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Recently, data analyses and model simulations have indicated that as the planet is 

warming, the chance for extreme events increases. Karl et al. [1995] examined 

precipitation records over the 20th century and showed that the high-frequency (up to 

interannual) variability has increased. Subsequently, Tsonis [1996] showed that the low-

frequency variability has also increased. These variability trends indicate that the 

frequency of extremes (more drought events and more heavy precipitation events) has 

increased whereas the mean has remained approximately the same. Such a tendency is 

observed with other variables and is consistent with model projections of a warmer 

planet. 

Interestingly, a tendency for increased extremes is often translated as increased 

randomness (simply because the fluctuations increase). Strictly speaking, however, this is 

incorrect. An increase in the extremes affects the probability distribution of a random 

variable, but the variable is still random and thus it is equally unpredictable. This is in 

agreement with the Chaitin- Kolmogorov-Solomonoff complexity definition of 

randomness [Casti, 1990]. According to this definition the degree of randomness of a 

given sequence is determined by the length of the computer program written to reproduce 

it. If the program involves as many steps as the length of the sequence, then the sequence 

is called maximally random. Random sequences generated from probability distributions 

are all equally maximally random because their values appear with no particular order or 

repetition, regardless of the form of the distribution. As such to describe such sequences 

one must write a program that involves as many steps as the length of the sequence. It 

follows that changes in the degree of randomness cannot be assessed by changes in the 

probability distribution. Changes in the degree of randomness can only be probed by 
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changes in the dynamical properties of a system with complex behavior. If the dynamics 

change the system may become more (less) complex, which will imply that a longer 

(shorter) program will be needed to describe it. 

 

Changes in predictability 

 A common element in any definition of randomness is unpredictability. Simply, a 

process is random if we cannot predict it. If changes in global temperature affect the 

degree of randomness in the climate system, then predictability should vary according to 

temperature trends. Toward this end we need to consider a strong signal of our climate 

system with demonstrated complex structure and investigate its predictability as the 

global temperature varies. A good candidate is El Nino/ Southern Oscillation (ENSO). 

Because of the established nonlinear character of ENSO and its connection to global 

dynamics it represents an excellent candidate to empirically investigate the relation 

between predictability and global temperature.  

Dynamically speaking predictability is equal to the inverse of the Kolmogorov 

entropy (K), which is equal to the sum of all the positive Lyapunov exponents. Lyapunov 

exponents relate to the divergence of nearby states at a specific location in the attractor. 

The inverse of K is a measure of the predictability of the system. Thus, changes in 

predictability can be assessed by probing the local structure of the attractor (or the local 

Lyapunov exponents) along the trajectory generated by the Southern Oscillation Index 

(SOI) [Abarbanel et al., 1991]. For SOI we find [Tsonis and Elsner, 1997] that there exist 

two positive exponents.  Their sum ranges from a minimum of about 0.3 to a maximum 

of about 0.5 (months-1) (Figure 1 top). A careful examination of Figure 1 (top) reveals 
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striking similarities with global temperature records. It exhibits an overall positive trend 

with the following features: a decrease up to about 1905, a steady increase up to about 

1940, a subsequent decrease up to about 1970 and a rise afterwards.  Such features are 

identified in almost all global temperature records as, for example, the global marine air 

temperature record [Newell, 1989] (Figure 1 bottom).  The two signals in figure 1 

correlate highly but this could be due to the presence of the overall slight positive trends.  

However, coherence analysis [Tsonis and Elsner, 1997] has established that the residuals 

of the detrended time series are coherent with high confidence for all frequencies less 

than 0.25 cycles/year. Even though the two signals may differ at short scales, their 

oscillatory components at low frequencies are linearly related, which means that warmer 

temperatures correspond to higher K values or to lower predictability. We conclude that 

as the global temperature increases predictability decreases. According to the definition 

of randomness this result indicates that as the global temperature increases the 

randomness of the climate system increases as well. The physical mechanism behind this 

relation can be understood in terms of a subsystem of the climate system (ENSO) and its 

connectivity to global temperature [Tsonis et al., 2003]. 

