
Using the Case-Based Ranking Methodology for Test Case Prioritization

Paolo Tonella, Paolo Avesani, Angelo Susi
ITC-irst, Trento, Italy

{tonella, avesani, susi}@itc.it

Abstract

The test case execution order affects the time at which
the objectives of testing are met. If the objective is fault de-
tection, an inappropriate execution order might reveal most
faults late, thus delaying the bug fixing activity and eventu-
ally the delivery of the software. Prioritizing the test cases
so as to optimize the achievement of the testing goal has
potentially a positive impact on the testing costs, especially
when the test execution time is long.

Test engineers often possess relevant knowledge about
the relative priority of the test cases. However, this knowl-
edge can be hardly expressed in the form of a global rank-
ing or scoring. In this paper, we propose a test case pri-
oritization technique that takes advantage of user knowl-
edge through a machine learning algorithm, Case-Based
Ranking (CBR). CBR elicits just relative priority informa-
tion from the user, in the form of pairwise test case compar-
isons. User input is integrated with multiple prioritization
indexes, in an iterative process that successively refines the
test case ordering. Preliminary results on a case study in-
dicate that CBR overcomes previous approaches and, for
moderate suite size, gets very close to the optimal solution.

1. Introduction

Testing amounts for a large proportion of the software
development and evolution effort. This is especially true for
the system level testing, that typically occurs before each
major release of the software. During system testing the
whole application is exercised in a realistic setting. Corre-
spondingly, the opportunities for automation are often in-
ferior with respect to the previous testing phases (unit and
integration). In fact, it might be hard to run the whole ap-
plication unattended and to simulate any asynchronous in-
put (e.g., interactive inputs) the application may receive. In
such cases, system testing can last days or weeks and can
involve substantial human effort.

Test case prioritization aims at finding an execution or-
der for the test cases which maximizes a given objective

function. Among the others, the most important prioritiza-
tion objective is probably discovering faults as early as pos-
sible, that is, maximizing the rate of fault detection. In fact,
early feedback about faults allows anticipating the costly
activities of debugging and corrective maintenance, with a
related economical return. When the time necessary to exe-
cute all test cases is long, prioritizing them so as to discover
most faults early might save substantial time, since bug fix-
ing can start earlier.

Previous work on test case prioritization [6, 11, 13, 14,
15] is based on the computation of a prioritization index,
which determines the ordering of the test cases (e.g., by de-
creasing values of the index). For example, the coverage
level achieved by each test case was used as a prioritiza-
tion index [13]. Another example is a fault proneness index
computed from a set of software metrics for the functions
exercised by each test case [6].

In this paper, we propose to incorporate user knowledge
into the prioritization process and to integrate multiple pri-
oritization indexes through the CBR (Case-Based Ranking)
machine learning algorithm. CBR learns the target ranking
from two inputs: a set of possibly partial indicators of prior-
ity and pairwise comparisons elicited from the user (cases).
On one hand, all the information that can be gathered auto-
matically about the test cases (coverage levels, fault prone-
ness metrics, etc.) is used by CBR to approximate the target
ranking. On the other hand, the user is involved in the pri-
oritization process to resolve the cases where contradictory
or insufficient data are available. The contribution required
from the user consists of very local information and has the
form of a pairwise comparison. Given two test cases, the
user is requested to indicate the one that should be given
higher priority. No quantification and no global evaluation
is required. No consistency, such as transitivity, in the elic-
itation process is assumed. CBR operates iteratively and it
produces a provisional ordering at each iteration. Thus, pri-
oritization can be stopped at any time and CBR provides the
user with the last ordering produced. Thus, the human ef-
fort dedicated to the prioritization process can be calibrated
arbitrarily.

The main contributions of this paper over the state of the

art are:

• A novel approach to test case prioritization, that in-
corporates knowledge elicited from the user into the
process, thanks to machine learning.

• The capability to deal with multiple, diverse prioritiza-
tion indexes, that are integrated automatically, without
any a-priori specification of the relative weights.

• The capability to handle partial information (e.g.,
known only for a few test cases), inconsistent infor-
mation and high-level information (e.g., estimates pro-
duced during test planning and test specification).

