
Applying Peer-to-Peer Techniques to Grid Replica Location Services

Ann L. Chervenak1,j and Min Cai2
1University of Southern California Information Sciences Institute, 4676 Admiralty Way, Suite 1001, Marina

del Rey, CA 90292, USA

E-mail: annc@isi.edu
2University of Southern California, Computer Science Department, Los Angeles, CA 90089, USA

Received 27 September 2005; accepted 30 November 2005

Key words: Grids, peer-to-peer systems, Replica Location Service, resource discovery service

Abstract

Peer-to-peer systems offer attractive system management properties, including the ability of components

that join the network to self-organize; scalability up to tens of thousands of members; the ability of the

network to automatically repair its topology after node failures; and techniques for maintaining redundant

information to improve reliability and load balancing. We investigate applying peer-to-peer techniques to Grid

services that are oriented toward resource discovery. In particular, we apply the Chord structured peer-to-peer

overlay network to the Globus Replica Location Service, which allows registration and discovery of data

replicas. We describe the design and performance of a Peer-to-Peer Replica Location Service (P-RLS) that

uses the Chord algorithm to self-organize P-RLS servers and exploits the Chord overlay network to replicate

P-RLS mappings adaptively. We present performance measurements and simulation results for the P-RLS

system. We also discuss outstanding issues for applying peer-to-peer techniques to Grid resource discovery

services.

Abbreviations: P2P – peer-to-peer; RLS – Replica Location Service; P-RLS – Peer-to-peer Replica Location

Service; LRC – Local Replica Catalog; RLI – Replica Location Index

1. Introduction

As Grid deployments have increased in scale, system

management has become increasingly challenging.

System administrators must work to configure sys-

tems manually and to maintain and update them.

Efforts such as the Grid Research Integration

Deployment and Support (GRIDS) Center [4] seek

to ease the burden of deploying and operating Grids

by providing facilities for testing Grid software on a

variety of operating system platforms, guaranteeing

interoperability of software versions, integrating the

installation process and providing support for easier

configuration. Commercial efforts to provide more

automatic system configuration and management

include work on autonomic or utility computing [3,

31].

While these efforts are valuable, much of the

configuration and maintenance of Grids is still done

manually, primarily because individual Grid services

generally do not have capabilities of self-configura-

tion, reliability or self-healing after component failures

or unexpected events. This situation makes Grids com-

plex and expensive to deploy and maintain and im-

pedes the adoption of Grid systems. Making individual

Grid services and components more self-configuring,

reliable and scalable would provide tremendous ben-

efits to both scientific and commercial communities.

Journal of Grid Computing (2006) # Springer 2006

DOI: 10.1007/s10723-005-9009-1

j
Corresponding author.

In this work, we investigate applying peer-to-peer

(P2P) techniques to Grid services that are oriented

toward resource discovery. Peer-to-peer systems offer

attractive system management properties, including

the ability of components that join the network to self-

organize and discover other components; scalability

of peer-to-peer networks up to tens of thousands of

members; the ability of the network to automatically

repair its topology after node failures or departures

from the system; and techniques for maintaining

redundant information in the peer-to-peer network

to improve reliability and load balancing.

Grid resource discovery services are particularly

well-suited to the application of peer-to-peer techni-

ques. These discovery services share the require-

ment of maintaining a group of distributed indexes

and requiring state updates among these indexes,

and thus have similar requirements to the Internet

file sharing and discovery application that is the

basis of most peer-to-peer research. Grid resource

discovery services differ from one another in the

types of resource information they store and the

consistency requirements and rates of change for

that information. In this paper, we apply P2P tech-

niques to Grid Replica Location Services [18, 19],

which provide capabilities for registration and dis-

covery of replicated data items in a Grid environ-

ment. Other resource discovery services that could

benefit from peer-to-peer techniques include distrib-

uted Grid information services, such as the Globus

Monitoring and Discovery Service [21, 59], and dis-

tributed metadata services.

In this paper, we describe the Peer-to-Peer Replica

Location Service (P-RLS), which uses a structured

peer-to-peer network to organize a distributed index

of replica location mappings. The P-RLS design uses

the structured overlay network of the Chord peer-to-

peer system [53] to self-organize P-RLS servers. We

implemented a prototype of the P-RLS system by

extending the RLS implementation in Globus Tool-

kit Version 3.0 with Chord protocols. We measured

the performance and scalability of a P-RLS network

with up to 16 nodes containing 100,000 or 1 million

total mappings. We also simulated the distribution of

mappings and queries in P-RLS systems ranging in

size from 10 to 10,000 nodes that contain a total of

500,000 replica mappings.

The paper begins with a description of the Globus

Replica Location Service. Next, we provide an over-

view of peer-to-peer systems and a description of the

Chord structured overlay network. Next, we describe

the P-RLS design and implementation and present

performance measurements and simulation results.

We discuss related work and conclude the paper with

a discussion of outstanding research issues for

applying peer-to-peer techniques to Grid systems.

These include adapting peer-to-peer algorithms for

the typical scale and dynamism of Grid resource

discovery systems; addressing security issues such as

authentication and authorization; evaluating different

peer-to-peer schemes, including structured and un-

structured networks; and investigating how well the

queries supported by peer-to-peer systems match the

requirements of Grid resource discovery services.

2. The Globus Replica Location Service

In Grid environments, data intensive applications

often replicate data for reasons of fault tolerance as

well as to improve performance by allowing access

to multiple replicas. A Replica Location Service (RLS)

is one component of a Grid data management system

that provides functionality to register and discover

data replicas. When a user creates a new replica of a

data object, the user also registers the existence of

the replica in the RLS by creating an association

between a logical name for the data item and the

physical location of the replica. An RLS client dis-

covers data replicas by querying the catalog based

on logical identifiers for data, its physical location

or user-defined attributes associated with logical or

physical names. In earlier work, Chervenak et al.

[18] proposed a parameterized RLS framework that

allows users to deploy a range of replica location

services that make tradeoffs with respect to consis-

tency, space overhead, reliability, update costs, and

query costs by varying six system design parameters.

A Replica Location Service implementation based on

this framework is available as part of the Globus

Toolkit Versions 3 and 4. We have demonstrated that

this RLS implementation provides good performance

and scalability [19].

The Replica Location Service design consists of

two components. Local Replica Catalogs (LRCs)

maintain consistent information about logical-to-

physical mappings on a site or storage system, and

Replica Location Indices (RLIs) aggregate informa-

tion about mappings contained in one or more LRCs.

The RLS achieves reliability and load balancing by

deploying multiple and possibly redundant RLIs in a

hierarchical, distributed index. An example RLS de-

ployment is shown in Figure 1.

The RLS framework [18] includes a soft state

maintenance mechanism and optional compression

of state updates. LRCs send summaries of their state

to RLIs using soft state update protocols. Informa-

tion in RLIs times out and must be periodically re-

freshed. To reduce the network traffic of soft state

updates and RLI storage overheads, the RLS imple-

ments an optional Bloom filter compression scheme

[13]. In this scheme, each LRC sends a bit map that

summarizes its contents to the RLIs. The bit map

is constructed by performing a series of hash func-

tions on the logical names that are registered in an

LRC and setting the corresponding bits in the bit

map.

Finally, the RLS framework envisions a member-

ship management service that keeps track of LRCs

and RLIs as they enter and leave the system,

including which servers send and receive soft data

updates from one another, and adapts the distributed

RLI index according to the current server member-

ship. However, the current RLS implementation does

not contain a membership service; instead, it uses a

static configuration of LRCs and RLIs that must be

known to servers and clients.

The current RLS implementation is being used

successfully in production mode for several scien-

tific projects, including the Earth System Grid [10]

the Laser Interferometer Gravitational Wave Obser-

vatory [33], the CMS and ATLAS high energy

physics applications [1], and the Quantum Chromo-

dynamics Grid [5]. Several other applications use

RLS via the Pegasus workflow management system

[24, 25], including the National Virtual Observatory

[11, 23] and the Southern California Earthquake

Center [6].

