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CAPSULE: Networks offer a new way to study the collective behavior of 

interactive systems. Advances into understanding the coupling architecture 

of complex networks have already resulted in new insights in many areas of 

science. 
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ABSTRACT 

 

The study of networks has recently exploded into a major research tool in many 

areas of sciences. The discovery of ‘small-world’ and scale-free networks has led to 

many new insights about the collective behavior of a large number of interacting 

agents and complex systems. Here we introduce the basic ideas behind networks as 

well as some initial applications of networks to the climate system. Our results 

suggest that the climate system exhibits aspects of ‘small-world’ networks as well as 

of scale-free networks with super nodes corresponding to major teleconnection 

patterns. This result suggests that the organization of teleconnections may play a 

role in the stability of the climate system. In addition, preliminary work suggests 

that temporal changes in the network’s architecture may be used to identify 

signatures of global change. These and other applications suggest that networks 

provide a new tool for investigating and reconstructing climate dynamics from both 

models and observations. 

 

Last summer one of us (AAT) visited the Greek island of Corfu. During summer the 

population of the island is 100,000 people. Before he went there, he knew only two 

Corfians. The first night of his stay he dined in one of the restaurants close to his hotel. 

Greeks being the friendly people they are, always open a discussion about who you are, 

what you do, and so on. So, as the waiter takes his order they start talking about such 

things. What do you think is the probability that the waiter knows one of the two 

Corfians? This problem has an analytical solution but the fact is that the waiter did know 
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one of the two Corfians. Otherwise stated, it only took one connection between two 

persons that did not know each other to arrive to a common link. It is a small world after 

all! Through the work of the American psychologist Stanley Milgram and other 

subsequent investigations we know that any two of the six billion people on Earth are 

linked by a trail of only six people (Milgram 1967). This is referred to as the six degrees 

of separation. 

 

Insights in such strange but otherwise common connections have been provided by the 

study of networks. A network is a system of interacting agents. In the literature an agent 

is called a node. The nodes in a network can be anything. For example, in the network of 

actors, the nodes are actors that are connected to other actors if they have appeared 

together in a movie. In a network of species the nodes are species that are connected to 

other species they interact with. In the network of scientists, the nodes are scientists that 

are connected to other scientists if they have collaborated. In the grand network of 

humans each node is an individual, which is connected to people he or she knows.  

 

There are four basic types of networks.  

 

a) Regular (ordered) networks. These networks are networks with a fixed number of 

nodes, each node having the same number of links connecting it in a specific way to a 

number of neighboring nodes (Fig. 1, left panel). If each node is linked to all other nodes 

in the network, then the network is a fully connected network. 

.  
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b) Classical random networks. In these networks (Erdos and Renyi 1960) the nodes are 

connected at random (Fig. 1, right panel). In this case the degree distribution is a Poisson 

distribution (the degree distribution, pk, gives the probability that a node in the network is 

connected to k other nodes). The problem with these networks is that they are not very 

stable. Removal of a number of nodes at random, may fracture the network to non-

communicating parts. 

 

c) Small-world networks. Regular networks are locally clustered, which means that, 

unless they are fully wired, it takes many steps to go from a node to another node away 

from its immediate neighborhood. On the contrary, random networks do not exhibit local 

clustering. Far away nodes can be connected as easily as nearby nodes. In this case 

information may be transported all over the network much more efficiently than in 

ordered networks. Thus, random networks exhibit efficient information transfer and 

regular networks do not (unless they are fully connected). This dichotomy of networks as 

either regular or random is undesirable since one could expect that in nature networks 

should be efficient in processing information and at the same time be stable. Work in this 

direction led to a new type of network, which was proposed a few years ago by the 

American mathematicians Duncan Watts and Steven Strogatz (1998) and is called ‘small-

world’ networks. A ‘small-world’ network is a superposition of regular and classical 

random graphs. Such networks exhibit a high degree of local clustering but a small 

number of long-range connections make them as efficient in transferring information as 

random networks. Those long-range connections do not have to be designed. A few long-

range connections added at random will do the trick (Fig. 1, middle panel). Both random 
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and ‘small-world’ networks are rather homogeneous networks in which each node has 

approximately the same number of links <k>. Both have nearly Poisson degree 

distributions that peak at <k> and decay exponentially for large k. 

