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Abstract. This paper defines a constrained Artificial Neural Network (ANN) 
that can be employed for highly-dependable roles in safety critical applications. 
The derived model is based upon the Fuzzy Self-Organising Map (FSOM) and 
enables behaviour to be described qualitatively and quantitatively. By harness-
ing these desirable features, behaviour is bounded through incorporation of 
safety constraints – derived from safety requirements and hazard analysis. The 
constrained FSOM has been termed a ‘Safety Critical Artificial Neural Net-
work’ (SCANN) and preserves valuable performance characteristics for non-
linear function approximation problems. The SCANN enables construction of 
compelling (product-based) safety arguments for mitigation and control of iden-
tified failure modes. Illustrations of potential benefits for real-world applica-
tions are also presented. 

1   Introduction 

Artificial Neural Networks (ANNs) are employed in a wide range of applications such 
as defence, medical and industrial process control domains [1]. There are a plethora of 
appealing features associated with ANNs such as adapting to a changing environment 
and generalisation given novel data. They are efficient tools for finding swift solu-
tions using little input from designers. However, there exist several problems associ-
ated with ANNs that commonly restrict operation to advisory roles in safety related 
applications. Recent work [2] has examined verification and validation of ANNs for 
critical systems. This work aims to provide guaranteed output (within bounds) for 
ANN models whose behaviour is represented neither in structured nor organised 
forms. As a result, the approach treats the ANN as a black-box and uses pedagogical 
approaches to analyse and control behaviour (using error bounds [2]). This analytical 
approach is common to the main thrust of existing work for developing ANNs for 
safety critical contexts as reviewed in [3]. Limitations experienced from black-box 
analysis clearly highlight the need for improved neural models to allow compelling 
safety and performance arguments required for certification. 

Within the scope of this paper, section 2 defines a potentially suitable ANN model 
with learning algorithms. Section 3 presents an overview of how key failure modes 
are tackled by means of safety constraints. Section 4 describes the benefits of the 
approach using an abstract control system example. 
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2   Fuzzy Self-organising Maps 

Our previous work [4] has identified ‘hybrid’ neural networks as potential models for 
allowing white-box style (decompositional) analysis. ‘Hybrid’ ANNs facilitate poten-
tial arguments about specific functional properties. This section describes an existing 
ANN model known as the Fuzzy Self-Organising Map (FSOM) [5]. The FSOM is a 
‘neuro-fuzzy’ system and is based upon Kohonen’s Self-Organising Map. It is en-
dowed with the ability to describe its behaviour using Takagi-Sugeno (TS) fuzzy 
rules. TS fuzzy rules encapsulate both qualitative and quantitative descriptions of the 
functional behaviour where rule outputs are linear functions. The FSOM has been 
used for pattern recognition problems [5] and non-linear function approximation [6]) 
with fruitful results. The FSOM architecture consists of six stages and is illustrated in 
figure 1.  

 

 

Fig. 1. Fuzzy Self Organising Map with constrained neurons depicted by double circles. 

Stage 1 involves no pre-processing and simply propagates inputs ��  where 

�������� �� ��  (�  is the total number of input variables) to stage 2. The number of 
neurons equals the number of input variables (or sensors). 

Stage 2 performs the set membership function and contains a neuron for every fuzzy 
set. The membership is defined by the triangular function [6]. Each fuzzy set is de-
fined as �� ��  for the ��� rule where �������� �� ��  (�  is the total number of rules). 

The adaptable parameters for each fuzzy set are centre, left and right edges of the 
spread (or support) as defined by (1). 

� �� � �� � �� � � � � �� �	 �
  (1) 

Stage 3 performs fuzzy inference, where the firing strength ��  for each rule is deter-
mined by the minimum operator. The firing strength is greater than zero only if all 
rule antecedents are true. Stage 4 normalises firing strengths and Stage 5 determines 
crisp rule outputs for the ���  rule using (2). 

� �� �� �� � �� � ������ ����� �� � � � � � � � �
 � � � � � � � � � �� � � � � �  (2) 
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There are �� �  adaptable output parameters per rule defined by (3). 