Despite its successful deployment by these proj-

ects, there are several features of the existing RLS

that could be improved. Because a membership ser-

vice has not been implemented for the RLS, each

deployment is statically configured, and the system

does not automatically react to membership changes

as servers join or leave the system. Configuration files

at each RLS server specify parameters including

authorization policies; whether a particular server

acts as an LRC, an RLI or both; and how state up-

dates are propagated from LRCs to RLIs. When

new servers are added to or removed from the dis-

tributed RLS system, affected configuration files are

typically updated via command-line administration

tools to reflect these changes. While this configura-

tion scheme has proven adequate for the scale of

current deployments, which typically contain fewer

than ten RLS servers, more automated and flexible

membership management is desirable for larger

deployments.

In addition, although the current RLS provides

some fault tolerance by allowing LRCs to send state

updates to more than one RLI index node, the overall

RLI deployment is not self-healing after RLI failures

and is not able to maintain consistency guarantees

for index contents. We have no ability to specify, for

example, that we want the system to maintain at least

three copies of every mapping in the RLI index space,

or that after an RLI server failure, the distributed RLS

should automatically reconfigure its remaining serv-

ers to maintain the required level of redundancy.

The RLS is implemented in C and uses the

globus_io socket layer from the Globus Toolkit. The

server consists of a multi-threaded front-end server

and a back-end relational database, such as MySQL

or PostgreSQL. The front-end server can be config-

ured to act as an LRC server and/or an RLI server.

Clients access the server via a simple string-based

RPC protocol. The client APIs support C, Java and

Python. The implementation supports two types of

soft state updates from LRCs to RLIs: A complete

list of logical names registered in the LRC and

Bloom filter summaries of the contents of an LRC.

The implementation also supports partitioning of

the soft state updates based on pattern matching of

logical names.

Figure 1. Example of a hierarchical RLI Index configuration

supported by the RLS implementation available in the Globus

Toolkit Version 3.

3. Peer-to-Peer Systems

We summarize recent work in peer-to-peer systems

and then describe the Chord structured peer-to-peer

overlay network.

Foster and Iamnitchi [26] define peer-to-peer

systems as Bdecentralized, self-organizing distributed

systems, in which all or most communication is sym-

metric.^ Peer-to-peer file sharing systems deployed

on the Internet typically involve a large number of

participants. For example, the Gnutella system is able

to scale to hundreds of thousands of nodes [16, 43].

There are no centralized authorities to organize these

networks. Instead, peer-to-peer systems self-organize,

and each node is only connected to a small fraction

of the other nodes or peers. In addition, the nodes in

peer-to-peer systems tend to be highly dynamic,

joining the network for relatively short periods. Dif-

ferent studies indicate that most nodes remain in the

Gnutella network less than 24 h [44], for a mean time

of 60 min [49], or that 50% of nodes are available

30% of the time over seven days [12].

For discovery of resources in a peer-to-peer net-

work, systems have evolved from centralized index-

ing to flooding-based unstructured schemes and to

Distributed Hash Tables (DHTs) and other structured

approaches.

Systems like Napster maintain a centralized index

server, and each resource discovery operation is per-

formed by querying the central server. This approach

has limited scalability and represents a single point

of failure.

The flooding-based approach used in Gnutella

[16, 43] constructs an unstructured overlay network

among nodes. Queries are flooded to the whole net-

work. This approach is decentralized and improves

fault tolerance by eliminating the single point of fail-

ure. However, query flooding potentially introduces

large message traffic and processing overheads in the

network [45, 49, 51] and therefore may not scale

well. To avoid flooding of the network, the number

of hops on the forwarding path is typically bounded

by the time-to-live (TTL) field of query messages.

When using a TTL bound, search results are not

deterministic, and this approach cannot guarantee

finding desired files even if they exist. To make

unstructured P2P systems more scalable, several

random walk and replication schemes have been pro-

posed to reduce the number of flooding messages, as

in the Gia system [17, 34]. Most queries in an Internet

file sharing application are for a small fraction of

popular files; if those popular files are well-replicat-

ed, then they can easily be found with a random walk

of queries without flooding queries to the entire

network. However, it is still difficult for an unstruc-

tured peer-to-peer network to find files that are not

popular and well-replicated. In practice, the system

may bias discovery toward the most popular files or

resources and may ignore rarely used resources.

To reduce the extra communication and process-

ing overhead of flooding queries, distributed hash

table (DHT) approaches were proposed to construct a

structured overlay network among nodes and to

utilize message routing instead of flooding to look

up a resource [42]. DHT systems construct a variety

of overlay networks and employ different routing

algorithms. Depending on the overlay and routing,

each node in these systems typically maintains O(log

N) or d pointers to its neighbors in an N node net-

work, where d is the dimension of the hypercube

organization of the network. These systems can finish

a lookup operation in O(log N) or O(dN1/d) hops.

Therefore, these DHT systems provide good scal-

ability as well as failure resilience.

Besides efficient insertion and lookup, DHT-

based systems have properties of self-organization

for low maintenance cost and self-healing for failure

resilience. For example, in the Chord [53] system, all

nodes join the overlay network based on the positions

of their node identifiers in the circular identifier

space. Thus all nodes self-organize into a structured

overlay network automatically. Whether a node is

responsible for storing a key is based on the interval

in the identifier space between its predecessor and

itself. When a node leaves the network, its successor

node will automatically detect the departure and take

over the interval for which the departed node was

responsible. This self-healing behavior is useful to

provide redundancy and fault tolerance in large-scale

peer-to-peer systems.

Distributed Hash Tables (DHTs) offer scalable

lookup for distributed resources based on exact

matches for a given key. However, they do not sup-

port several types of queries that are desirable in

Grid resource discovery services, including multi-

attribute queries, range queries, or richer queries

using query languages such as X Path.

In structured peer-to-peer networks like Chord

[53] and pure unstructured networks like Gnutella [2]

and Freenet [20], all nodes have equal roles and

responsibilities. Yang and Garcia-Molina [57] argue

that searching in these networks tends to be ineffi-

cient. They propose a super-peer network that takes

advantage of the heterogeneity of peers by assigning

the role of super-peers to more powerful nodes, while

less powerful nodes are clients of super-peers. The

authors show that a super-peer network can improve

performance by satisfying queries at the super-peer

level. Mizrak et al. [35] show that this scheme can

perform lookups in constant time, while the network

scales to millions of nodes.

3.1. The Chord Structured Peer-to-Peer Network

Our design of the P-RLS uses the structured peer-to-

peer overlay algorithms of the Chord system. Next,

we describe the Chord design proposed by Stoica

et al. [53]. Chord uses a one-dimensional circular

identifier space with modulo 2m for both node iden-

tifiers and object keys. Every node in Chord is as-

signed a unique m-bit identifier by hashing its IP

address and port number, and all nodes self-organize

into a ring topology based on their node identifiers in

the circular space. Each object is also assigned a

unique m-bit identifier called its object key. Object

keys are assigned to nodes using consistent hashing,

i.e., key k is assigned to the first node whose iden-

tifier is equal to or follows the identifier of k in the

circular space. This node is responsible for storing

the object with key k and is called its successor node,

denoted by successor(k).

Each Chord node maintains two sets of neigh-

bors, its successors and its fingers. The successor

nodes immediately follow the node in the identifier

space, while the finger nodes are spaced exponen-

tially around the identifier space. Each node has a

constant number of successors and at most m fingers.

The i-th finger for the node with identity n is the first

node that succeeds n by at least 2ij1 on the identifier

circle, where 1 e i e m. The first finger node is the

immediate successor of n, where i = 1. When node n

wants to look up the object with key k, it will route a

lookup request to the successor node of key k. If the

successor node is far away from n, node n forwards

the request to the finger node whose identifier most

immediately precedes the successor node of key k.

By repeating this process, the request gets closer and

closer to the successor node. Eventually, the succes-

sor node receives the lookup request for the object

with key k, finds the object locally and sends the

result back to node n. Because the fingers of each

node are spaced exponentially around the identifier

space, each hop from one node to the next node

covers at least half the identifier space (clockwise)

between that node and the successor node of key k.

