most of the kernel sizes are less than 4k and
hence, checking for a high value on the 13th or 14th bit is sufficient to accommodate
most of the application kernels. The K-store architecture is ideally suited for systems
without a virtual memory.
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Fig. 2. Runtime identification of kernel instructions

As shown in Fig. 2, the compiler maps the kernel instructions to a reserved area
in the off-chip address space. Occurrences of the kernel code in the original program
can be replaced by jump instructions that transfer the control flow to the kernel address
space. Upon completing the execution of the kernel code, we need a jump instruction
to continue program execution in the non-kernel address space. Thus every call to the
kernel code adds two additional control transfer instructions to the program. Using our
simulator, we measured the total increase in the number of control transfer instructions
in the program. As shown in Table 2, we found that the control transfer instructions
increased the dynamic instruction count by 0.039% on an average.

In order to better understand the cache behavior of the non-kernel portions of a
program, we investigated the use of kernel memory with varying cache configurations.
To ensure a fair comparison, we restricted the size of the k-store’s instruction cache
so that the total size of the kernel memory and the k-store’s I-cache was equal to that

Table 2. Additional jump instructions to map kernel instructions of different programs

Benchmark Additional dynamic Dynamic Instruction % of additional
control Instructions Count Instructions

Adpcmencode 148 31481991 0.00047
G721decode 1595527 1005741879 0.158642
G721encode 1907982 1068726694 0.1785
Jpegencode 20455 81017999 0.02547
Mpegdecode 578160 1020616339 0.056648
Mpegencode 2344064 7037415745 0.033309
Unepic 236 30588223 0.000772
CRC 1256 18524458 0.00678
Dh 452608 12450027332 0.0003635
Drr 65 16266546 0.0004
MD5 59844 371031482 0.01614
Tl 597 2054152 0.029063
url 60330 1426337205 0.00423
Average 540097 1889217696 0.0392
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of the baseline cache. By doing so, the K-store’s instruction has a smaller size than the
baseline cache and consequently, all accesses to the K-store are serviced at lesser power
when compared to that of a baseline cache. We call these k-store cache configurations
as basic K-store.

We also investigate the use of the kernel memory as a supplement to a baseline
cache. Hence, we picked a baseline cache and added a small kernel memory to it and
observed the energy reduction in this case. In spite of the higher cost associated with this
design, the number of off-chip accesses would be much lesser than that of the baseline
cache and hence, this design should be highly energy-efficient. For the rest of this paper,
we will refer to this K-store configuration as supplemental K-store. We will discuss our
experimental setup in the following section.

3 Experimental Framework

We analyzed an extensive collection of embedded system benchmarks from the Net-
Bench [10](CRC, MD5, DH, DRR, TL and URL) and the MediaBench [8] (ADPCM,
JPEG, MPEG and G721) benchmark suites. Table 3 gives a brief description about the
benchmarks used in our experiments. For each of these applications, we used our loop
analysis software [17] to identify the time consuming loops and function calls. We then
identified the kernel instructions in these benchmarks and we extended the Sim-cache
simulator supplied with the Simplescalar tool set [15] in order to simulate our design

We calculate the energy savings using the following formula:

EnergyK−Store = EnergyKernel +EnergyCache +EnergyO f f−Chip

The total number of accesses to each of these components are obtained from the sim-
cache simulator [15] we obtained the energy per kernel memory access and energy per
cache access from the CACTI tool [18]. We investigate the use of K-store in two dif-
ferent configurations – basic K-store and the supplemental K-store. For our instruction
store design, we vary the kernel memory size (2K, 4K), instruction cache size (2K, 4K),
associativity (Direct, 4-way), off-chip miss penalty (20, 40, 60, 100, 200 cycles) and we
evaluate the impact of these parameters on the energy savings and memory access la-
tency. For supplemental K-store, we use a kernel memory of size 1KB and compare our
K-store design with a conventional instruction cache. For each of these configurations,
we fixed the cache block size at 32 bytes. We used 0.18-micron process technology
in our power model. In the following section, we present the energy and performance
results for our K-Store architecture.

