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Abstract— In this paper, we present a real-time vision system
that integrates a number of algorithms using monocular and
binocular cues to achieve robustness in realistic settings, for tasks
such as object recognition, tracking and pose estimation. The
system consists of two sets of binocular cameras; a peripheral set
for disparity based attention and a foveal one for higher level pro-
cesses. Thus the conflicting requirements of a wide field of view
and high resolution can be overcome. One important property of
the system is that the step from task specification through object
recognition to pose estimation is completely automatic, combining
both appearance and geometric models. Experimental evaluation
is performed in a realistic indoor environment with occlusions,
clutter, changing lighting and background conditions.

I. I

In service robot frameworks as the one considered here, a
visual system is required for autononomous navigation, object
manipulation and grasping which, for general environments,
requires high degrees of flexibility and robustness. This paper
considers the problems of vision based scene segmentation,
object detection and recognition, object pose estimation and
tracking using both monocular and binocular cues. Compared
to other systems, our system consists of a large number of
integrated processes, that have previously been considered
independently or in relatively simple settings.

The presented vision system is heavily based on the active
vision paradigm, [1]. Instead of just passively observing the
world, it actively changes the viewing conditions such that
the most accurate results are obtained, in relation to the task
at hand. Our particular system consists of two pairs of stereo
cameras: a peripheral camera set and a foveal one. Recognition
and pose estimation can be done using either one of these,
depending on the size of and distance to an observed object.
From segmentation based on binocular disparities, objects of
interest are found using the peripheral camera set, which then
triggers the system to perform a saccade, moving the object
into the centre of the foveal cameras. Thus a combination of a
large field of view and high image resolution can be achieved,
without sacrificing the performance.

Compared to one recent system, [2], our system i) uses
both hard (detailed models) and soft modeling (approximate
shape) for object segmentation, and ii) choice of binocular or
monocular cues depending on the task. In addition, we believe
that our approach can easily be used with different visual
servoing configurations, i.e. eye-in-hand (foveal camera) and
stand-alone camera (peripheral camera) thus offering a trade-
off between accuracy and speed.

II. T 
Figure 1 shows a schematic overview of the basic building

blocks of the system. These blocks do not necessarily cor-
respond to the actual software components, but are shown
in order to illustrate the flow of information through the
system. For example, the visual front end consists of a several
components, some of which are running in parallel and others
hierarchically. On the other hand, action generation, such as
initiating 2D or 3D tracking, is distributed and performed
across multiple components.
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Fig. 1. Basic building blocks of the system.

The most important building blocks are:
1) The Visual Front-End is responsible for the extraction of
visual information needed for figure-ground segmentation and
other higher level processes.
2) Hypotheses Generation produces a number of hypotheses
about the objects in the scene that may be relevant to the task
at hand. The computations are moved from being distributed
across the whole image to particular regions of activation.
3) Recognition is performed on selected regions, using
either corner features are color histograms, to determine the
relevancy of observed objects.
4) Action Generation triggers actions, such as visual tracking
and pose estimation, depending on the outcome of the
recognition and current task specification.

Due to the complexity of the software system, it was par-
titioned into a number of smaller modules that communicate
through a framework built on a interprocess communication
standard called CORBA (Common Object Request Broker
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Fig. 2. The Yorick stereo-head.

Architecture).The current system consists of about ten such
modules, each running at a different frame rate. The lowest
level frame grabbing module works at a frequency of 25 Hz,
while the recognition modules is activated only upon request.

The experimental evaluation has been performed on a 1.2
GHz dual Athlon MP computer running under the Linux
operating system. The binocular stereo-head used is shown
in Figure 2. This stereo-head, known as Yorick, [14], has four
mechanical degrees of freedom; neck pan and tilt, and pan for
each camera in relation to the neck. The head is equipped with
two pairs of Sony XC999 cameras, with focal lengths 28 mm
(14◦ FOV) and 6 mm (60◦ FOV) respectively. Even if this
is just one particular system, the software components may
easily be changed to fit similar systems, since the knowledge
of the stereo-head is limited to the intrinsic camera parameters
and the length of the baseline.