 

Climate networks 

A network is a system of interacting agents. In the literature an agent is called a 

node. The nodes in a network can be anything. In the network of actors, the nodes are 

actors that are connected to other actors if they have appeared together in a movie. In a 

network of species the nodes are species that are connected to other species they interact 
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with. In the network of scientists, the nodes are scientists are connected to other scientists 

if they have collaborated. There are four basic types of networks.  

a) Regular (ordered) networks. These networks are networks with a fixed number of 

nodes, each node having the same number of links connecting it in a specific way to a 

number of neighboring nodes (Figure 1a). These networks exhibit high degree of local 

clustering, meaning that connecting two far away nodes requires many steps.  

b) Classical random networks. In these networks [Erdos and Renyi, 1960] the nodes are 

connected at random (Figure 1b). In the case the degree distribution is a Poisson 

distribution (the degree distribution, pk, gives the probability that a node in the network is 

connected to k other nodes). In random networks connecting far away nodes requires only 

a few steps. 

c) Small-world networks.  

A ‘small-world’ network is a superposition of regular and classical random graphs. Such 

networks exhibit a high degree of local clustering, but they also have a small number of 

random long-range links (Figure 1c). These random links help connect far away nodes 

with only a few steps [Watts and Strogatz, 1998]. Both random and ‘small-world’ 

networks are rather homogeneous networks in which each node has approximately the 

same number of links <k>. Both have nearly Poison degree distributions that peak at 

<k> and decay exponentially for large k. 

d) Networks with a given degree distribution. These networks have a degree distribution 

other than Poisson. The most interesting and common of such networks are the so-called 

scale-free networks, in which the degree distribution is the power law pk ~ k -γ  (Figure 

1d). Like a map showing an airline’s routes, this network has a few hubs connecting to 
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many other points (super nodes) and many points connected to only a few other points. 

Such a map is highly clustered; yet one can move for a point to another far away point 

with just a few connections. As such, this network has the property of ‘small-world’ 

networks. Note that scale-free networks have properties of ‘small-world’ networks, but 

‘small-world’ networks a la Watts and Strogatz are not scale-free [Barabasi and 

Bonabeau, 2003].  

The networks can be either fixed, where the number of nodes and links remains 

the same, or evolving, where nodes and links may be added or eliminated. Whatever the 

type of the network, its underlying topology provides clues about the collective dynamics 

of the network. The structural properties of networks are provided by the clustering 

coefficient C and the characteristic path length (or diameter) L of the network. The 

clustering coefficient is defined as follows: Assume that a node i is connected to ki other 

nodes. Now consider the ki closest nodes of i. This defines the neighborhood of i. Then 

count the number of links, ∆i, between any two nodes of the neighborhood (excluding 

node i). The clustering coefficient of node i is then given by Ci=2∆i/ki(ki-1). Since there 

can be at most ki(ki-1)/2 links between ki nodes (which will happen if they formed a fully 

connected subnetwork), the clustering coefficient is normalized on the interval [0,1]. The 

average Ci over all nodes provides C. As such C provides a measure of local 

“cliqueness”. The diameter of the network is defined by the average number of 

connections needed to connect any two nodes in the network. Graph theory predicts that 

for classical random networks Lrandom≈lnn/ln<k> and Crandom≈<k>/n , where <k> is the 

average number of connections per node [Watts and Strogatz, 1999]. The ‘small-world’ 

property requires that C>> Crandom and L≥Lrandom. From these conditions it follows that if a 
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network is changing in time in a way that C and L decrease, then the network approaches 

the classical random limit (i.e. its degree of randomness increases).  