 

d) Networks with a given degree distribution. The ‘small-world’ architecture can 

explain phenomena such as the six-degrees of separation (most people are friends with 

their immediate neighbors but we all have one or two friends a long way away), but it 

really is not a model found often in the real world. In the real world the architecture of a 

network is neither random nor ‘small-world’ but it comes in a variety of distributions 

such as truncated power-law distributions (Newmann 2001), Gaussian distributions 

(Amaral et al. 2000), power-law distributions (Faloutsos et al. 1999), and distributions 

consisting of two power-laws separated by a cutoff value of k (Dorogovtsev and Mendes 

2001; Ferrer and Sole 2001). The last two types emerge in certain families of networks 

that grow in time (Dorogovtsev and Mendes 2001; Barabasi and Albert 1999).  

 

The most interesting and common of such networks are the so-called scale-free networks, 

in which the degree distribution is the power law pk ~ k -γ. Consider a map showing an 

airline’s routes (Fig. 2). This map has a few hubs connecting with many other points 

(super nodes) and many points connected to only a few other points, a property 

associated with power law distributions. Such a map is highly clustered, yet it allows 

motion from a point to another far away point with just a few connections. As such, this 

network has the property of ‘small-world’ networks, but this property is not achieved by 

local clustering and a few random connections. It is achieved by having a few elements 
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with large number of links and many elements having very few links.  Thus, even though 

they share the same property, the architecture of scale-free networks is different than that 

of ‘small-world’ networks. Such inhomogeneous networks have been found to pervade 

biological, social, ecological, and economic systems, the internet, and other systems 

(Albert et al.1999; Jeong, et al. 2000; Liljeros et al. 2001; Jeong et al. 2001;  Pastor-

Satorras and Vespignani 2001; Bouchaud and Mezard 2000; Farkas et al. 2003; Barabasi 

and Bonabeau 2003; Albert and Barabasi 2002). These networks are referred to as scale-

free because they show a power-law distribution of the number of links per node. Lately, 

it was also shown that, in addition to the power-law degree distribution, many real scale-

free networks consist of self-repeating patterns on all length scales. This result is 

achieved by the application of a renormalization procedure that coarse-grains the system 

into boxes containing nodes within a given 'size' (Song et al. 2005). In other words scale-

free networks also exhibit fractal geometry. These properties are very important because 

they imply some kind of self-organization within the network. Scale-free networks are 

not only efficient in transferring information, but due to the high degree of local 

clustering they are also very stable (Barabasi and Bonabeau 2003). Because there are 

only a few super nodes, chances are that accidental removal of some nodes will not 

include the super nodes. In this case the network would not become disconnected. This is 

not the case with random and to a lesser degree with ‘small-world’ networks, where 

accidental removal of the same percentage of nodes makes them more prone to failure 

(Barabasi and Bonabeau 2003; Albert et al. 2000). A scale-free network is vulnerable 

only when a super node is ‘attacked’. Note that scale-free networks have properties of 

‘small-world’ networks, but ‘small-world’ networks a la Watts and Strogatz are not scale-
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free. An example of such a network is given in Fig. 3, which shows the network of 

interactions between the proteins in the yeast Saccharomyces cerevisiae, otherwise 

known as baker’s yeast (Jeong et al. 2001). By looking at the connectivity of each protein 

to other proteins, the authors were able to determine that more than 90% of the proteins 

in the network have less than five links and only one in five of these were essential to the 

survival of the yeast. In other words removing these proteins did not affect the function of 

this organism. In contrast, they found that less than 0.7% of the proteins were hubs 

having many more than fifteen connections. For these hubs they found that removal of 

any hub resulted in the death of the organism. Such findings, which can only be 

delineated by constructing the network, can be extremely useful as they may lead to ways 

to protect the organism from microbes by specifically protecting the hubs.  In other areas, 

the presence of scale-free networks has led to strategies to slow the spread of diseases 

(Lijeros et al. 2001) and strategies to secure the internet (Barabasi and Bonabeau 2003). 