III. V -

For an autonomous robot operating in a dynamic world
where unexpected events may occur, it is essential to provide
a constant flow of reliable data from the surrounding envi-
ronment. In order to extract metric information, e.g. sizes and
distances, about objects observed by the robot, the presented
system relies heavily on binocular information. The reason
for using multiple cameras is the fact that it simplifies the
problem of segmenting the image data into different regions
representing objects in a 3D scene. This is often referred to as
figure-ground segmentation. In cluttered environments figure-
ground segmentation is particularly important and difficult
to perform and commonly the reason for experiments being
performed in rather sparse, simplified environments. This is
especially true in scenarios such as ours, where a robot arm
is to be transported to the vicinity of an object.

Since the field of view of a typical camera is quite limited,
binocular information can only be extracted from those parts of
the 3D scene that are covered by both cameras’ field of view.
In order to make sure that an object of interest is foveated by
both cameras, the head is able to actively change gaze direction
and vergence angle, i.e. the difference in orientation between
the two cameras. However, since our final goal is robotic object
manipulation and grasping, we have also integrated a number
of monocular visual algorithms in the system, such as those
involving pose estimation and tracking.

A. Epipolar geometry

The presented system uses binocular disparities to perform
figure-ground segmentation and guide the robot towards po-
tential objects of interest. If the epipolar geometry is known it
is possible to relate these disparities to actual metric distances.
Instead of relying on the motor counters of the stereo-head,
the epipolar geometry is estimated continuously from image
data alone. The reason for this is that small disturbances such
as vibrations and delays introduce significant noise to the
estimation of the 3D structure. In fact, an error of just one
pixel leads to an error in depth of several centimeters on a
typical manipulation distance.

The epipolar geometry is estimated robustly using Harris’
corner features, [6]. These corners are extracted and matched
between images using normalized cross-correlation. The ori-
entation of the baseline (tx, 0, tz) measured in the first camera
frame, vergence angle ωy, relative tilt ωx and rotation around
the optical axes ωz are sought using a model of the disparities,(

dx
dy

)
=

(
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)
+
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Z

(
tx − xtz
−ytz

)
, (1)

where Z is the unknown depth of a point at image position
(x, y). Nonlinear optimization is performed using a combi-
nation of RANSAC [7] for parameter initialisation, and M-
estimators for improvements. In our previous work we have
experimentally shown that this optical flow based model, [13],
is more robust than the essential matrix in the case of binocular
stereo heads, [8], even if the essential matrix leads to a more
exact description of the epipolar geometry, [12].

B. Disparities

Since most efficient methods for dense disparity estimation
assume the image planes to be parallel, rectification has to
be performed using the estimated epipolar geometry before
disparities can be estimated. The current system includes seven
different disparity algorithms, from simple area correlation,
[15] to more complicated graph-cut methods, [16]. The benefit
of using a more advanced global method, is the fact that
they often lead to denser and more accurate results. However,
even if density is important, the computational cost of these
methods makes them infeasible for our particular application.
From our experiments we have concluded that denser results
rarely justify the increased complexity of the global methods,
and that simpler methods tend to be more robust in practice.
The second image of Figure 4 shows an example of disparities
calculated using sums of absolute differences.

In summary, the visual front-end of the presented system is
responsible for delivering 3D data about the observed scene.
Such information is extracted using a three-step process, which
includes epipolar geometry estimation, image rectification and
calculation of dense disparity maps. The generation of this data
is done continuously at a rate of 6 Hz, independently of the
task at hand and used by more high-level processes for further
interpretation. Further information on this part of the system
can be found in [9].



IV. H 

The purpose of this component is to derive qualified guesses
of where a requested object might be located in the current
scene. As mentioned above, this step is performed using the
peripheral cameras, while the recognition is done foveated.