• Applicability in several phases/contexts, such as dur-
ing initial test case specification, when information
is mostly qualitative and the user has a central role;
during regression testing, when information collected
during previous test runs can be reused; at major re-
leases, when historical information is only partially us-
able and qualitative information must be integrated for
the new features being tested.

We obtained preliminary experimental results on the case
study space, which has become a benchmark for test case
prioritization techniques. CBR was compared with two ex-
isting techniques, widely referenced in the literature. Re-
sults indicate that CBR outperforms them at any suite size
and, for moderate suite size, it gets very close to the optimal
solution.

The paper is organized as follows: Section 2 summa-
rizes the test case prioritization problem, describes our ap-
proach and gives some details about the machine learning
algorithm used by CBR. Section 3 contains the experimen-
tal results. Related works are discussed in Section 4. Con-
clusions are drawn in Section 5, followed by an anticipation
of the plan for our future work.

2. Case-based ranking

Test case prioritization aims at finding an ordering of
the test cases such that the execution of the test cases in
that order meets (or gets close to meeting) a given crite-
rion. Among the objectives of test case prioritization, the
most important one is probably maximizing the rate of fault
detection, which consists of revealing faults as early as pos-
sible in the testing process. Other objectives include the
ability to reveal high-risk faults early, or to reveal faults as-
sociated with specific code changes, or to achieve the target
coverage or reliability level as early as possible.

In general, given a test suite TS consisting of the test
cases {t1, ..., tn}, every ordering of the test cases, such as
< ti1 , ..., tin >, is associated with a reward value through a

reward function G. The goal of prioritization is finding the
ordering which maximizes G. Assuming that the ordering
is induced by the decreasing values of an order function H
(i.e., H(ti1) > ... > H(tin)), the goal can be restated as
estimating the order function H which maximizes G.

test fault
t1 × × × ×
t2 × × ×
t3 × ×
t4 ×

t 1 t 2 t 3 t 4

3

4

5

2

1

fa
ul

ts

APFD = 82.5 %

3

4

5

2

1
fa

ul
ts

APFD = 52.5 %

t 4 t 3 t 2 t 1

Figure 1. APFD is higher for test case orders
that reveal most faults early.

Let us consider the goal of maximizing the rate of fault
detection. In such a case, a possible choice for the reward
function G is the weighted average of the percentage of
faults detected (APFD) [13]. As shown in Figure 1, the
APFD tends to have high values when the ordering of the
test cases is such as to reveal most faults early. Intuitively,
the APFD is the portion of area below the curve in Figure 1.
Formally, the APFD can be computed according to the fol-
lowing equation:

APFD = 1 −
∑k

j=1 pos(ej)
nk

+
1
2n

(1)

where n is the number of test cases, k is the number of
revealed faults and pos(ej) is the position (between 1 and n)
of the first test case revealing the fault ej , in the prioritized
sequence.

1: t i 1

CBR...
...

f m

f 1

in
de

xe
s

pr
io

ri
tiz

at
io

n

...
2: t i 2

n: t i n

TS
prioritized

comparisons
pairwise

it < t (t , t)jji

TS = {t , ..., t }1 n

Figure 2. CBR learns the target ranking of the test cases in TS from the prioritization indexes and
from user input, in the form of pairwise comparisons.

2.1. The prioritization process

We reformulate the test case prioritization problem as a
machine learning problem. The goal is to approximate the
order function H , by learning it from metrics, that are sup-
posed to be related with the fault revealing ability of the
test cases, and from knowledge about the relative priority of
pairs of test cases, as elicited from the user. The Case Based
Ranking (CBR) algorithm fits this goal, since it is specifi-
cally designed to integrate multiple ranking indexes with
case based knowledge having the form of pairwise compar-
isons.

Figure 2 gives a high level view of the proposed pro-
cess. CBR transforms a test suite TS, consisting of an
unordered set of test cases t1, ..., tn, into the prioritized
sequence < ti1 , ..., tin >. It takes two inputs: one or
more prioritization indexes f1, ..., fm and a sample of cases
elicited from the user, consisting of test case pairs (ti, tj)
that the user is requested to compare (e.g., deciding that
ti < tj , or ti has a higher value of the order function H
than tj).