� ��� �� �� ����� �� � � �� � �  (3) 

Stage 6 consists of a single neuron which performs weighted averaging (using rule 
firing strengths �� ). This determines the final output from multiple firing rules. 

The FSOM employs a static learning algorithm for tuning parameters (1) and (3) 
using training samples or input data. It is performed in two stages as defined in [6]: 

♦ Phase 1: Antecedent parameters are frozen and the consequent parameters (3) of 
the rules are adapted (supervised) using the Least Mean Square algorithm. 

♦ Phase 2: Consequent parameters are frozen and the antecedent parameters (1) are 
tuned using the modified LVQ algorithm [6] (supervised or unsupervised mode). 

The FSOM can also self-generate (dynamic learning) as described by Vuorimaa [5]. 
This automatically acquires novel features described by training data whilst adapting 
the neural architecture without user intervention. Dynamic learning is an integral 
feature of the safety lifecycle [4] and further details can be found in [6]. 

3   Safety Arguments 

In previous work [7], the safety criteria were established as a number of high-level 
goals with a safety argument expressed in GSN (Goal Structuring Notation). These 
goals were based upon encapsulating different failure modes associated with the gen-
eralisation and learning abilities of ANNs. A set of failure modes have been identified 
for the FSOM that have been derived from HAZOP (Hazard Operability Study) [8] 
guide words (which originates from the process-control theory domain). The principal 
failure modes are summarised below: 

1. Output is too high or too low for the given input vector. 
2. Missing output given valid inputs (output omission). 
3. Output increases when it should decrease (and vice versa). 
4. Output rate of change is too high or too low (derivatives). 

Enabling the FSOM to be used in safety critical systems requires integrating mecha-
nisms to prevent systematic faults from being incorporated during learning. This is 
achieved through inflexible bounds for flexibility (in behaviour) using constraints on 
both the generalisation and learning processes. As a result, the modified (or con-
strained) FSOM is called the SCANN and is used for non-linear function approxima-
tion [6]. For ease of explanation, several major arguments will be outlined for SISO 
(Single-Input-Single-Output) fuzzy rules. 

3.1   Safety Argument for Function Mappings 

There are several interpretations of Fuzzy Logic Systems (FLS) that do not lend well 
to critical domains. These include ‘likelihood’ and ‘random’ views [9] of set member-
ship which involve probabilistic reasoning. For safety critical domains, the satisfac-
tion of fuzzy rule pre-conditions can lead to safety concerns. For rule firing there must 
be certainty in set membership for an input (if the rule post-condition is to be consid-
ered ‘safe’). Our interest is in interpretations such as ‘measurement’ and ‘similarity’ 
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views [9]. These interpret degree of membership as relative to other members within 
the set. The first failure mode to consider is if the output is too high or too low for the 
current input. Existing approaches neglect the internal behaviour by simply using 
output error bounds [2]. This is extremely limiting as these ‘monitor’ technologies 
result in few or no arguments about the implicit underlying functional properties. 
During learning, behaviour may digress from the desired function using flawed train-
ing samples. Remedial actions for this failure mode include incorporating bounds for 
each fuzzy rule antecedent and consequent. 

Bounds are placed upon (1) to provide assurance that the input fuzzy set always 
lies within the interval � ��	
� � �� � � ��	 �  for �� ��	  and � �� �	
� �� � � �� �
  for �� ��
 . The con-

stants � �� �	
� �	
�� � � ��	 �
  are the extremes the fuzzy set support can expand to. 

Moreover, the centre of the input set is constrained to lie within the input set as de-
fined by the interval � �� � �� � � ��	 �
 . This prevents the centre going beyond the spread 

edges leading to false satisfaction of rules pre-conditions. The rule post-condition 
(consequent) is also bounded to � �	
� �	
�� �
 
  although there is no adaptation of 
the output set (illustrated in figure 2(a)). Attempts to violate input bounds are rejected 
or used again when the learning rate is smaller. One potential fault is that the rule may 
output a value that is beyond the output bounds. To avoid over-constraining learning, 
this problem can be solved by bounding the rule output as described by (4): 
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�
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 (4) 

All bounds (constraints) placed upon the semantic interpretations of fuzzy sets are 
determined from safety analysis [4]. This contributes to providing safe post-
conditions (output) for all pre-conditions (inputs) during generalisation and learning. 