A. Distributed attention

Unlike focused attention, distributed attention works on the
whole image, instead of being concentrated to a particular
region. From binocular disparities a target region, that might
represent an object of interest, is identified. Even if the current
system is limited to disparities, it is straightforward to add
additional cues, such as in the model proposed in [17]. Here,
we have concentrated on disparities because they contain
valuable information about object sizes and shapes. This is
especially important in a manipulation task, where the color
of an object might be irrelevant, whereas the size is not.

The only top-down information needed for hypotheses
generation is the size of the requested object and a prede-
fined depth range. The system sweeps through this range,
sequentially considering subranges equivalent to the size of
the object. For each subrange, a binary maps containing those
points that are located within the range is created. The third
image of Figure 4 shows such a map overlayed on-top of the
corresponding left peripheral image. Initial hypotheses are then
generated from the results of difference of Gaussians filters
applied to the binary maps. The scales of these filters are set so
as to maximize responses of image blobs representing objects
of the requested size and the corresponding distances.

B. Focused attention

From the object hypotheses, a target region is automatically
selected so that the gaze can be redirected and recognition
performed using the foveal cameras. The system selects the
hypothesis corresponding to the largest peak of the differences
of Gaussians. Noise, equivalent to 20% of the largest peak, is
added to the peaks prior to selection, in order to prevent the
system from being stuck at local minima. When executed in
a loop, multiple saccades can be executed until recognition
finally verifies that the requested object has been found.

Since hypotheses are found in the peripheral camera frames
and recognition is performed using the foveal ones, the relative
transformations have to be known. These are found applying
a similarity model to a set of Harris’ corner features similar to
those used for epipolar geometry estimation in Section III-A.
The relative rotations, translations and scales are continuously
updated at 2 Hz. Using this information the system translates
the target positions into the foveal camera frames.

Before a saccade is executed the target position is refined in
3D. During a couple of image frames, a local high-resolution
disparity map is calculated around the target area. A mean shift
algorithm, [18], is run iteratively updating the position from
the cluster of 3D points around the target position, represented
by the disparity map. The maximum size of this cluster is
specified using the size of the requested object.

V. R

In the current system, two recognition modules are avail-
able: i) a feature based module based on Scale Invariant Fea-
ture Transform (SIFT) features, and ii) an appearance based
module based on color histograms. Both of these methods are
presented in some detail in the following sections. The choice
of recognition algorithm is determined prior to task execution.
We are currently evaluating the performance of both methods
for different types of objects with the goal of integrating them
into a more robust combined recognition process.

A. Feature Based

In a recent study, Mikolajczyk and Schmid tested a large
number of interest point descriptors and their behaviors under
scale and illumination changes, [19]. The most robust perfor-
mance was obtained using the SIFT descriptor of Lowe, [20],
which has been thus chosen for recognition in our system. The
descriptor consists of local histograms of gradient directions
and is invariant to scale and rotation. Some flexibility in
translation is tolerated as well. Interest points locations are
found using a series of difference of Gaussians on varying
scales. For each SIFT feature extracted from the incoming
image, the closest feature among those stored in the database is
found and the corresponding model is given a vote accordingly.
For matching, a metric based on cross-correlation is applied.
The model that receives the most votes is selected for further
consideration, as long as there are more than 10 such votes.

B. Appearance Based

In a previous study [5], we extended the recognition scheme
based on the Cooccurrence Color Histograms (CCHs) that
was originally proposed by Chang [10], to pose estimation.
The histograms are used in a classical learning framework
that facilitates a winner–takes–all strategy across scales. The
major advantages of this two–step appearance based method
are its robustness and invariance to scale and translation. The
method is also computationally efficient since both recognition
and pose estimation rely on the same object representation.

VI. A G

After the image position of the object is available, object
tracking may start depending on the given task. These tasks
include for example visual servoing or target tracking.