The prioritization indexes are supposed to be tentative
approximations of the order function H . Thus, for each test
case t1, ..., tn, the i-th index values fi(t1), ..., fi(tn) define
a ranking approximating the one produced by H . Exam-
ples of prioritization indexes are: (1) the level of coverage
achieved by each test case–e.g., number of statements or
branches traversed during test case execution; (2) complex-
ity metrics, such as the cyclomatic complexity, computed
for the procedures executed by each test case; (3) the prior-
ity or criticality of the requirements associated with each
test case; (4) historical information, such as fault prone

modules known from the past that are executed by the given
test case; etc. The set of indexes used for prioritization are
not required to be coherent with each other. This means
that individual indexes might produce different orderings.
It is the machine learning algorithm CBR that takes care of
reconciling such differences.

CBR resorts to user knowledge each time it is hard to de-
cide on the relative ordering of two test cases based solely
on the prioritization indexes. The information elicited from
the user is pretty local, consisting just of the comparison be-
tween two test cases to decide their relative importance. The
user is not asked to score all of the test cases (as happens
with the prioritization indexes), neither is she/he required
to quantify the difference between the two compared test
cases. Thus, the user input is compatible with the cognitive
abilities of humans, who can manage pretty well local and
limited information (such as a pairwise comparison), while
they have a hard time with large amounts of data to consider
simultaneously.

During training, CBR iteratively involves the user and
exploits the elicited information to refine the test case rank-
ing produced so far. The learning process can be inter-
rupted at any time to produce the resulting prioritized test
sequence. Clearly, higher number of iterations are expected
to produce higher quality orderings. So, there is a trade-
off between manual effort involved (i.e., number of elicited
pairs) and quality of the prioritization (e.g., APFD value).

The proposed prioritization method enjoys the following
properties:

Multiple indexes: CBR can handle multiple prioritization
indexes, which are automatically integrated during
learning. No relative weights have to be specified ex-

ternally for the various indexes. Weights are automati-
cally learned by the algorithm.

User centered: CBR gives the user some control about the
prioritization process. Her/his knowledge, possibly
obtained during previous releases of the software, is
smoothly integrated with the prioritization indexes, in
order to steer the prioritization process.

Partial information: CBR manages the case where the
available information is not complete. For example,
prioritization indexes may be defined only for sub-
sets of test cases. Moreover, as explained above, the
elicited pairs are just a sample of all possible pairs.

Incoherent data: CBR is robust with respect to contradic-
tory data, such as pairwise comparisons that do not re-
spect transitivity and indexes that induce incompatible
rankings.

Wide applicability: CBR makes minimal assumptions
about the input it requires, which makes it applicable
in several contexts. For example, CBR can be used
during the initial specification of the test cases, when
no execution information is yet available, since it can
exploit indexes obtained directly from the specifica-
tions. Of course, it can be used during regression test-
ing, when it can reuse information from previous test
case executions (e.g., coverage information) as well
as previously elicited pairwise comparisons. But it
can be also used in a regression testing context where
only a (small) fraction of available information can be
reused. This happens when the code changes make
most test cases no longer usable. In fact, the partial in-
formation available from previous runs can be comple-
mented with information determined for the new test
cases (e.g., metrics). Thus, CBR can prioritize exist-
ing test cases as well as new ones, or a mixture of both,
and it is applicable both at the early stages of the test-
ing phase and during regression testing.

2.2. The machine learning algorithm

The kernel of the case-based iterative process for test
case ranking is a learning algorithm based on the boosting
approach [9]. Boosting is a framework to combine simple
learners into one more general and effective learner. In the
following we will refer to Rankboost [8], a boosting algo-
rithm designed for ranking learning.

The learning algorithm input is threefold: a finite set
of test cases TS = {t1, . . . , tn}, the prioritization indexes
F = {f1 . . . fm} and a sample of pairwise priority relations
on test cases Φ = {(ti, tj) ∈ TS × TS|φ(ti, tj) �= 0}.

The function φ describes the priority index elicited from
the users in terms of pair relations: φ : TS × TS →

{−1, 0, 1}. In particular, φ(ti, tj) = 1 means that tj ≺ ti,
φ(ti, tj) = −1 means that ti ≺ tj , and φ(ti, tj) = 0 indi-
cates that no preference related to the pair ti and tj has been
elicited from the user1.