                 

The networks can be either fixed, where the number of nodes and links remains the same, 

or evolving, where the network grows as more nodes and links are added (some times in 

the literature growing networks are classified as a new type of network). Whatever the 

type of the network, its underlying topology provides clues about the collective dynamics 

of the network. The basic structural properties of networks are delineated by the 

clustering coefficient C and the characteristic path length (or diameter) L of the network. 

The clustering coefficient is defined as follows and is illustrated in Fig. 4: Assume that a 

node i is connected to ki other nodes. Now consider the ki closest nodes of i. This defines 

the neighborhood of i. Then count the number of links, ∆i, between any two nodes of the 
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neighborhood (excluding node i). The clustering coefficient of node i is then given by 

Ci=2∆i/ki(ki-1). Since there can be at most ki(ki-1)/2 links between ki nodes (which will 

happen if they formed a fully connected subnetwork), the clustering coefficient is 

normalized on the interval [0,1]. The average Ci over all nodes provides C. As such C 

provides a measure of local “cliqueness”. The diameter of the network is defined by the 

number of connections in the shortest path between two nodes in the network averaged 

over all pairs of nodes. For a random network having the same average number of 

connections per node, <k>, it can be shown analytically (Bollabas 1985; Watts and 

Strogatz 1998; Albert and Barabasi 2001) that Lrandom=lnN/ln<k> and Crandom=<k>/N. 

The ‘small-world’ property requires that C>> Crandom and L≥Lrandom. There are other 

measures and ways to investigate networks. Examples include minimum spanning trees 

(Mantegna 1998), asset trees and asset graphs (Onnela et al. 2004), tree length and 

occupation levels (Onnela et al. 2003), intensity and coherence of networks (Onnela et al. 

2005), but here we will stick with the basic principles. 

  

CLIMATE NETWORKS. How can these ideas be extended to a system like the 

climate? One way is to assume that interacting dynamical systems can also form a 

network. Consider for example the results shown in Fig. 5. In this figure we start with a 

number of limit-cycle (periodic) oscillators with distributed natural frequencies. The state 

of each oscillator is represented as a dot in the complex plane. The amplitude and phase 

of each oscillation correspond to the radius and angle in polar coordinates. The color of 

each oscillator indicates its natural frequency (ranging from violet to red or from high to 

low frequency). If the oscillators are not coupled, then each oscillator will settle onto its 
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limit cycle and will rotate at its natural frequency. When they are coupled, however, the 

oscillators appear to self-organize and rotate as a synchronized group with locked 

amplitudes and phases.  When the oscillators are more complex than a limit cycle (for 

example chaotic) the situation can be more complicated, but studies have shown that 

synchronization is possible in this case as well (Strogatz 2001). This synchronization 

translates into links between the individual oscillators that define the structure of the 

network of these dynamical systems. Thus, one way to apply networks to climate system 

is to assume that climate is represented by a grid of oscillators each one of them 

representing a dynamical system varying in some complex way. What we are then 

interested in, is the collective behavior of these interacting dynamical systems and the 

structure of the resulting network. Next, we will present an example, which will introduce 

us to the applications and promise of networks in atmospheric sciences. Some of these 

ideas have been presented in two recent publications by Tsonis and Roebber (2004) and 

Tsonis (2004).  

 

We start by considering the global National Center for Environmental Prediction/ 

National Center for Atmospheric Research (NCEP/NCAR) reanalysis 500 hPa data set 

(Kistler et al. 2001). A 500 hPa value indicates the height of the 500 hPa pressure level 

and provides a good representation of the general circulation (wind flow) of the 

atmosphere. The data used here are arranged on a grid with a resolution of 5o latitude x 5o 

longitude. For each grid point monthly values from 1950 to 2004 are available. This 

results in 72 points in the east-west direction and 37 points in the north-south direction 

for a total of n=2664 points. These 2664 points will be assumed to be the nodes of the 
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network. From the monthly values we produced anomaly values (actual value minus the 

climatological average for each month). Thus, for each grid point we have a time series 

of 660 anomaly values. In order to define the “connections” between the nodes, the 

correlation coefficient at lag zero (r) between the time series of all possible pairs of nodes 

[n(n-1)/2= 3,547,116  pairs] is estimated. Note that even though r is calculated at zero 

lag, a “connection” should not be thought of as “instantaneous”. The fact that the values 

are monthly introduces a time scale of at least a month to each “connection”. Even 

though most of the annual cycle is removed by producing anomaly values, some of it is 

still present as the amplitude of the anomalies is greater in the winter than in the summer. 