A. 2D Tracking

Our 2D tracking system is based on integration of multiple
visual cues (motion, colors and gradients) where voting is
used as the underlying integration framework, [4]. Cues are
fused using weighted super-position and the most appropriate
action is selected according to a winner-take-all strategy.
The advantage of a voting approach is that information of
different cues can easily be combined without the need for
explicit models as it is, for example, the case with Bayesian
approaches. Lots of perceptual experiments support the idea
that, when it comes to aspects of visual scenes, people most
likely mention color, form and motion as being distinct.



Fig. 3. Objects used for experimental evaluation.

Fig. 4. Figure-ground segmentation and pose estimation. The first image shows the foveal image before a saccade has been issued. A disparity map can be
seen in the second image with object hypotheses shown in the third. The last image show the pose of the recognised object being correctly estimated.

B. Pose Estimation for 3D Tracking

For robotic manipulation, it is usually required to accurately
estimate the pose of the object to, for example, allow the
alignment of the robot arm with the object or to generate a
feasible grasp and grasp the object. There are three major steps
in our model based tracking system: (1) Initialisation - the
recognition modules presented in Section V are used here to
provide an approximation to the current object pose, (2) Pose
Estimation - the initialisation step is followed by a local fitting
method that uses a geometric model of the object, and (3) Pose
Tracking - the system provides a pose estimate of the object,
if the object or the camera start to move. For pose estimation
and tracking, the method proposed in [11] was extended as
presented in [3] by integrating robust estimation and feature
detection techniques.

VII. E 

The presented system was considered as an integrated unit
and its performance measured based on the behaviour of the
complete system. The failure of one particular module does not
necessarily mean that the whole system fails. For example,
figure-ground segmentation might well fail to separate two
nearby objects located on a similar distance, but the system
might still be able to initiate pose estimation after recognition.
A number of properties of the system have been evaluated, as
will be described in more detail in the sections below.

For recognition, the set of objects shown in Figure 3 was
considered. A database consisting of object models based on
SIFT features and CCHs was created. Only one view per object
was used for the SIFT models, while the CCHs were based
on multiple views. At a later stage we hope to expand the
database to include more models and views. Pose estimation
was only considered for the first three box-like objects. For
this purpose, the width, height and thickness of these objects
had to be included to the database.

Due to the limitations of the database and the fact that the
observed recognition scores did not significantly differ from
those already published in [20] and [5], we have chosen not to

include any additional quantitative results. However, observa-
tions have lead us to believe that recognition would benefit
from CCHs and SIFT features being used in conjunction.
For example, the blue car is rarely recognized properly using
SIFT, since the most salient features are due to specularities.
However, the distinct color makes it particularly suitable for
CCHs, which on the other hand have a tendency of mixing up
the tiger and the giraffe, unlike to recognition module based
on SIFT features.

A. Binocular Segmentation and Pose Estimation

The first experiment illustrates the typical behavior of
the system with binocular disparity based figure-ground seg-
mentation and SIFT based recognition. Results from these
experiments can be seen in Figure 4. The first image shows
the left foveal camera image prior to the experiment. It is
clear that a requested object would be hard to find, without
peripheral vision controlling the gaze direction. However, from
the disparity map in the second image the system is able to
locate a number of object hypotheses, which are shown as
white blobs ovarlayed on-top of the left peripheral camera
image in the third image of the figure.

The recognition score for this example was 70%, measured
as the fraction of SIFT features being matched to one particular
model. Once an object has been recognised, pose estimation is
automatically initiated. This is done using SIFT features from
the left and right foveal camera images, fitting a plane to the
data. Thus, it is assumed that there is a dominating plane that
can be mapped to the model. The process is further improved
by searching for straight edges around this plane. The last
image show an example of this being done in practice.

B. Monocular CCH Recognition and Pose Estimation

Figure 5 shows an example of recognition and pose esti-
mation based on monocular CCH. Here, object recognition
and rotation estimation provide the initial values for the
model based pose estimation and tracking modules. With the
incomplete pose calculated in the recognition (first figure from
the left) and orientation estimation step, the initial full pose



Fig. 5. From object recognition to pose estimation, (from left): i) the output of the recognition, ii) initial pose estimation, iii) after few fitting iterations,
iv) the estimated pose of the object.