Tsonis and Roebber [2004] applied these ideas to a climate network using 500hPa 

data in the period 1948-1999. The nodes of the networks were points arranged in a 5ox5o 

grid. Any two points were assumed as connected if the correlation between their 

corresponding time series was above a statistically significant threshold. From all 

possible 3,547,116 pairs about 350,000 were found to be connected. For this network it 

was estimated that L=2.7, C=0.69, and <k>=170. For a random network with the same 

specifications (number of nodes, and average links per node) it is estimated that 

Lrandom=1.5 and Crandom=0.08. These values indicate that indeed L≥Lrandom and C>>Crandom 

(by a factor of about nine). Thus, this global network appears to have the ‘small-world’ 

property.  

There are some very interesting implications of the climate system having ‘small-

world’ properties [for more details see Tsonis and Roebber, 2004], but here we will stick 

with the relevant issue, which is that if L and C decrease in time, then the network’s 

degree of randomness increases. The 52-year period used in this preliminary study can be 

divided into two distinct periods each of length of 26 years. One is the 1948-1973 and the 

other the 1974-1999 period. During the first period the global temperature shows no 

significant overall trend. During the second period a very strong positive trend is present. 

Does this change in the global property of the system affect the dynamics of the network? 

To answer this question C and L for the two periods were estimated. It was found that C 

is about 5% smaller and L is about 4% smaller in the second period. This result will 

indicate that during the warming of the planet the network has acquired more long-range 
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connections and less small range-connections. This is shown in Figure 3, which shows 

the distribution of the connections according to their distance. The thick line represents 

the distribution in the first period and the thin line the distribution in the second period. 

This figure shows that the frequency of long-range connections (>7,500 Km) has 

increased whereas the frequency of shorter-range connections (2,500-7,500 Km) has 

decreased. One may argue that visually these differences are not impressive, but that with 

a network having hundreds of thousand of connections these distributions are statistically 

different at the 99% confidence level (according to Kolmogorov-Smirnov test) or at the 

95% confidence level (from bootstrapping; see inset). A tendency for smaller C and L 

implies that the network is becoming more random. Therefore, this analysis indicates that 

as the global temperature increases the properties of the climate network tend to the 

properties of a network with increased degree of randomness. A possible mechanism that 

explains this result and ties it with the first analysis is that a warmer planet makes the 

large scales more coherent (as temperature increases at all places). At the same time, 

fluctuations at small scales increase thereby decreasing short-range correlations. This 

follows from thermodynamic arguments: the higher the temperature of the system the 

larger the fluctuations in the system. 

An investigation into some of the dynamical properties of the climate system is 

presented. Two different approaches are considered. One approach finds predictability as 

a function of time of a very strong signal of the system. It is found that predictability is 

highly correlated to global temperature. More specifically, as the global temperature 

increases predictability decreases. This translates to increasing degree of randomness. 

The other approach studies the collective behavior of the climate system using network 
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dynamics and concludes that this behavior is consistent with a network of increasing 

randomness. Thus, both approaches agree that global warming has resulted in an increase 

of randomness in the climate system.  
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Figure captions 

 

Figure 1: Top: The sum of the positive Lyapunov exponents (months-1) along the 

trajectory (i.e. as a function of time) generated by the SOI index. The inverse of this sum 

is a measure of the predictability of the system. Bottom: The global marine temperature 

record. As explained in the text these two signals are coherent at all frequencies less than 

0.25 cycles/year.  

 

Figure 2: Example of an ordered, a random network, a ‘small-world’, and a scale-free 

network (adopted from Watts and Strogatz 1999 and Strogatz 2001). 

 

Figure 3: The relative frequency distribution of the connections according to their 

distance for the period 1948-1973 (thick line) and for the period 1974-1999 (thin line). 

The inset shows results from bootstrapping in the range between 10,000 and 16,500 Km. 

We randomly selected two 26 years samples from our 52-year period and produced 

similar distributions. We then repeated this 1000 times and produced the 2.5% and 97.5% 

confidence intervals of these distributions indicated by the broken lines. The distributions 
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of the first and second 26-year period are outside these intervals indicating that their 

differences are statistically significant at the 95% level. This conclusion is also valid for 

most of the range between 2,500 and 7,500 km, but for clarity we only show the 

magnification at longer distances.  
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