For this reason, in order to avoid spurious high values of r, only the values for December, 

January and February in each year were considered. It follows that the estimation of the 

correlation coefficient between any two time series is based on a sample size of 165. Note 

that since the values are monthly anomalies there is very little autocorrelation in the time 

series. A pair is considered as connected if their correlation |r| ≥ 0.5. This criterion is 

based on parametric and non-parametric significance tests. According to the t-test with 

N=165, a value of r=0.5 is statistically significant above the 99% level. In addition, 

randomization experiments where the values of the time series of one node are scrambled 

and then are correlated to the unscrambled values of the time series of the other node 

indicate that a value of r=0.5 will not arise by chance. The use of the correlation 

coefficient to define links in networks is not new. Correlation coefficients have been used 

to successfully derive the topology of gene expression networks (Farkas et al. 2003; de la 

Fuente et al. 2002; Featherstone and Broadie 2002; Agrawal, 2002), and to study 

financial markets (Mantegna 1999). The choice of r=0.5 while it guarantees statistical 

 10



significance is somewhat arbitrary. The effect of different correlation threshold is 

discussed in Tsonis and Roebber (2003). In any case, one may in fact consider all pairs as 

connected and study the so called weighted properties of the network where each link is 

assigned a weight proportional to its corresponding correlation coefficient (Onnela et al. 

2003, 2004). For the scope of this paper, however, we will keep things simple and 

consider that a pair is connected if the correlation coefficient is above a threshold. 

 

Once we have decided what constitutes a link, we are ready to look at the architecture of 

this network and how does it relate to dynamics. Figure 6 provides a first insight to this 

question. It shows the area weighted number of total links (connections) at each 

geographic location. More accurately it shows the fraction of the total global area that a 

point is connected to. This is a more appropriate way to show the architecture of the 

network because the network is a continuous network defined on a sphere, rather than a 

discrete network defined on a two-dimensional grid. Thus, if a node i is connected to N 

other nodes at λN latitudes then its area weighted connectivity, iC~ , is defined as  

                                    ∑∑ ∆∆=
=

φλ
λλ

andallover

N

j
ji AAC coscos~

1
  (1) 

where ∆A is the grid area at the equator and ϕ is the longitude. Once we have the 

information displayed in Fig. 6 we can estimate C and L. According to the definition of 

connectivity (equation 1), in order to find the clustering coefficient of node i, Ci, we 

consider a circular area on the sphere centered on i which is equal to iC~  . Then Ci is the 

fraction of this circular area that is connected (for a fully connected area, i.e. all pairs of 

nodes are connected, Ci=1 for all i). The average Ci over all nodes provides the clustering 
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coefficient of the network, C. Note also that according to the definition of C~ , the average 

iC~ over all nodes gives the clustering coefficient Crandom. Concerning the estimation of L, 

rather than finding the number of connections in the shortest path between two points, we 

estimate the distance of this path on the sphere. For this network we find that L ≅ 9,600 

Km and C=0.56. For a random network with the same specifications (number of nodes, 

and average links per node) it is estimated that Lrandom ≅ 7,500 Km and Crandom=0.19. 

These values indicate that indeed L≥Lrandom and C>Crandom (by a factor of three), which 

will make this global network close to a ‘small-world’ network. There is, however, more 

to this global network than what these values suggest.  