The output of the learning algorithm is a ranking func-
tion H : TS → R such that ti ≺ tj if H(ti) > H(tj).
The goal of the computation of H(t) is to obtain a rank-
ing function according to the sample Φ while producing a
good approximation for those relations not elicited from the
users. The working assumption here is that the sample Φ is
a partial representation of the optimal ranking. Of course, in
practice, the feedback provided by the user is not necessar-
ily an accurate representation of the optimal ranking, since
the elicitation process is usually noisy and non monotonic.
For simplicity, in the following we assume an omniscient
user, therefore Φ can be conceived as a sample of the opti-
mal ranking.

As mentioned above, a boosting algorithm is a composi-
tion schema of simpler learners. The basic idea is that it is
possible to obtain highly accurate ranking prediction rules
combining many weak ranking prediction rules which may
be moderately accurate. The structure of the algorithm is
based on an iterative process, namely the boosting cycle,
to produce the simple learners and a final step where the
simple learners are combined together to obtain the final
hypothesis for the ranking function.

The boosting cycle relies on the notion of density func-
tion defined over the sample Φ: D : TS × TS → R such
that D(ti, tj) = γ · max(0, φ(ti, tj)) where, while setting
to 0 all negative entries of φ, γ is a positive constant chosen
in such a way that D is a distribution, satisfying the fol-
lowing normalization property:

∑
ti,tj

D(ti, tj) = 1. The
intuitive idea is that a boosting cycle doesn’t address ho-
mogeneously the learning task over the sample Φ. A weak
learner is trained according to the distribution D.

The pseudocode of the learning algorithm is summarized
in Figure 3. The fixed threshold of the boosting loop B
can be replaced by a conditional stop criterion, for example
when a stable ranking hypothesis is achieved. Let us focus
our attention on the three main steps of the boosting cycle.

Step 1. A weak ranking hypothesis is computed for the test
cases taking into account the distribution Db (hc :
TS → R). The prioritization indexes F are exploited
to formulate a ranking function that maximizes the
known pair relations Φ according to the weight of dis-
tribution Db. In the experiments, we exploited the
technique described in [8] as WeakLearner. It is a
binary classifier that at every iteration b produces a di-
chotomy on the set of test cases. The result is a ranking
hypothesis defined as a bipartition of the test cases.

Step 2. A value for the parameter αb is computed. This pa-

1φ(ti, ti) = 0 and φ(ti, tj) = −φ(tj , ti) for all ti, tj ∈ TS

Algorithm RankBoost
Input:

TS /* the set of test cases */
F /* the set of prioritization indexes */
Φ /* the set of pairs relations */

Output:
H(t) /* the ranking function */

begin
D1 = initialize(Φ);

/* where D(ti, tj) = γ · max(0, φ(ti, tj))*/
for b = 1 to B

/* boosting cycle */
(1) hb = WeakLearner(TS, F , Db);

/* where hb : TS → R */
(2) αb = ChooseAlpha(Db, hb);

/* where αb ∈ R */

(3) Db+1(ti, tj) = Db(ti,tj)
Zb

eαt(hb(ti)−hb(j))

/* where Db+1 : TS × TS → R */
end for
return H(t) =

∑B
b=1 αbhb(t);

end.

Figure 3. Pseudocode of the learning algo-
rithm.

rameter defines the weight of the current weak ranking
hypothesis for the linear combination of the final rank-
ing function. The value is a measure of the accuracy of
the partial order hb with respect to the final order H .

Step 3. A new distribution Db is computed that will be
given as input to the next cycle of boosting. The ba-
sic idea is to revise the distribution on known pair re-
lations in such a way that at the next cycle the learning
effort will be directed towards those pairs that the cur-
rent weak hypothesis hb doesn’t rank accurately.

It is straightforward to notice that the choice of the pa-
rameters αb is a key factor in the learning algorithm. The
objective of the computation of the ranking function H(t)
is to minimize the misordered pairs. We can introduce the
notion of ranking loss (rloss) as the portion of misorderings
weighted by their criticality given by the distribution Db:

rlossD(H) =
∑

ti,tj
D(ti, tj)[[H(tj) ≤ H(ti)]]

= Pr(ti,tj)∼D[H(tj) ≤ H(ti)]

where [[H(tj) ≤ H(ti)]] = 1 if H(tj) ≤ H(ti) is true, 0
otherwise. We forward to [8] for the methods to compute
the parameters αb that minimize the ranking loss.