Table 3. Average normalized energy and memory cycle reduction for different cache configura-
tions

Cache Energy Cycles
Configuration Reduction Reduction

4K Direct mapped 21% 3.6%
4K-4way set assoc. 20% 3%
8K-Direct mapped 28% 0.5%
8K-4way set assoc. 25% 0.1%
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Fig. 3. Normalized energy consumption for (a) a direct mapped cache and (b) a 4-way set asso-
ciative cache; Baseline= 8k, K-store: Kernel = 4k, Cache = 4k

4 Energy and Performance Evaluation

Basic K-Store. Figure 3a shows the normalized energy consumption for a 8Kb, direct
mapped cache. The K-store uses kernel and cache memories of size 4Kb each. We find
that K-Store provides an average energy reduction of 28% over a conventional instruc-
tion cache. Figure 3b shows the normalized energy consumption for a 8Kb, 4-way set
associative cache. The K-store uses kernel memories and cache memories of size 4Kb
each. In these graphs, we find that for the Diffie-Hellman key exchange application
(dh), the energy savings is much higher than the rest. This is due to the fact that the
dh kernel, has an extremely small static size and still contributes towards 66% of the
total execution time. Applications like adpcm and crc are also characterized by very
small static size and high execution count when compared to other applications under
consideration. Hence, they yield significant energy savings.

Figure 4 shows the normalized cycle time for a 8Kb, direct mapped cache. The
K-store uses kernel and cache memories of size 4Kb each. In spite of providing high-
energy savings, the cycle time reduction for the Adpcm application is not so significant
when compared to other applications. Adpcm’s code size is comparable to the base
cache size (8KB) and hence, the base cache provides a higher hit rate than the K-store’s
instruction cache (4KB). On an average, basic K-store yields a 0.5% reduction in the
overall execution cycles.

We explored the design space to find out the optimal sizes of kernel memory and
instruction caches for our instruction store architecture. In Table 3, we show the av-
erage normalized values of energy and memory cycle reduction for each of the cache
configurations. For the results shown in Figures 3–6 and in Table 3, we assumed that
an off-chip access was 60 times more expensive than an on-chip access. For each of
the cache configurations, we also computed the values of energy savings and execution
time reduction for varying values of off-chip penalties. Figure 5 provides the execution
time reduction and the average energy savings for varying values of off-chip penalties.

The energy savings in the kernel memory are obtained due to two reasons: the
smaller size of the kernel memory and the simple addressing scheme. Since the kernel
memory is tagless, the tag comparison power, which contributes to 35% of the cache
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Fig. 4. Normalized execution time for a direct- mapped cache; Baseline = 8K, K-store: Kernel
memory = 4K, cache = 4K

Fig. 5. Percentage reduction in (a) memory cycles and (b) energy for varying values of off-chip
penalty

Fig. 6. Normalized (a) energy consumption and (b) execution cycles for a direct mapped cache;
Baseline = 8K, K-store : Kernel memory = 1K, cache = 8K

power, is no longer necessary for a substantial fraction of the executed instructions. A
smaller sized cache services the non-kernel instructions and hence, reduction in cache
size is one of the main reasons for the energy savings reported in this paper. On an
average, we found that reduction in cache size alone, accounted for 13% of the energy
savings.
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Supplemental K-Store. We also added the kernel memory to the best baseline cache
configuration and evaluated the resultant energy and performance benefits. We found
that when a 8KB, direct mapped instruction cache was augmented with a 1KB kernel
memory, we achieved 32% reduction in energy and 7% reduction in execution time. The
results are shown in Fig. 6. Since the instruction cache size is the same in the baseline
cache and the K-store, K-store has fewer misses and hence, results in higher energy
savings.

5 Related Work

Several techniques have been proposed to reduce the energy dissipation in the instruc-
tion caches of embedded processors. Many of these methods involve the usage of a
tiny cache as a supplement to an existing instruction cache [9][2][7][13][19]. The tiny
caches are designed in such a way that they exploit some feature of the application
in order to capture most of the processor requests. By making sure that these smaller
caches service bulk of the access request, significant amount of energy can be saved on
each cache access.