 

Returning to Fig. 6 we observe that it displays two very interesting features. In the tropics 

it appears that all nodes posses more or less the same number of connections, which is a 

characteristic of fully connected networks. In the extratropics it appears that certain nodes 

posses more connections than the rest, which is a characteristic of scale-free networks. In 

the northern hemisphere we clearly see the presence of regions where such super nodes 

exist in China, North America and Northeast Pacific Ocean. Similarly several super 

nodes are visible in the southern hemisphere. These differences between tropics and 

extratropics are clearly delineated in the corresponding degree distributions. Figure 7 

shows, on a double logarithmic plot, the distribution of nodes according to how many 

links they possess (i.e. pk against k). Given the definition of a link in our case, this figure 

indicates the fraction of the total area covered as a function of the connectivity,C~ . More 

specifically, Fig. 7a shows the distribution of nodes in the extratropical region of 30N-

65N and 30S-65S and Fig. 7b shows the corresponding distribution of nodes in the 
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tropics (20N-20S). The region from 20N-30N and 20S-30S is a transition between the 

two regimes and was left out for better delineation of the properties in the tropics and 

extratropics. Figure 7a appears to exhibit a scaling regime similar to those observed in 

scale-free networks. In fact, the slope of this graph is around -2.0 in agreement with other 

scale-free networks (Barabasi and Albert 1999). In Fig. 7b no such regime is identifiable. 

The distribution is basically a narrow peak at about C~ = 0.5 indicating that most points 

possess the same large number of connections, a characteristic of regular almost fully 

connected networks. Deviations from the power law (manifesting as a peak at about C~ = 

0.4 in 7a) and uniformity (the four points below C~ = 0.1 in 7b) are due to the fact that the 

two subnetworks are interwoven; a node in one subnetwork may be connected to a node 

or nodes in the other subnetwork. Note that very similar results are obtained if instead of 

the 30-65 N and 30-65 S belts the whole extratropical area (35-90N and 35-90 S) is 

considered. It thus appears that the overall network is a “fusion” of a fully connected 

tropical network and a scale free extratropical network. As is the case with all scale-free 

networks, the extratropical subnetwork is also a ‘small-world’ network. Indeed, we find 

that for points in the extratropics, the clustering coefficient is much greater than that of a 

corresponding random network (by a factor of nine). The collective behavior of the 

individual dynamical systems in the complete network is not described by a single type 

but it self-organizes into two coupled subnetworks, one regular almost fully connected 

operating in the tropics and one scale-free/‘small-world’ operating in the higher latitudes. 

The extratropics are considered as one subsystem, even though they are physically 

separated. Whether or not we consider them as one or two subsystems it does not modify 

the physical interpretation, which is that the equatorial network acts as an agent that 
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connects the two hemispheres, thus allowing information to flow between them. This 

interpretation is consistent with the various suggested mechanisms for inter-hemispheric 

teleconnections (Tomas and Webster 1994; Love 1985; Compo et al. 1999; Meehl et al. 

1996; Carrera 2001) and with the notion of sub-systems in climate proposed in the late 

1980s (Tsonis and Elsner 1989; Lorenz 1991), and with recent studies on synchronized 

chaos in the climate system (Duane et al. 1999).  

 

An interesting observation in Fig. 6 is that super nodes may be associated with major 

teleconnection patterns. For example, the super nodes in North America and Northeast 

Pacific Ocean coincide with the well-known Pacific North America (PNA) pattern 

(Wallace and Gutzler 1981). In the southern hemisphere we also see super nodes over the 

southern tip of South America, Antarctica and South Indian Ocean that are consistent 

with some of the features of the Pacific South America (PSA) pattern (Mo and Higgins 

1998). Interestingly, no such super nodes are evident where the other major pattern, the 

North Atlantic Oscillation (NAO) (Thompson and Wallace 1998; Pozo-Vazquez et al. 

2001; Huang et al. 1998) is found. This does not indicate that NAO is not a significant 

feature of the climate system. Since NAO is not strongly connected to the tropics, the 

high connectivity of the tropics with other regions is masking NAO out. In fact, if we 

consider a network with only nodes north of the 30 N latitude, we find (Fig. 8) that a 

dipole consistent with NAO is not only present but it is also a prominent feature of the 

network. It should be noted here that in their pioneering paper Wallace and Gutzler 

(1981) defined teleconnectivity at each grid point as the strongest negative correlation 

between a grid point and all other points. This brings out teleconnection patterns 
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associated with waves such as the trough-ridge-trough PNA pattern. However, because of 

the requirement of strongest negative correlation (which occurs between a negative 

anomaly center and a positive anomaly center), this approach can only delineate long-

range connections. As such, information about clustering and connectivity at other spatial 

scales is lost. In the network approach all the links at a point are considered and as such 

much more information (clustering coefficients, diameter, scaling properties etc) can be 

obtained. The similarities between Wallace and Gutzler’s results and the network results 

arise from the fact that grid points with many long-range links will most likely stand out.  