So the number of routing hops for a lookup is O(log

N) for a Chord network with N nodes. In addition,

each node maintains pointers to O(log N) neighbors.

The basic Chord algorithm does not necessarily

result in an even distribution of mappings among

nodes. Consistent hashing assigns each object key to

the first node whose identifier is equal to or follows

the object key in the circular space. Thus, the number

of keys stored on each node is determined by the

distance of the node to its immediate predecessor in

the circular space. However, the node identifiers

generated by SHA1 hashing do not uniformly cover

the entire space, so the number of mappings stored

on each node may vary considerably. Chord achieves

a more even distribution by associating object keys

with virtual nodes and mapping multiple virtual

nodes to each real node. Each virtual node has its

own node identifier in the circular space and main-

tains the neighborhood information for other virtual

nodes.

To maintain the ring topology correctly when

nodes join and leave, each Chord node also runs a

stabilization protocol periodically in the background

that ensures each node’s successor pointer is up to

date and improves the finger table for better lookup

performance. Chord achieves fault tolerance for its

ring topology and routing by maintaining a constant

number of successors for each node. However, Chord

does not provide fault tolerance for the data stored on

its nodes; this data may be lost when a node fails.

Section 4.1 discusses our approach to providing

greater fault tolerance by adaptively replicating map-

pings on multiple P-RLS nodes. Our scheme lever-

ages the membership information provided by Chord

to perform this adaptive replication.

4. The P-RLS Design

Next, we describe the design of our peer-to-peer

Replica Location Service (P-RLS). This design re-

places the hierarchical RLI index from the Globus

Toolkit Version 3.0 RLS implementation with a self-

organizing, peer-to-peer network of P-RLS nodes.

In the P-RLS system, the Local Replica Catalogs

(LRCs) are unchanged. Each LRC has a local peer-

to-peer RLI (P-RLI) server associated with it, and

each P-RLI node is assigned a unique m-bit Chord

identifier. The P-RLI nodes self-organize into a ring

topology based on the Chord overlay construction

algorithm discussed in Section 3.1. The P-RLI nodes

maintain connections to a small number of other P-

RLI nodes that are their successor nodes and finger

nodes. When P-RLI nodes join or leave, the network

topology is repaired by running the Chord stabiliza-

tion algorithm. Thus, the Chord overlay network

provides membership maintenance for the P-RLS

system.

Updates to the P-RLS begin at the Local Replica

Catalog (LRC), where a user registers or unregisters

replica mappings from logical names to physical

locations. LRCs periodically send soft state updates

summarizing their state into the P-RLS network. The

soft state update implementation in P-RLS is based

on the uncompressed soft state updates of the original

RLS implementation. Just as in that implementation,

our updates contain {logical name, LRC} mappings.

To perform a soft state update in P-RLS, the system

first generates the Chord key identifier for each

logical name in the soft state update by applying an

SHA1 hash function to the logical names. Then the

system identifies the P-RLI successor node of the

Chord key of each logical name and stores the cor-

responding {logical name, LRC} mapping on those

nodes. We call this successor node the root node of

the mapping. Figure 2 shows how three mappings are

placed in a P-RLS network with eight nodes.

To locate an object in the P-RLS system, clients

can submit queries to any P-RLS node. When a P-

RLS node receives a query for a particular logical

name, it generates the Chord key for that name and

checks whether it is the successor node for that key.

If so, then this node contains the desired {logical

name, LRC}; the node searches its local RLI

Figure 2. Example of the mapping placement of three mappings in the P-RLS network with eight nodes.

database and returns the query result to the client.

Otherwise, the node will determine the successor

node for the object key using the Chord successor

routing algorithm and will forward the client’s query

to the successor node, which returns zero or more

{logical name, LRC} mappings to the client. Once

the client receives these P-RLS query results, the

client makes a separate query to one or more LRCs to

retrieve mappings from the logical name to one or

more physical locations of replicas. Finally, the client

can access the physical replica.

Next, we describe several additional aspects of

our P-RLS design, including adaptive replication of

P-RLI mappings on successor nodes, the effect of re-

plication on the distribution of mappings, and repli-

cation of mappings on predecessor nodes to improve

load balancing for popular queries.

4.1. Adaptive Replication on Successor Nodes

The P-RLI nodes in the P-RLS network can leave or

fail at any time, or the network connection between

any two nodes can be broken. To resolve queries for

{logical name, LRC} mappings continuously despite

node failures, we need to replicate mappings on mul-

tiple P-RLI nodes. The Chord membership main-

tenance protocol maintains the ring topology among

P-RLI nodes even when a number of nodes join or

leave concurrently. Thus, we replicate mappings in

the P-RLS network based on the membership inform-

ation provided by the Chord protocol.

In the P-RLS design, each mapping is stored on

the root node of the mapping. The root node main-

tains connections to its successor nodes in the Chord

ring for routing. A simple replication approach is to

replicate the mappings stored on the root node to its k

successors nodes, where k is the replication factor

and is typically O(log N) for a P-RLS network with

N nodes. Thus, the total number of copies of each

mapping is k + 1.

This scheme, called successor replication, is

adaptive when nodes join or leave the system. When

a node joins the P-RLS network, it will take over

some of the mappings and replicas from its successor

node. When a node leaves the system, no explicit

handover procedure is required, and the departing

node does not need to notify its neighbors. The

Chord protocol running on the node’s predecessor

will detect its departure, make another node the new

successor, and replicate mappings on the new suc-

cessor node adaptively. If, because of membership

changes in the P-RLS network, a particular node is

no longer a successor of a root node, then the re-

plicated mappings from that root node must be

removed from the former successor node. We

achieve this using the soft state replication and the

periodic probing messages of the Chord protocol.

Each mapping has an expiration time. When a node

receives a probe message from its predecessor, it

extends the expiration time of the mappings belong-

ing to that predecessor, because the node knows that

it is still the successor node of that predecessor.

Expired mappings are removed. When a mapping on

a root node is updated by an LRC, the root node

updates its successors immediately to maintain the

consistency of replicated mappings. Since the suc-

cessor replication scheme adapts to nodes joining and

leaving the system, the mappings stored in the P-RLS

network will not be lost unless all k successors of a

particular root node fail simultaneously.

4.2. Distribution of Mappings Among Nodes

The Chord algorithm described in Section 3 can use a

consistent hashing and virtual nodes to balance the

number of keys stored on each node. However, the

use of virtual nodes incurs some overhead, such as

maintaining more neighbors per node and increasing

the number of hops per lookup.

Our successor replication scheme, which adap-

tively replicates mappings on multiple P-RLS nodes

for fault tolerance, can also improve the distribution

of mappings among nodes. In P-RLS, the number of

{logical name, LRC} mappings stored on each P-RLI

node is determined by the distance of the node to its

immediate predecessor in the circular space, i.e. the

Fowned region_ of the P-RLI node. In Chord [53], the

distribution of the owned region of each node is

tightly approximated by an exponential distribution

with mean 2m/N, where m is the number of bits of the

Chord identifier space and N is the number of nodes

in the network. With adaptive replication using re-

plication factor k, each P-RLI node not only stores

the mappings belonging to its owned region, but also

replicates the mappings belonging to its k predeces-

sors. Therefore, the number of mappings stored on

each P-RLI node is determined by the sum of k + 1

continuous owned regions before the node. Since the

node identifiers are generated randomly, there is no

dependency among those continuous owned regions.

Intuitively, when the replication factor k increases,

the sum of k + 1 continuous owned regions will be

more normally distributed. Therefore, we can achieve

a better balance of mappings per node when we

replicate more copies of each mapping. This hypo-

thesis is verified by the simulation results in Section

6.3. Moreover, we can still use virtual nodes to dis-

tribute mappings among heterogeneous nodes with

different capacities.