Banakar et al. [2] have reported that a scratch-pad memory takes up 34% lesser area,
consumes 40% less power and lowers cycle time by 18% when used in lieu of a cache of
equal size. The power, cost and performance advantages provided by scratch-pad mem-
ories make them ideal candidates for replacing conventional caches. Researchers have
rigorously investigated the use of a scratch pad memory to hold frequently used data
items. Panda [12], Kandemir [6], and Avissar [1] have explored the use of scratch pad
memory as a supplement for traditional cache architectures. They placed a small, fast,
memory at the level of L1 cache and they use this memory to hold the most frequently
used data items. Thus the off-chip traffic due to misses is reduced.

Avissar et al. [1] proposed an automatic compiler management strategy for data
allocation amongst heterogeneous memory units. Panda [12] minimized the cross in-
terference between different variables in the data cache by mapping them onto scratch
pad memory and DRAMS. Sjodin [16] proposed a method wherein the critical vari-
ables with large number of accesses are stored on an on-chip SRAM while less critical
variables allocated to a slower external RAM. Kandemir et al [6] proposed a compiler-
directed on-chip software management strategy for data accesses. They store the reusable
data values in nested loops onto an on-chip SRAM, thereby minimizing the data trans-
fer between the off-chip memory and the on-chip scratch pad memory. K-Store uses the
scratch pad memory to hold the frequently executed instructions and is hence, orthogo-
nal to the works mentioned above, which focus on data storage.

Bellas et al. [4] have proposed the use of an L0 cache that resides between the CPU
and the L1-cache. The compiler selects a few basic blocks to be placed in the L0-cache.
Statically loaded loop caches (SLLC) [2] exploit compile-time information to preload
the caches with the instructions of one frequently executed loop and hence, reduce the
cold start misses.

K-Store is different from L0-cache [4] and SLLC [3] in the following aspects. Even
though the SLLC and L0-cache exploit compile-time information, they can only extract
simple tight loops that contain no function calls. This is due to the limitation of their



190 D.C. Suresh, W.A. Najjar, and J. Yang

access mechanism – by testing if the current PC falls within the range of the beginning
and the ending addresses of the loops, the control logic decides whether the current
instruction is a loop instruction stored in the SLLC or the L-cache. Such a mechanism
excludes those loops containing function calls. While in the K-Store architecture, there
is no such restriction since the entire loop body is moved to a different memory address
space, simplifying the detection of the kernel instructions and increasing the number
of candidate kernels. Besides, preloaded loop caches are architecturally more complex
than scratch-pad memories.

Cache Aware Scratchpad Allocation (CASA) [20] provides a sophisticated tech-
nique for analyzing conflicts within the instruction cache and reduces these conflicts by
using the scratchpad. By using the scratchpad to store both kernel blocks and conflict-
ing instruction blocks, CASA can be effectively combined with a K-store to achieve
significant energy benefits.

In the wake of aforementioned discussion, our contributions in this paper can be
summarized as follows: We propose that program segments with high execution density
(both loops and functions) should be held in a scratch pad memory (Kernel memory)
and the remaining instructions can be efficiently cached in a regular instruction cache.
In order to facilitate easy and non-intrusive detection of kernel instructions, we map the
kernel instructions to a separate region in the off-chip address space. We illustrate that
our approach is highly energy efficient.

6 Conclusion

Most of the embedded system applications tend to have strong kernels, which are in-
struction blocks with high execution count and low static size. In this paper, we propose
a compiler-managed instruction store architecture that exploits kernel features to pro-
vide energy and performance benefits. Our compiler-assisted instruction store places the
computationally intensive kernel code (functions and loops) onto a small, fast scratch-
pad memory (kernel memory) and allocates the remaining instruction blocks to a regular
instruction cache. 8Kb direct mapped supplemental K-store provides 32% reduction in
energy and 7% reduction in execution time when used in lieu of a direct mapped cache
of equal size.
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