3. Experimental results

We obtained preliminary results on the applicability of
the proposed approach by prioritizing the test cases for the
case study program space. The program space was ob-
tained from the Subject Infrastructure Repository (SIR) [2],
a repository of Java and C programs available for experi-
mentation of source code analysis and testing techniques.
These programs are distributed with material (such as cov-
erage information or fault matrix) that facilitates their use
for research purposes. In particular, space has been em-
ployed extensively as a benchmark to compare alternative
test case prioritization techniques [4, 5, 6, 10, 11, 13].
Space is an interpreter that accepts input written in an

array definition language. When no parse error occurs, the
output of space consists of a list of array elements, with
positions and excitations. Space was developed by ESA
(European Space Agency). Its size is non trivial (9564 lines
of code or 6218 executable lines of code; 136 functions).
It is written in C and it is distributed at SIR with 1000 test
suites having an average size of 155 (min: 141; max: 169).
Moreover, it comes with faults and coverage information.
Each of the 38 faults that are known for this program are
related to the test cases that are able to reveal them. Such
relationship is encoded as a fault matrix. The statements
exercised by each test case are also provided.

3.1. Setting

Since the number of pairwise comparisons that can be
reasonably elicited from the user is limited, we expect that
the performance of the proposed technique depends criti-
cally on the test suite size. In fact, assuming anti-symmetry,
but not transitivity, complete information is obtained by
eliciting N(N − 1)/2 pairs for a test suite of size N . As
N increases, only a fraction of the total number of pairs can
be sampled, with a corresponding performance degradation.

In order to investigate the behavior of CBR at variable
test suite size, we sub-sampled the available suites and we
produced test suites with a size ranging from 10 to 100, at
increments of 10. Then, user information was elicited iter-
atively. For this study we made the hypothesis of an ideal
user, that is, a user who never makes errors when requested
to perform pairwise comparisons. We expect CBR to be
quite robust with respect to the presence of small amounts
of noise (errors), but the precise investigation of this aspect
of the algorithm requires the definition of a model for the
user errors, which goes beyond the scope of this prelimi-
nary study.

The second input required by CBR is a set of prioriti-
zation indexes, computed for the given test cases. In this
study, we used two indexes: statement coverage and cyclo-
matic complexity. The statement coverage index measures

the number of statements executed by each test case. It has
been widely used in the test case prioritization literature.
The cyclomatic complexity index gives the sum of the cy-
clomatic complexity metrics computed for the functions ex-
ecuted by each test case. Given the control flow graph of a
function, its cyclomatic complexity metric can be computed
as e−n+1, with e the number of edges and n the number of
nodes. The motivation for choosing this index is that more
complex functions are likely to be more fault prone (there is
an ongoing debate on predictors of fault proneness, but this
is out of scope here). Of course, other complexity metrics,
such as Halstead’s, could be added to the indexes used by
CBR.

The prioritized test suites have been saved regularly dur-
ing the successive refinement iterations involving the elici-
tation of pairwise comparisons. Correspondingly, the value
of the APFD (the prioritization criterion we adopted is max-
imum rate of fault detection) was computed over time.

The results produced by CBR have been compared
against optimal and random prioritizations, to verify
whether our technique performs better than random and
whether it gets close enough to the optimum. As fur-
ther comparisons, we considered two prioritization tech-
niques that have been widely investigated in the litera-
ture, statement coverage and additional statement cover-
age [4, 5, 6, 13]. Below is a short description of the pri-
oritization techniques compared to CBR:

Optimal: The ordering which maximizes APFD. Since the
number of permutations grows exponentially with the
test suite size, the “true” optimal ordering cannot be
determined exactly. It can only be approximated, for
example by means of a greedy algorithm, that itera-
tively adds the test case with the highest number of
revealed faults, among those not yet discovered, to the
prioritized suite.

Random: The test cases in each suite are ordered ran-
domly.

Statement coverage (Stmt cov): Test cases are ordered by
decreasing number of covered statements. The ratio-
nale behind this technique is that test cases exercis-
ing a high number of statements are more likely to re-
veal faults than test cases exercising a lower number of
statements.