4.3. Query Load Balancing and Predecessor

Replication

While successor replication can achieve a more even

distribution of the number of mappings stored on

P-RLI nodes, it does not address the issue of query

load balancing for popular mappings, which may

generate a large number of queries for the root nodes

of those mappings. Consider a mapping {Fpopular-

object_, rlsn://pioneer.isi.edu:8000} that is queried

10,000 times from different P-RLI nodes. All the

queries will be routed to the root node of the map-

ping, say node Ni, and it will be a query hotspot in

the P-RLS network. The successor replication scheme

does not solve this problem because all replicas of

the mapping are placed on successor nodes that are

after the root node (clockwise) in the circular space.

The virtual nodes scheme does not solve this problem

either, because the physical node that hosts the vir-

tual root node will be a hotspot.

In the Chord successor routing algorithm, each

hop from one node to the next node covers at least

half of the identifier space (clockwise) between that

node and the destination successor node, i.e. the root

node of the mapping. When the query is closer to the

root node, there are fewer nodes in the circular space

being skipped for each hop. Therefore, before the

query is routed to its root node, it will traverse one of

the predecessors of the root node with very high

probability, as shown in Figure 3.

We can improve our adaptive replication scheme

and balance the query load for popular mappings by

replicating mappings on the predecessor nodes of the

root node. When a predecessor node of the root node

receives a query to that root node, it will resolve it

locally by looking up the replicated mappings and

then return the query results directly without for-

warding the query to the root node. We call this

approach predecessor replication.

The predecessor replication scheme does not

introduce extra overhead for Chord membership

maintenance because each P-RLI node already has

information about its predecessors, since it receives

probe messages from its predecessors. Also, this

scheme has the same effect of evenly distributing

mappings as the successor replication scheme, be-

Figure 3. P-RLI Queries for logical name Fpopular-object_ traverse the predecessors of the root node Ni.

cause now each node stores its own mappings and

those of its k successors.

5. P-RLS Implementation

We implemented the P-RLS system by extending the

RLS implementation in Globus Toolkit 3.0 with

Chord protocols. Figure 4 shows the architecture of

our P-RLS implementation. In this implementation,

each P-RLS node consists of an LRC server and a P-

RLI server. The LRC server implements the same

LRC protocol as the original RLS, but uses the Chord

protocol to update {logical name, LRC} mappings.

The P-RLI server implements both the original RLI

protocol and the Chord protocol. Messages in the

Chord protocol include SUCCESSOR, JOIN, UP-

DATE, QUERY, PROBING, and STABILIZATION

messages. The SUCCESSOR message is routed to the

successor node of the key in the message, and the

node identifier and address of the successor node are

returned to the message originator. When a P-RLI

node joins the P-RLS network, it first finds its

immediate successor node by sending a SUCCES-

SOR message, and then it sends a JOIN message

directly to the successor node to join the network.

The UPDATE message is used to add or delete a

{logical name, LRC} mapping, and the QUERY

message is used to look up matching mappings for

a specified logical name. The P-RLI nodes also

periodically send PROBING and STABILIZATION

messages to detect node failures and repair the

overlay network topology.

We implemented the Chord successor lookup

algorithm using the recursive mode rather than the

iterative mode. In iterative mode, when a node re-

ceives a successor request for an object key, it sends

information about the next hop to the request

originator if it is not the successor node of the key.

The originator then sends the request to the next node

directly. By contrast, in recursive mode, after a node

identifies the next hop, it forwards the request to that

node on behalf of the request originator. There are

two approaches for the successor node to send the

reply to the request originator. The first approach is

to send the reply to the request originator directly.

This approach might introduce a large number of

TCP connections on the request originator from

many different repliers. The second approach is to

send the reply to its upstream node (the node where

this node receives the successor request) and let the

upstream node route the reply back to the request

originator. We implemented the second approach to

avoid too many open TCP connections. All LRC,

RLI and Chord protocols are implemented on top of

an RLS RPC layer called RRPC.

6. P-RLS Performance: Measurements,

Analytical Models and Simulations

In this section, we present performance measure-

ments for a P-RLS system deployed in a 16-node

cluster as well as analytical and simulation results for

a P-RLS system ranging in size from 10 to 10,000

nodes with 500,000 {logical name, LRC} mappings.

6.1. Scalability Measurements

First, we present performance measurements for

update operations (add or delete) and query oper-

ations in a P-RLS network running on our 16-node

cluster. The cluster nodes are dual Pentium III 547

MHz processors with 1 GB of memory running

Figure 4. The P2P Replica Location Service Architecture.

Redhat Linux 9 and connected via a 1-Gigabit

Ethernet switch.

Figure 5 shows that update latency increases

O(log N) with respect to the network size N. This

result is expected, since in the Chord overlay net-

work, each update message will be routed through

at most O(log N) nodes. The error bar in the graph

shows the standard deviation of the update latency.

These results are measured for a P-RLS network that

contains no mappings at the beginning of the test.

Our test performs 1,000 updates on each node, and

the mean update latency and standard deviation are

calculated. The maximum number of mappings in

the P-RLS network during this test is 1,000, with

subsequent updates overwriting earlier ones for the

same logical names. Similarly, the number of RPC

calls required to perform these updates increases at a

rate of O(log N) with the number of nodes in the

system, N.

Figure 6 shows that the query latency also in-

creases on a log scale with the number of nodes in

the system. These results are measured for two P-

RLS networks that preload 100,000 and 1 million

mappings, respectively, at the beginning of the test.

Our test performs 1,000 queries on each node, and

the mean query latency and standard deviation are

calculated. The results show that there is only a slight

latency increase when we increase the number of

mappings in the P-RLS network from 100,000 to 1

million. This is because the mappings on each node

Figure 5. Shows update latency in milliseconds for performing an update operation in the P-RLS network.

Figure 6. Shows update latency in milliseconds for performing an update operation in the P-RLS network.

are stored in a hash table and the local lookup cost

is nearly constant with respect to the number of

mappings.

Because P-RLI queries are routed on average

through O (log N) nodes in the P2P network, they

have longer latency than a Globus RLI server, which

can support up to 12,000 queries per second [19].

However, unlike the Globus RLS, the P-RLI network

automatically routes queries to the correct P-RLI

node and provides self-organization and self-healing.

In the Chord overlay network, each P-RLI node

must maintain pointers to its successors and to its

finger nodes. The number of successors maintained

by each node is determined by the replication factor

k that is part of the P-RLI configuration. Figure 7

shows the rate at which the number of pointers to

neighbors maintained by a P-RLI node increases. In

this experiment, we set the replication factor to be

two, i.e. each P-RLI node maintains the pointers to

two successors. The number of neighbor pointers

maintained by a node increases logarithmically with

the size of the network. The error bars shows the min-

imum and maximum number of neighbor pointers

maintained by each P-RLI node.

Next, we show the amount of overhead required

to maintain the Chord overlay network. To maintain

the Chord ring topology, P-RLS nodes periodically

send probe messages to one another to determine that

nodes are still active in the network. P-RLI nodes

also send Chord stabilization messages to their im-

mediate successors; these messages ask nodes to

identify their predecessor nodes. If the node’s pre-

decessor has changed because of the addition of new

P-RLI nodes, this allows the ring network to adjust to

those membership changes. Finally, additional mes-

sages are sent periodically to maintain an updated

finger table, in which each P-RLI node maintains

pointers to nodes that are logarithmically distributed

around the Chord identifier space. We refer collec-

tively to these three types of messages for P-RLI

membership maintenance as stabilization traffic.

Figure 8 shows the measured overhead in bytes

per second for stabilization traffic as the number of

nodes in the P-RLS network increases. The two lines

show different periods (5 and 10 s) at which the sta-

bilization messages are sent. For both update inter-

vals, the stabilization traffic is quite low (less than

1.5 KB/s for 16 nodes). The stabilization traffic in-

creases at a rate of O(N log N) for a network of size

N. The graph shows the tradeoff between frequent

updates of the Chord ring topology and stabilization

traffic. If the stabilization operations occur more fre-

quently, the Chord overlay network will react more

quickly to node additions or failures. This will re-

sult in better performance, since the finger tables for

routing will be more accurate. The disadvantage of

more frequent stabilization operations is the in-

crease in network traffic for these messages.