Fig. 6. The effect of imperfect segmentation on object localisation.

is estimated (second figure from the left). After that, a local
fitting method matches lines in the image with edges of the
projected object model. The images obtained after convergence
of the tracking scheme is shown on the right. It is important
to note, that, even under the incorrect initialization of the two
other rotation angles as zero, our approach is able to cope with
significant deviations from this assumption - here, the angle
around the optical axis is more than 20◦.

C. Robustness of disparity based figure-ground segmentation

As mentioned in Section IV, object hypotheses are found
from a binary map of pixels located within a given depth range.
There are some obvious disadvantages associated with such a
procedure. First of all, an object might partially occupy the
range, while parts of it extend beyond the range. This can be
seen in the upper left image of Figure 6, while it does not
occur in the second image on the same row. However, thanks
to the target position refinement process, a saccade is issued to
approximately the same location in both cases. This is shown
in the last two images on the upper row, where the third image
corresponds to the hypothesis found in the first image.

Another challenge occurs if two nearby objects are placed
on almost the same distance, especially if the background lacks
sufficient texture. Then the objects might merge into a single
hypothesis, which is shown on the second row of Figure 6.
In our experiments this seemed more common when a global
disparity method [16] was used and is the reason why we
normally use simple area correlation. The global optimisation
methods tend to fill in the space between the two objects,
falsely assuming that rapid changes in disparities are unlikely

and thus should be suppressed. The right two images on the
last row show that pose estimation might still be possible,
even when hypotheses are merged, since the target position
refinement will converge to either one of the two objects.

D. Robustness towards occlusions

In a cluttered environment, a larger fraction of objects are
likely to be occluded. These occlusions affect most involved
processes, in particular those of recognition and pose estima-
tion. The first two images in Figure 7 show a scene in which
the sugar box is partially occluded behind a bottle. In the first
image, the recognition fails because not enough foveal features
are available, while successful recognition and pose estimation
is possible in the second image, as shown by the estimated
pose in the third image. As is shown in the fourth image, a
failure in the pose estimation does not necessarily mean that
the results are useless, since the location of the object in 3D
space might still be available.

E. Robustness of pose initialisation towards rotations

Since only one view per object was considered for SIFT
based recognition, the sensitivity of the system to rotations
was expected to be high. It is already known that for efficient
recognition using these features, the relative orientation be-
tween test image and model ought to be less than about 30◦,
[20]. Likely because our model set only consisted of eight
objects, our study indicated that slightly larger angles were in
fact possible. In the image of Figure 8 an object was rotated
about 40◦ and 60◦ respectively. The rise package was correctly



Fig. 7. The effect of occlusions on segmentation and pose estimation.

Fig. 8. The effect of large rotations on pose initialisation.

recognized at scores higher than 70%. However, the break-
point turned out to be highly object dependent. For an object
like the tiger, the breakpoint was as low as 20%.

As can be seen in the first two images, larger rotations tends
to be underestimated when the pose is initialised. However,
these errors are still below what is required for the pose
estimation to finally converge. The last two images show the
estimated pose after a few initial iterations. Even at 60◦ the
process will converge, but at a somewhat slower rate. For 40◦

and below, convergence is reach within a few frames.

VIII. S  C

In this paper, we have presented a real-time vision system
that integrates monocular and binocular cues for figure-ground
segmentation, object recognition, pose estimation and tracking
using foveal and peripheral vision. One important property
of the system is that all steps from task specification to
pose estimation are completely automatic, combining both
appearance and geometric models. Experimental evaluation,
performed in a realistic indoor environment with occlusions,
clutter and changing background conditions, shows the ability
of the integrated system to perform tasks even in the cases
where individual cues fail. Our current work investigates the
importance of higher level, a-priori cognitive knowledge to
guide the choice of algorithms depending on the task at
hand and the benefits of combining complementary methods
for recognition and figure-ground segmentation. In order to
properly evaluate the performance of recognition methods, we
intend to extend the database of available objects.
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