3.2   Safety Argument for Input Space Coverage 

Failure mode 2 is related to faults associated with an incomplete knowledge base or 
faulty input set tuning. The input space that must be covered (at all times) is defined 
prior to certification. This is provided through analytical processes during hazard 
analysis [4]. Once the required input space is defined, the safety argument can be 
described as forming two main branches. The strategy is to first argue that the rule 
base completely covers the defined input space during generalisation. Assurance for 
coverage is provided through Preliminary System Safety Assessment (PSSA) [4]. 
This evaluates the input space coverage by examining rule input sets to identify 
“holes”. Even if the input space is covered, there may still be omission of output, 
since the output function may partially cover the input set. The solution to this prob-
lem is provided by the rule output bounds defined by (4). 

The second branch of the safety argument is concerned with input space coverage 
during static learning. This argument relies upon the property that no “hole” should be 
created between input sets of overlapping rules. The solution is to prevent spread 
updating which may result in exposure of the input space (which can occur in phase 2 
of the static learning algorithm). This argument contributes to providing assurance 
about the functional input-output mappings during generalisation and learning phases. 
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3.3   Safety Argument for Function Derivatives and Discontinuities 

Further safety requirements may be expressed using fuzzy rules of the form (5): 
 (5) 

The purpose of this rule is to qualitatively express a constraint on the input-output 
relationship (related to failure mode 3) by constraining the sign of ����  in (3). Option-

ally, another constraint can be expressed by quantifying the rule (5). This quantifica-
tion simply prescribes limits on output derivatives. The maximum output derivative 
for ����  is ��	
� ���  and the minimum is ��	
� ���  (for SISO rules). These con-

straints remove potentially hazardous output fluctuations for failure mode 4. The 
static learning algorithm can adhere to these constraints through enforcement during 
optimisation of (3). This is achieved by analysing overlapping rule outputs at each 
input set edge and ensuring the difference is within prescribed limits. This type of 
product-based argument prevents failure modes that may result in the output changing 
rapidly, too slowly or in the wrong direction. Incorporating such constraints highlight 
the potential to control various functional properties according to safety requirements. 

4   Example of SCANN Operation 

The original FSOM has been used for a wide range of non-linear function approxima-
tion problems. The ability of the SCANN can be demonstrated by dynamic and static 
learning algorithms. Due to space constraints, details of full case study cannot be 
presented here. However, figure 2(a-b) illustrates the ability to adapt given unrepre-
sentative and representative training data. Figure 2(c) illustrates how unsafe behaviour 
is constrained within bounds hinting that performance is always limited to keep 
within safe regions. 

A real-world example which has used fuzzy control systems is the gas turbine 
aero-engine [10]. This approach can potentially help reduce cost by optimising the 
fuel flow under changing conditions (engine wear). All attempted bound violations 
can be logged and used to indicate the need for engine maintenance. The SCANN 
approach can provide efficiency in terms of reduced cost though maximising per-
formance without compromising on safety. 

 

 

Fig. 2. (a) Bounding boxes used to define extremes for function mappings and converges onto 
unrepresentative data. (b) Non-linear function using representative data. (c) Constraints force 
behaviour within safe region (for R2) during generalisation. 
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5   Conclusions 

This paper exploits the ‘transparency’ offered by the FSOM to easily integrate safety 
constraints over various functional properties. Our approach demonstrates how the 
behaviour of the SCANN is both predictable and controllable whilst enabling gener-
alisation and learning post-certification. To adhere to safety requirements, constraints 
are enforced by the SCANN learning algorithms. For ease of explanation, a handful of 
solutions to safety arguments (extracted from a complete safety case) have been out-
lined. Compelling analytical certification arguments such as these are required for 
highly-dependable roles in safety critical systems. 
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