Figure 7. Rate of increase in pointers to neighbor nodes maintained by each P-RLI node as network size increases, where replication factor

k is 2.

6.2. Analytical Model for Stabilization Traffic

Next, we developed an analytical model for stabili-

zation traffic in a P-RLS network to estimate the

traffic for larger networks than we could measure

directly.

Suppose we have a P-RLS network of N nodes

with stabilization interval I and replication factor k.

The average sizes of messages sent by a node to

probe its neighbors, stabilize its immediate succes-

sor, and update its fingers are Sp, Ss, and Sf , re-

spectively. In our implementation, over the course of

three stabilization intervals, each P-RLS node sends

messages of these three types. Thus, the total mem-

bership maintenance traffic T for a stable network is:

T ¼ log Nð Þ þ kð Þ � Sp þ log Nð Þ � Sf þ Ss

3I
N

We measured the average message sizes in our P-

RLS implementation. These values are shown in

Table 1.

Based on this analytical model, we computed the

membership traffic for networks ranging from 10 to

10,000 nodes, where the replication factor is 2. These

values are shown in Table 2. To validate our analyt-

ical model, we compared the calculated stabilization

traffic with the traffic we measured in our 16-node

cluster (shown in Figure 8 of the previous section).

Figure 9 shows that the analytical model does a good

job in predicting the stabilization traffic for a net-

work of up to 16 P-RLI nodes.

6.3. Simulations for Adaptive Replication

In this section, we present simulation results for a

larger network of P-RLI nodes. We focus on the ef-

fect of successor replication in providing a more

even distribution of mappings and the effect of pre-

decessor replication in handling request hot spots.

We simulate P-RLS networks ranging in size

from 10 to 10,000 nodes with 500,000 mappings in

the system. We picked 500,000 unique mappings as a

representative number for a medium size RLS sys-

tem. RLS deployments to date have ranged from a

few thousand to tens of millions of mappings. We

Table 2. Stabilization traffic (bytes per second) predicted by

analytical model.

Network size

Stabilization interval

5 s 10 s

10 876 bytes/sec 438 bytes/sec

100 14,533 7267

1000 203,077 101,538

10,000 2,608,190 1,304,095

Figure 8. Stabilization Traffic for a P-RLS network of up to 16 nodes with stabilization intervals of 5 and 10 s.

Table 1. Measured message sizes for our P-RLS implementation.

Sp 96.00

Sf 164.73

Ss 255.78

used different random seeds and ran the simulations

20 times.

The simulator used in this section is written in

Java. It is not a complete simulation of the P-RLS

system, but rather, it focuses on how keys are

mapped to the P-RLI nodes and how queries for

mappings are resolved in the network.

First, we simulate the effect of increasing the

number of replicas for each mapping in the P-RLS

network, where k is the replication factor and there

are a total of k + 1 replicas of each mapping. As we

increase the replication factor, we must obviously

store a proportionally increasing number of map-

pings in the P-RLS network. Table 3 shows the mean

number of mappings per node for P-RLS networks

ranging in size from 10 to 10,000 nodes when the

replication factor k ranges from 0 to 12, where the

RLS network contains 500,000 unique mappings. As

the P-RLS network size increases, the average number

of mappings per node decreases proportionally, while

the mappings per node increase as the replication fac-

tor increases.

While the mean number of mappings per node is

proportional to the replication factor and inversely

proportional to the network size, the actual distribu-

tion of mappings among the nodes is not uniform. In

Figure 10, we show that as the replication factor in-

creases, mappings become more evenly distributed.

The figure shows the distribution of mappings over a

network of 100 P-RLI nodes. The horizontal axis

shows the number of nodes ordered from the largest

to the smallest number of mappings per node. The

vertical axis shows the cumulative percentage of the

total mappings that are stored on some percentage of

the P-RLI nodes. For a replication factor of zero (i.e.,

a single copy of each mapping), the 20% of the nodes

with the most mappings contain approximately 50%

of all mappings. By contrast, with a replication factor

of 12 (or 13 total replicas), the 20% of nodes with the

most mappings contain only about 30% of the total

mappings. Similarly, with a single replica, the 50%

of nodes with the most mappings contain approxi-

mately 85% of all mappings, while for 13 total

replicas, 50% of the nodes contain only about 60% of

the total mappings.

Figure 11 also provides evidence that as we

increase the number of replicas for each mapping, the

mappings are more evenly distributed among the P-

RLI nodes. The vertical axis shows the cumulative

density functions for the number of mappings stored

per P-RLI node versus the number of mappings per

node. The replication factor for P-RLI mappings

Figure 9. Comparison of measured and predicted values for stabilization traffic.

Table 3. Mean number of mappings per node for a given network

size and replication factor.

Network size

Replication factor (total replicas)

0 (1) 1 (2) 4 (5) 12 (13)

10 50,000 100,000 250,000 N/A

100 5000 10,000 25,000 65,000

1000 500 1000 2500 6500

10,000 50 100 250 650

ranges from 0 to 12, and the P-RLS network size is

100 nodes. The left-most line shows the case where

P-RLI mappings are not replicated at all. This line

shows a skewed distribution, in which most nodes

store few mappings but a small percentage of nodes

store thousands of mappings. By contrast, the line

representing a replication factor of 12 is less skewed

and resembles a Normal distribution. The ratio be-

tween the nodes with the least and greatest number

mappings is approximately 3, with most nodes con-

taining 40,000 to 100,000 mappings.

Figures 10 and 11 show a P-RLS network of 100

nodes. We ran the same simulations for network

sizes of 1,000 and 10,000 nodes and found very sim-

Figure 10. Shows cumulative percentage of total mappings stored vs. the percentage of total nodes for different replication factors, where

nodes are ordered from highest to lowest mappings per node. There are 100 nodes in the P-RLS network and 500,000 unique mappings.

Figure 11. Cumulative distribution of mappings per node as the replication factor increases in a P-RLS network of 100 nodes with 500,000

unique mappings.

ilar results. Figure 12 shows a very similar cumula-

tive distribution graph to that in Figure 11 for a

network of 10,000 P-RLS nodes. The main differ-

ence between Figure 11 and Figure 12 is that the

values on the horizontal axis showing the number

of mappings per node differ by a factor of 100,

corresponding to the difference in total nodes be-

tween the two networks.

Finally, we present simulation results for our pre-

decessor replication scheme, which is designed to re-

duce query hotspots for popular mappings. Figure 13

shows simulation results for a P-RLS network with

Figure 12. Cumulative density function for the number of mappings per node for a P-RLI network of 10,000 nodes for varying replication

factors.

Figure 13. The number of queries resolved on the root node N and its predecessors is more evenly distributed as number of replicas per

mapping increases.

10,000 nodes. We randomly choose 100 popular

mappings. For each of these, we issue 10,000 queries

from a randomly selected P-RLI node. We simulate

the average number of queries that are resolved on

the root node and its predecessors. In Figure 13, node

N represents the root node and node N-i is the i-th

predecessor of node N in the Chord overlay network.

Thus, node N-1 is the immediate predecessor of N,

and node N-12 is 12th predecessor of node N. The

results show that if there is no predecessor replica-

tion, all 10,000 queries will be resolved by the root

node N. However, as we increase the number of re-

plicas of popular mappings on node N’s predeces-

sors, the query load is more evenly distributed among

N and its predecessors.

7. Oustanding Issues for Applying Peer-to-Peer

Techniques to Grids

Peer-to-peer systems have attractive properties of

self-configuration, self-healing, scalability and reli-

ability. Incorporating peer-to-peer algorithms into

Grid components therefore offers large potential ben-

efits. However, Grid and peer-to-peer systems differ

significantly. Peer-to-peer algorithms are likely to

require modifications to function effectively in Grid

resource discovery services.