Additional statement coverage (Add stmt cov): Test
cases are ordered based on the number of covered
statements among those not yet covered by test cases
added to the prioritized suite previously. When all
statements exercised by some test case are covered, the
coverage achieved by the previous test cases is reset to
zero and prioritization restarts as at the beginning.

3.2. Data

Figure 4 shows the performance of CBR at different test
suite size, compared with Optimal, Statement coverage, Ad-
ditional statement coverage, and Random. The value of
APFD reported for CBR is the maximum obtained in the
pair elicitation process. The total number of elicited pairs
was kept linear with the suite size (βN , with β between 2
and 10, and N the suite size).

When the suite size is below 50, CBR max gets very
close to the optimum and outperforms the other methods.
At suite size 10, CBR produces a prioritized suite with
APFD very close to the optimum, while both Stmt cov and
Add stmt cov are around 10% far from the optimum. Above
size 50, CBR max continues to outperform the other two
methods (as well as Random), but there is some residual
margin for further improvement (around 5%). The expla-
nation for this may be that at this size the exploration of
the possible pairs gets more and more limited, since their
number grows quadratically with the size. Notwithstand-
ing the limited exploration of the possible pairs, CBR can
take advantage of such information to make some improve-
ment of the APFD values, over the other methods. Overall,
the best performances of CBR, in terms of getting close to
the optimum and surpassing the other techniques, are for a
suite size of 60 or less. It should be noticed that the high
variability of the histograms plotted in Figure 4 depends
on the specific characteristics of the considered test suites.
Replication with more suites would be required to absorb
the individual differences and produce results that are less
dependent on the specific suites selected.

Figure 5 shows the number of pairs that have been
elicited in order to get the maximum APFD (histogram
CBR max) or to surpass both Stmt cov and Add stmt cov
(histogram below CBR max, depicted in light grey). Once
more, the irregular plot of these histograms depends on the
specific features of the considered test suites and demands
for further replication. However, there seems to be a cut
point around size 60 also in these histograms. In fact, for a
size of 60 or less, CBR succeeds surpassing Stmt cov and
Add stmt cov with a limited manual effort. In fact, the num-
ber of pairs to elicit so as to outperform the other methods
is the order of the suite size, with a multiplier (β, see above)
between 0.5 and 3. Above 60 more pairs need to be elicited
in order to get good results, due to the larger space of all
possible pairs. Often the number of elicited pairs to surpass
Stmt cov and Add stmt cov is close to the number of pairs
necessary to reach CBR max, with a few exceptions (e.g.,
at size 40, 50, 60).

10 20 30 40 50 60 70 80 90 100

Optimal
CBR max
Add stmt cov
Stmt cov
Random

size

A
P

F
D

70
75

80
85

90
95

10
0

Figure 4. APFD values for CBR (max), statement and additional statement coverage, compared with
optimal and random values, at increasing test suite size.

3.3. Discussion

The experimental results confirm the capability of the
proposed method to improve the existing techniques, by in-
tegrating knowledge elicited from the user. Such a knowl-
edge is extremely valuable and allowed outperforming all
considered competitors.

The effort required to elicit the user input is linear with
the suite size. Each atomic operation that the user must per-
form is a pairwise comparison. This means that the user has
to decide which of two test cases should be given higher
priority (no quantification is requested). Such an operation
needs typically a few seconds to be completed. Thus, the
overall time for the elicitation process can be estimated be-
tween seconds and minutes, depending on the suite size.
This makes it cost-effective, especially when the execution
time of the test suite is high (e.g., for interactive test cases
that cannot be run unattended).

From the economical point of view, it is hard to estimate
the cost-benefit trade off of the proposed technique. In fact,
a given increase of the APFD value for the prioritized test
suite might have a high, medium or low impact on the test-
ing costs, depending on the specific cost model that holds
in the given context [6]. However, at suite size of 60 or less,

the APFD values produced by CBR are close to the opti-
mum or substantially higher than Stmt cov and Add stmt
cov. Moreover, the effort required is quite limited. Thus,
we expect that at least in this range the benefits are very
likely to overcome the extra costs.