7.1. System Scale and Dynamism

Peer-to-peer algorithms will likely change in Grid

environments to reflect the different scale and dy-

namism exhibited by Grids. Peer-to-peer Internet file

sharing algorithms have generally been optimized

for environments that scale up to tens of thousands

of participating nodes and with highly dynamic mem-

bership, in which nodes participate in the network

for a few hours or days on average. By contrast,

Grids are typically deployed at somewhat smaller

scale, ranging from tens to hundreds and eventually

thousands of components. In particular, the distrib-

uted resource discovery systems such as the Replica

Location Service will likely have tens or hundreds of

index services that need to self-organize and share

information. Grids also exhibit less dynamism, with

components remaining as members of a Grid for

days, months or years.

One possible set of optimizations for peer-to-peer

algorithms that takes advantage of the smaller scale

and dynamism of Grid environments involves stor-

ing more information about neighbors in a struc-

tured peer-to-peer network. Since the total number

of nodes in the network is relatively small, the ad-

ditional storage overhead should also be small. This

approach would reduce query latency by reducing

the number of hops traversed during queries. The

tradeoff of additional storage space consumed on

nodes versus faster query speed may be practical at

the scale of typical Grid but not practical for a much

larger Internet peer-to-peer network.

7.2. Security

Security issues, particularly relating to authorization,

have received less attention in peer-to-peer systems,

but they are a key requirement for many Grids. In

Internet file sharing applications such as Gnutella [16,

43], any node may join the peer-to-peer network, and

access to content is not restricted. By contrast, Grids

have strict requirements for mutual authentication,

authorization and resource management. These

requirements may apply both to nodes communicat-

ing with one another in a peer-to-peer discovery

service and to clients querying the service.

In some environments, security mechanisms may

not apply to the resource discovery service itself, but

only to the underlying resources. For example, a

peer-to-peer Replica Location Service might be avail-

able to all clients without restriction. Clients could

query the system to discover the location of all data

replicas, but clients might not have access permis-

sions for all those replicas. Access control would be

enforced by the storage system on which each replica

resides.

In other environments, information about resource

location will also be considered sensitive, and com-

munication among peer-to-peer nodes of the resource

discovery service as well as all client queries will

require authentication and authorization.

7.3. Structured vs. Unstructured Peer-to-Peer

Systems

In P-RLS, we have applied the structured Chord

peer-to-peer overlay network to the Globus Replica

Location Service. However, it is not clear in general

whether structured or unstructured peer-to-peer net-

works are best-suited to Grid resource discovery

services. While a great deal of research has been

done on structured peer-to-peer networks based on

distributed hash tables, the most successful and

widely used Internet peer-to-peer file sharing sys-

tems, such as Gnutella, have all been unstructured.

Chawathe et al. [17] have argued that unstructured

systems are preferable for Internet file sharing

because they are better able to handle the extremely

transient nature of clients, the prevalence of key-

word-based searches rather than exact-match queries,

and the ability to answer queries for popular (and

thus highly replicated) content quickly. It is an open

question whether these same arguments for unstruc-

tured peer-to-peer networks apply to Grid resource

discovery services, where the members of the dis-

tributed index are less transient, richer types of

queries may be required, and applications may be

less tolerant of inaccurate query results.

7.4. Query Requirements

Many existing peer-to-peer schemes support only

simple queries, such as exact-match queries. How-

ever, many distributed resource discovery services

in Grids such as information services need to

support richer queries, including queries on multiple

attributes, range queries on numerical attributes, or

richer query languages, such as XPath. In addition,

Grid services may support more complex data

models, such as the GLUE (Grid Laboratory Uni-

form Environment) [22] information model that

unifies resource information collected by different

sources, or arbitrary XML, where the schema is known

to the producer and consumer but not to the index

components that store the information.

Another important issue is the effect on query

performance of distributing index information in a

structured peer-to-peer network. In a traditional

hierarchical index, it is likely that information with

similar names, such as related file names, will be

stored on the same index server. An example of this

is the Replica Location Service, where each Local

Replica Catalog stores mappings for all the files on a

local storage system. By contrast, in a structured

peer-to-peer system using a distributed hash table,

related mappings will tend to be distributed through-

out the wide area network. The effect of this dis-

persal of related information on query performance

has not yet been measured.

8. Additional Related Work

In Section 3, we provided an overview of work in

peer-to-peer systems. In this section, we discuss ad-

ditional related work in replica management for Grids

and distributed file systems, and we discuss structured

peer-to-peer systems other than Chord.

8.1. Replica Management in Grids

Other Grid systems for replica management include

the Storage Resource Broker [9] and GridFarm [54]

systems that register and discover replicas using a

metadata catalog. These systems differ from RLS in

several ways: They use a centralized catalog for rep-

lica registration and discovery; in addition to attrib-

utes related to physical replicas, they also maintain

logical metadata information that describes the

content of data files, which is deliberately kept sep-

arate in our system; and they use these metadata

catalogs to maintain consistency among replicas,

which is not done by RLS. The European DataGrid

project [28] has implemented a different Replica Lo-

cation Service based on the RLS Framework [18]

that is used as part of their replica management ar-

chitecture [32].

Ripeanu and Foster [46] constructed a peer-to-

peer overlay network of Replica Location Services.

Their decentralized, adaptive replica location mech-

anism uses three techniques: Bloom filter com-

pression to create a digest or summary of the LFNs

registered at a node, soft state update mechanisms,

and a multicast overlay network. Unlike the P-RLS

system, which uses a structured overlay to forward

queries to a node that can answer an LFN query, this

scheme distributes the Bloom filter digests to all

nodes in the overlay. Thus, each node maintains a

compressed image of the global system. When a

client queries a node for a particular LFN mapping,

the node first checks its locally stored mappings and

answers the query, if possible. If not, the node checks

its locally stored digests that summarize the contents

of remote nodes. Finally, if the node finds a remote

node whose digest contains a matching LFN, it

contacts that node to obtain the mappings. Ripeanu

et al. demonstrate that the network traffic generated

using this approach is comparable to the traffic

generated in query forwarding schemes. This solu-

tion requires more memory to store digests at a node,

but query latencies are reduced compared to P-RLS

because fewer network hops are required to resolve a

query. Since updates have to be propagated to the

whole network, the cost of creating and deleting a

replica mapping in Ripeanu’s unstructured scheme

is higher than for P-RLS when the network scales

to large sizes.

8.2. Replica Management in Distributed File

Systems and Distributed Databases

Data replication has also been studied extensively in

the literature of distributed file systems and distrib-

uted databases [14, 27, 37, 52, 55, 56]. A primary

focus of much of that work is the tradeoff between

the consistency and availability of replicated data

when the network is partitioned. In distributed file

systems, the specific problem of replica location is

known as the replicated volume location problem,

i.e. locating a replica of a volume in the name hier-

archy [36]. NFS [48] solves this problem using in-

formal coordination and out-of-band communication

among system administrators, who manually set mount

points referring to remote volume locations. Locus

[39] identifies volume locations by replicating a glob-

al mounting table among all sites. ASF [50] and Coda

[58] employ a Volume Location Data Base (VLDB)

for each local site and replicate it on the backbone

servers of all sites. Ficus [36] places the location

information in the mounted-on leaf, called a graft

point. The graph points need location information

since they must locate a volume replica in the

distributed file system. The graft points may be rep-

licated at any site where the referring volume is also

replicated.

8.3. Structured Peer-to-Peer Networks

Besides Chord, many other structured Peer-to-Peer

networks have been proposed in recent years, such as

Tapestry [60], Pastry [47], CAN [41], Koorde [30],

Skip Graphs [8] and SkipNet [29].

The routing algorithms used in Tapestry and Pastry

are both inspired by Plaxton [38]. The idea of the

Plaxton algorithm is to find a neighboring node that

shares the longest prefix with the key in the lookup

message and to repeat this operation until a destina-

tion node is found that shares the longest possible

prefix with the key. Each node has neighboring nodes

that match each prefix of its own identifier but differ

in the next digit. For a system with N nodes, each

node has O(log N) neighbors, and the routing path

takes at most O(log N) hops. Tapestry uses a variant

of the Plaxton algorithm and focuses on supporting a

more dynamic environment, with nodes joining and

leaving the system. It maintains neighborhood state

through both proactive, explicit updates and soft-

state republishing. To adapt to environment changes,

Tapestry dynamically selects neighbors based on the

latency between the local node and its neighbors.