4. Related works

Most existing works on test case prioritization are based
on a single prioritization index. Often this index is deter-
mined from execution information gathered from previous
test runs. It is possible to classify the existing techniques
into the following groups:

1. Execution-based techniques [1, 6, 10, 13, 15, 16].
These techniques prioritize the test cases based on
the level of coverage reached during previous test
runs, where coverage can be computed at various lev-
els, such as statement, basic block, branch, condi-
tion/decision, function. Additional coverage prioriti-
zation is a variant of these techniques that takes into
account the increment of coverage provided by each
test case with respect to the coverage achieved by the
previously selected test cases. Other variants take into

10 20 30 40 50 60 70 80 90 100

size

E
lic

ite
d

pa
irs

5
10

20
50

10
0

20
0

50
0

10
00

CBR max
CBR > best(Stmt cov, Add stmt cov)

Figure 5. Number of pairwise comparisons elicited from the user at increasing test suite size, neces-
sary to achieve maximum CBR or to surpass the best performing technique between statement and
additional statement coverage.

account information on the modified code portions and
prioritize the test cases based on the (additional) cov-
erage of such portions only.

2. History-based techniques [11]. Historical execution
data are exploited to prioritize the test cases. Test
cases are selected which either have not been exe-
cuted recently, or which revealed faults recently, or
which cover functions covered infrequently in recent
test runs.

3. Requirement-based techniques [14]. Test cases are
prioritized based on properties of the requirements,
such as volatility, customer priority, implementation
complexity and fault proneness, whose quantification
is estimated by the user. The user is also required to
specify the relative weights of these factors.

4. Metrics-based techniques [6]. A fault proneness in-
dex is computed from a set of measurable software at-
tributes (e.g., complexity metrics) and is used to pri-
oritize the test cases. Additional fault index prioritiza-
tion is similar to additional coverage for the execution-
based techniques: The next test case added to the pri-

oritized list is the one which maximizes the sum of the
fault indexes over the yet to be covered functions.

Only a few works [5, 14] attempted to combine multiple
prioritization indexes. Elbaum et al. [5] proposed a vari-
ant of the APFD metric (called APFDC), which accounts
for the cost of executing each test case and for the sever-
ity of the revealed faults. They accordingly proposed to
modify the existing execution-base techniques to incorpo-
rate test cost and fault severity by weighting each covered
element by the ratio: criticality / cost, i.e., estimated sever-
ity of a fault occurring at the covered element, over the cost
of the test case. Srikanth et al. [14] proposed a combination
method based on fixed weights specified by the user. They
applied this method to requirement-based prioritization.

Several empirical studies [3, 6, 12, 13] have been con-
ducted, especially with execution-based techniques, in the
context of regression testing. The results of these stud-
ies show that prioritization techniques can significantly im-
prove the rate of fault detection and that relatively sim-
ple techniques (e.g., coverage or additional coverage) have
comparable performances with respect to the most sophisti-
cated ones (e.g., fault exposing potential, FEP, or additional

FEP). Overall, the results indicate that there is a gap be-
tween available techniques and optimal prioritization, such
that there is room for novel, improved techniques.

Other studies [4, 7] investigated the factors which affect
the effectiveness of a test prioritization technique and pro-
posed the usage of selection strategies (such as classifica-
tion trees) that support the user choosing the most appro-
priate technique for the given test scenario (characterized
through program, modification and test suite metrics). The
economic trade-offs associated with the selection of a given
prioritization technique are investigated in the study by El-
baum et al. [6].

Our work advances the state of the art in several respects.
It is applicable even when historical data about previous test
executions are not available or only partially available. It
handles multiple prioritization indexes transparently, with-
out requiring the user to specify any arbitrary combination
weights. It is the only technique that can incorporate user
knowledge about the relative fault exposing capabilities of
the test cases. It works even in the presence of partial and
incomplete information. It is applicable at the early stages
of the testing phase, when test cases are specified but not yet
implemented. It can prioritize newly defined (in addition to
existing) test cases.

5. Conclusions and future work

We have investigated the relevance of the information
gathered from the user to address the test case prioritization
problem. We proposed a machine learning approach that
integrates user knowledge with multiple prioritization in-
dexes. From a theoretical point of view, the approach is ap-
pealing because it overcomes several difficulties exhibited
by previous works. It can manage partial, diverse, multiple
and incoherent data, which are integrated with user input, in
a low-cost knowledge elicitation process. It is widely appli-
cable, in several testing contexts.