Pastry uses a prefix-based lookup algorithm similar

to Tapestry’s. Each Pastry node maintains a routing

table, a neighborhood set and a leaf set. Pastry also

employs the locality information in its neighborhood

set to achieve topologyYaware routing, i.e. to route

messages to the nearest node among the numerically

closest nodes [15].

CAN [41] maps its keys to a d-dimensional Car-

tesian coordinate space. The coordinate space is par-

titioned into N zones for a network with N nodes.

Each CAN node owns the zone corresponding to

the mapping of its node identifier in the coordinate

space. The neighbors on each node are the nodes

that own the contiguous zones to its local zone.

Routing in CAN is straightforward: A message is

always greedily forwarded to a neighbor that is

closer to the key’s destination in the coordinate space.

Each node in a CAN network with N nodes has O(d)

neighbors, and routing path length is O(dN1/d) hops.

Compared to Tapstry/Pastry and Chord, CAN keeps

less neighborhood state when d is less than O(log N).

However, CAN has relatively longer routing paths

on lookup operations in this case. If d is chosen to

be O(log N), it has O(log N) neighbors and O(log N)

routing hops like the above algorithms. CAN trades

off neighborhood state for routing efficiency by ad-

justing the number of dimensions.

The above DHT algorithms are quite scalable

because of their logarithmic neighborhood state and

routing hops. However, these bounds are close to

optimal but not optimal. Kaashoek et al. proved that

for any constant neighborhood state k, Q(logN) rout-

ing hops is optimal. But in order to provide a high

degree of fault tolerance, a node must maintain

O(logN) neighbors. In that case, O(log N/log log N)

optimal routing hops can be achieved. Koorde is a

neighborhood state optimal DHT based on Chord and

de Bruijn graphs. It embeds a de Bruijn graph on the

identifier circle of Chord for forwarding lookup re-

quests. Each node maintains two neighbors: Its suc-

cessor and the first node that precedes its first de

Bruijn node. It meets the lower bounds, such as

O(log N) routing hops per lookup request with only

two neighbors per node. To allow users to trade-

off neighbor state for routing hops, Koorde can use

degree-k de Bruijn graphs. When k = log N, Koorde

can be made fault-tolerant, and the number of routing

hops is O(log N/log log N).

Two structured P2P systems based on skip lists

[40] have been proposed: Skip Graphs [8] and

SkipNet [29]. These systems are designed for use in

searching P2P networks and provide the ability to

perform queries based on key ordering, rather than

just looking up a key. Thus, Skip Graphs and SkipNet

maintain data locality, unlike DHTs. Each node in a

Skip Graphs or SkipNet system maintains O(log N)

neighbors in its routing table. A neighbor that is 2h

nodes away from a particular node is said to be at

level h with respect to that node. This scheme is

similar to the fingers in Chord. There are 2h rings at

level h with n/2h nodes per ring. A search for a key in

Skip Graphs or SkipNet begins at the top-most level

of the node seeking the key. It proceeds along the

same level without overshooting the key, continuing

at a lower level if required, until it reaches level zero.

The number of routing hops required to search for a

key is O(log N). In addition, these schemes are high-

ly resilient, tolerating a large fraction of failed nodes

without losing connectivity.

9. Summary and Future Work

We have discussed issues for applying peer-to-peer

techniques to Grid resource discovery services and

have described the implementation and performance

of the Peer-to-Peer Replica Location Service. Addi-

tional work planned for the P-RLS system includes

measuring the performance of the system deployed in

the wide area network, the throughput of the system

for update and query operations at high request loads,

and the effect of adaptive replication on query load

balancing.

We are investigating applying peer-to-peer tech-

niques to other Grid resource discovery services. In

particular, we are applying an unstructured peer-to-

peer overlay network to the index services of the

Globus Monitoring and Discovery Service.

Acknowledgements

We are grateful to Mats Rynge for his technical

support of our work; to Naveen Palavalli and Shishir

Bharathi for helpful discussions on the RLS imple-

mentation; and to Matei Ripeanu for his valuable

feedback on this paper. This work was supported in

part by DOE Cooperative Agreement DE-FC02-

01ER25449 (SciDAC- DATA).

References

1. The Compact Muon Solenoid, An Experiment for the Large

Hadron Collider at CERN, http://cmsinfo.cern.ch/Welcome.

html/, 2005.

2. Gnutella, http://www.gnutella.com, 2004.

3. Grid and Utility Computing, http://devresource.hp.com/drc/

topics/utility_comp.jsp, Hewlett Packard, 2004.

4. Grid Research Integration Deployment and Support Center,

http://grids-center.org/, 2004.

5. QCDGrid: Probing the Building Blocks of Matter with

the Power of the Grid, http://www.gridpp.ac.uk/qcdgrid/,

2005.

6. Southern California Earthquake Center (SCEC), http://

www.scec.org/, 2005.

7. D.G. Andersen, H. Balakrishnan, M.F. Kaashoek and R.

Morris, BThe Case for Resilient Overlay Networks^, in 8th

Workshop on Hot Topics in Operating Systems (HotOS-VIII),

Elmau/Oberbayern, Germany, 2001.

8. J. Aspnes, G. Shah, BSkip Graphs^, in Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, 2003.

9. C. Baru, R. Moore et al., BThe SDSC Storage Resource

Broker^, in CASCON’98 Conference, 1998.

10. D. Bernholdt, S. Bharathi, D. Brown, K. Chancio, M. Chen, A.

Chervenak, L. Cinquini, B. Drach, I. Foster, P. Fox, J. Garcia,

C. Kesselman, R. Markel, D. Middleton, V. Nefedova, L.

Pouchard, A. Shoshani, A. Sim, G. Strand and D. Williams,

BThe Earth System Grid: Supporting the Next Generation

of Climate Modeling Research^, Proceedings of the IEEE,

Vol. 93, No. 3, pp. 485Y 495.

11. G.B. Berriman et al., BVol XXX, 2003, Montage a Grid

Enabled Image Mosaic Service for the National Virtual

Observatory^, in ADASS XIII, ASP Conference Series,

2003.

12. R. Bhagwan, S. Savage and G.M. Voelker, BUnderstanding

availability^, in The 2nd International Workshop on Peer-to-

Peer Systems, 2003.

13. B. Bloom, BSpace/Time Trade-Offs in Hash Coding with

Allowable Errors^ Communications of ACM, Vol. 13, No. 7,

pp. 422Y426.

http://http://cmsinfo.cern.ch/Welcome.html/
http://http://cmsinfo.cern.ch/Welcome.html/
http://http://www.gnutella.com
http://http://devresource.hp.com/drc/topics/utility_comp.jsp
http://http://devresource.hp.com/drc/topics/utility_comp.jsp
http://http://grids-center.org/
http://http://www.gridpp.ac.uk/qcdgrid/
http://http://www.scec.org/
http://http://www.scec.org/

14. Y. Breitbart and H. Korth, BReplication and Consistency:

Being Lazy Helps Sometimes^, in 16th ACM SIGACT/

SIGMOD Symposium on the Principles of Database Systems,

Tucson, AZ, 1997.

15. M. Castro, P. Druschel, Y.C. Hu and A. Rowstron, BTopology-

Aware routing in Structured Peer-to-Peer Overlay Networks^, in

Intl. Workshop on Future Directions in Distributed Computing,

2002.

16. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and L.

Breslau, BMaking Gnutella-Like P2P Systems Scalable^, in

ACM SIGCOMM 2003, Karlshruhe, Germany, 2003.

17. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S.

Shenker, BMaking Gnutella-Like P2P Systems scalable^, in

ACM SIGCOMM 2003, Karlsruhe, Germany, 2003.

18. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A.

Iamnitchi, C. Kesselman, P. Kunst, M. Ripeanu, B.

Schwartzkopf, H. Stockinger, K. Stockinger and B. Tierney,

BGiggle: A Framework for Constructing Scalable Replica

Location Services^, in SC2002 Conference, Baltimore,

Maryland, 2002.

19. A.L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman and

R. Schwartzkopf, BPerformance and Scalability of a Replica

Location Service^, in Thirteenth IEEE Int’l Symposium High

Performance Distributed Computing (HPDC-13), Honolulu,

Hawaii, 2004.

20. I. Clarke et al., BProtecting Free Expression Online with

Freenet^, IEEE Internet Computing Journal, Vol. 6, No. 1,

pp. 40Y49.

21. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman,

BGrid Information Services for Distributed Resource Sha-

ring^, in Tenth IEEE International Symposium on High-

Performance Distributed Computing (HPDC-10), 2001,

IEEE.

22. DataTag. Grid Laboratory Uniform Environment (GLUE),

2004.

23. E. Deelman et al., BGrid-Based Galaxy Morphology Analysis

for the National Virtual Observatory^, in SC2003, 2003.

24. E. Deelman et al., BMapping Abstract Complex Workflows

Onto Grid Environments^, Journal of Grid Computing, Vol.

1, pp. 25Y39.

25. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S.

Patil, M. Su, K. Vahi and M. Livny, BPegasus : Mapping

Scientific Workflows Onto the Grid^, in Across Grids Con-

ference, Nicosia, Cyprus, 2004.

26. I. Foster and A. Iamnitchi, BOn Death, Taxes, and the

Convergence of Peer-to-Peer and Grid Computing^, in Int’l

Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley,

California, USA, 2003.

27. J. Gray, P. Helland, P. O’Neil and D. Shasha, BThe Dangers of

Replication and a Solution^, in ACM SIGMOD Conference,

1996.

28. L. Guy, P. Kunszt, E. Laure, H. Stockinger and K. Stockinger,

BReplica management in data grids^, in Global Grid Forum 5,

2002.

29. N. Harvey et al., BSkipNet: A Scalable Overlay Network with

Practical Locality Properties^, in Fourth USENIX Symposium

on Internet Technologies and Systems (USITS ’03), Seattle,

Washington, 2003.

30. F. Kaashoek and David R. Karger, BKoorde: A Simple

Degree-Optimal Hash Table^, in 2nd International Workshop

on Peer-to-Peer Systems (IPTPS ’03), 2003.

31. J.D. Kephart, BChess The Vision of Autonomic Computing^,

Computer Magazine.

32. P. Kunszt et al., BAdvanced Replica Management with

Reptor^, in 5th International Conference on Parallel Pro-

cessing and Applied Mathematics, Czestochowa, Poland,

2003, Springer.

33. LIGO Project, BLIGO Y Laser Interferometer Gravitational

Wave Observatory^, http://www.ligo.caltech.edu/, 2004.

34. Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, BSearch and

Replication in Unstructured Peer-to-Peer Networks^, in 16th

ACM International Conference on Supercomputing (ICS’02),

New York, USA, 2002.

35. A.Y.C. Mizrak, V. Kumar and S. Savage, BStructured

Superpeers: Leveraging Heterogeneity to Provide Constant-

Time Lookup^, in IEEE Workshop on Internet Applications,

San Jose, 2003.

36. J.T.W. Page et al., BManagement of Replicated Volume

Location Data in the Ficus Replicated File System^, in

USENIX Conference, 1996.

37. K. Petersen et al., BFlexible Update Propagation for Weakly

Consistent Replication^, in 16th ACM Symposium on Oper-

ating Systems Principles (SOSP-16), Saint Malo, France,

1997.

38. C. Plaxton, R. Rajaraman and A. Richa, BAccessing Nearby

Copies of Replicated Objects in a Distributed Environment^,

in ACM SPAA, Newport, Rhode Island, 1997.

39. G. Popek, The Locus Distributed System Architecture, MIT,

1986.

40. W. Pugh, BSkip Lists: A Probabilistic Alternative to Balanced

Trees^, in Workshop on Algorithms and Data Structures,

1989.

41. S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.

Shenker, BA Scalable Content-Addressable Network^, in

ACM SIGCOMM, 2001.

42. S. Ratnasamy, S. Shenker and I. Stoica, BRouting Algorithms

for DHTs: Some Open Questions^, in IPTPS02, Cambridge,

USA, 2002.

43. M. Ripeanu, BPeer-to-Peer Architecture Case Study: Gnutella

Network^, in IEEE 1st International Conference on Peer-to-

peer Computing (P2P2001), Linkoping, Sweden, 2001,

IEEE.

44. M. Ripeanu, I. Foster and A. Iamnitchi, BMapping the Gnutella

network: Properties of Large-Scale Peer-to-Peer Systems and

Implications for System Design^, IEEE Internet Computing

Journal, Vol. 6.

45. M. Ripeanu, I. Foster and A. Iamnitchi, BMapping the Gnutella

network: Properties of Large-Scale Peer-to-Peer Systems and

Implications for System Design^, IEEE Internet Computing

Journal.

46. M. Ripeanu and Ian Foster, BA Decentralized, Adaptive,

Replica Location Mechanism^, in 11th IEEE International

http://http://www.ligo.caltech.edu/

Symposium on High Performance Distributed Computing

(HPDC-11), Edinburgh, Scotland, 2002.

47. A. Rowstron and P. Druschel, BPastry: Scalable, Distributed

Object Location and Routing for Large-Scale Peer-to-Peer

Systems^, in International Conference on Distributed Sys-

tems Platforms (Middleware), 2001.

48. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B.

Lyon, BDesign and Implementation of the Sun Network

File System^, in USENIX Conference, 1985.

49. S. Saroiu, P.K. Gummadi and S.D. Gribble, BA Measurement

Study of Peer-to-Peer File Sharing Systems^, in Multimedia

Computing and Networking, 2002.

50. M. Satyanarayanan et al., BCoda: A Highly Available System

for a Distributed Workstation Environment^, IEEE Trans-

actions on Computers, Vol. 39, No. 4, pp. 447Y459.

51. S. Sen and Jia Wong, BAnalyzing Peer-to-Peer Traffic Across

Large Networks^, in Proceedings of the Second ACM

SIGCOMM Workshop on Internet Measurment, 2002.

52. J. Sidell et al., BData Replication in Mariposa^, in 12th

International Conference on Data Engineering, New

Orleans, Los Angeles, 1996.

53. I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and

H. Balakrishnan, BChord: A Scalable Peer-to-Peer Lookup

Service for Internet Applications^, in ACM SIGCOMM,

2001.

54. O. Tatebe et al., BWorldwide Fast File Replication on Grid

Datafarm^, in 2003 Computing in High Energy and Nuclear

Physics (CHEP03), 2003.

55. D.B. Terry, K. Petersen, M.J. Spreitzer and M.M. Theimer,

BThe Case for Non-transparent Replication: Examples from

Bayou^, in 14th International Conference on Data Engineer-

ing, 1998.

56. M. Wiesmann et al., BDatabase Replication Techniques: A

Three Paramater Classification^, in 19th IEEE Symposium

on Reliable Distributed Systems, Nuernberg, Germany,

2002.

57. B. Yang and H. Garcia-Molina, BDesigning A Super-Peer

Network^, in IEEE Int’l Conf. on Data Engineering,

2003.

58. E.R. Zayas and C.F. Everhart, BDesign and Specification of

the Cellular Andrew Environment^, CarnegieYMellon Uni-

versity, 1988.

59. X. Zhang, J. Freschl and J.M. Schopf, BA Performance Study

of Monitoring and Information Services for Distributed

Systems^, in Twelfth IEEE Int’l Symposium High Perfor-

mance Distributed Computing (HPDC-12), Seattle,

Washington, 2003.

60. B.Y. Zhao, J.D. Kubiatowicz and A.D. Joseph, BTapestry: An

Infrastructure for Fault-Resilient Wide-Area Location and

Routing^, U.C. Berkeley, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SPSFont4Medium
 /SpsFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