Although still preliminary, the experimental results show
that the proposed technique represents an improvement over
existing methods, by adding information elicited from the
user, and indicate that such an improvement is a substantial
one. The effort required to achieve it was estimated as a
reasonable one. The highest advantages are obtained for
moderate suite size (at or below 60 test cases), allowing for
an extensive exploration of the space of the possible test
case pairs at limited costs.

We plan to conduct a thorough investigation of the ap-
plicability and of the cost-benefit trade off of the proposed
technique. This involves:

• Replication of the study presented in this paper with
multiple test suites and programs under test, so as to
obtain results with higher statistical significance.

• Investigation of the effects of noise during the elicita-
tion of the pairwise comparisons, in order to measure
the robustness of the machine learning algorithm.

• Application of the technique in real-world scenarios,
with the involvement of the actual test engineers and
the estimation of the actual costs and benefits.

• Usage of the technique in testing phases/contexts
where traditional test case prioritization techniques
have not been tried, due to their intrinsic limitations.
Examples are initial test specification, with the test
cases not yet implemented, and testing of major re-
leases, which make previous information only partially
usable or unusable.

References

[1] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. A
study of effective regression testing in practice. In Proceed-
ings of the 8th International Symposium on Software Relia-
bility Engineering (ISSRE), pages 264–274. IEEE Computer
Society, November 1997.

[2] H. Do, S. G. Elbaum, and G. Rothermel. Supporting con-
trolled experimentation with testing techniques: An infras-
tructure and its potential impact. Empirical Software Engi-
neering: An International Journal, 10(4):405–435, 2005.

[3] H. Do, G. Rothermel, and A. Kinneer. Empirical studies
of test case prioritization in a JUnit testing environment. In
Proceedings of the 15th International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 113–124. IEEE
Computer Society, November 2004.

[4] S. Elbaum, D. Gable, and G. Rothermel. Understanding and
measuring the sources of variation in the prioritization of re-
gression test suites. In Proceedings of the 7th International
Software Metrics Symposium, pages 169–179. IEEE Com-
puter Society, April 2001.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporat-
ing varying test costs and fault severities into test case prior-
itization. In Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE), pages 329–338. IEEE
Computer Society, May 2001.

[6] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans-
actions on Software Engineering, 28(2):159–182, February
2002.

[7] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Mal-
ishevsky. Selecting a cost-effective test case prioritiza-
tion technique. Software Quality Journal, 12(3):185–210,
September 2004.

[8] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An Efficient
Boosting Algorithm for Combining Preferences. In Pro-
ceedings 15th International Conference on Machine Learn-
ing, 1998.

[9] Y. Freund and R. Schapire. A Short Introduction to Boost-
ing. Journal of Japan. Soc. for Artificial Intelligence, 14(5)
(1999), 771-780. 11, 1999.

[10] J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision coverage.
IEEE Transactions on Software Engineering, 29(3):195–
209, March 2003.

[11] J.-M. Kim and A. A. Porter. A history-based test prioritiza-
tion technique for regression testing in resource constrained
environments. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), pages 119–129. ACM
Press, May 2002.

[12] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: An empirical study. In Proceedings
of the International Conference on Software Maintenance
(ICSM), pages 179–188. IEEE Computer Society, August-
September 1999.

[13] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test
case prioritization. IEEE Transactions on Software Engi-
neering, 27(10):929–948, October 2001.

[14] H. Srikanth, L. Williams, and J. Osborne. System test case
prioritization of new and regression test cases. In Proceed-
ings of the 4th International Symposium on Empirical Soft-
ware Engineering (ISESE), pages 62–71. IEEE Computer
Society, November 2005.

[15] A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA), pages 97–106. ACM Press, July 2002.

[16] J. Zheng, B. Robinson, L. Williams, and K. Smiley. An ini-
tial study of a lightweight process for change identification
and regression test selection when source code is not avail-
able. In Proceedings of the 16th International Symposium on
Software Reliability Engineering (ISSRE), pages 225–234.
IEEE Computer Society, November 2005.