 

The physical interpretation of the results is that the climate system (as represented by the 

500 hPa field) exhibits properties of stable networks and of networks where information 

is transferred efficiently. In the case of the climate system, “information” should be 

regarded as “fluctuations” from any source. These fluctuations will tend to destabilize the 

source region. For example, dynamical connections between the ocean and the 

atmosphere during an El Nino may make the climate over tropical Pacific less stable. 

However, the ‘small-world’ as well as the scale-free property of the extratropical network 

and the fully connected tropical network allow the system to respond quickly and 

coherently to fluctuations introduced into the system. This “information” transfer diffuses 

local fluctuations thereby reducing the possibility of prolonged local extremes and 

providing greater stability for the global climate system. An important consequence of 

this property is that local events may have global implications. The fact that the climate 

system may be inherently stable may not come as a surprise to some, but it is interesting 

that we find that a stable climate may require teleconnection patterns.
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Unlike networks where a node is solidly defined (think of social networks where a node 

is a person), here a node is a point on a grid, which is defined rather arbitrarily and/or can 

be represented at various resolutions. Strictly speaking our network has infinite nodes. 

Due, however, to spatial correlations the “effective” number of nodes is much less. In 

fact, we find that reproducing Fig. 6 but with the full grid of 2.5ox2.5o resolution results 

in virtually the same network architecture. Other studies have demonstrated this as well. 

For example, in the www network an increase of the number of nodes by a factor of 2,500 

results in increase of L by a factor of only 1.6 and the architecture (vis-à-vis degree 

distribution) remains identical (Albert and Barabasi 2002).  Other meteorological fields 

may also exhibit small-world or scale-free properties. As an additional example we used 

upper tropospheric streamfunction. Figure 9 is like Fig. 8 but for the streamfunction. 

Again here we observe super nodes. This network is also a scale-free and a ‘small-world’ 

network. 

 

DISCUSSION. From this initial application of networks to climate it appears that 

atmospheric fields can be thought as a network of interacting points whose collective 

behavior may exhibit properties of ‘small-world’ networks. This ensures efficient transfer 

of information. In addition, the scale-free architectures guarantee stability. Furthermore, 

super nodes in the network identify teleconnection patterns. As was demonstrated in 

Tsonis (2004), these teleconnections are not static phenomena but their spatiotemporal 

variability is affected by large (global) changes. The 55-year period used to produce Fig. 

5 can be divided into two distinct periods each of length of 27 years (1951-1977 and 
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1978-2004). During the first period the global temperature shows no significant overall 

trend. During the second period, however, a very strong positive trend is present. Since 

there is a distinct change in the global property of the system, how does this affect the 

dynamics of the global network? To answer this question C and L for the two periods 

were estimated. It was found that C is about 5% smaller and L is about 4% smaller in the 

second period. This result will indicate that during the warming of the planet the network 

has acquired more long-range connections and less small range-connections. This is 

clearly shown in Fig. 10, which shows the distribution of connections according to their 

distance (as calculated on the sphere). The solid line represents the distribution in the first 

period and the dashed line the distribution in the second period. This figure shows that 

the frequency of long-range connections (>6,000 km) has increased whereas the 

frequency of shorter-range connections (<6,000 Km) has decreased. The differences 

between the two distributions may not appear impressive but with hundreds of thousands 

of connections involved, these differences are, according to the Kolmogorov-Smirnov 

test, statistically significant at the 99% confidence level (see also Tsonis 2004). Even 

though this is only one example, this result suggests that monitoring the properties of 

such networks may provide an additional tool to identify or verify climate changes.  

 

Furthermore, mapping atmospheric fields into networks appears to bring out properties of 

the general circulation. Thus, it may provide an alternative approach to study atmospheric 

phenomena and dynamics. Moreover, just because in the case of 500 hPa teleconnections 

the network approach brings out what has been found by linear approaches (such as EOF 

analysis), it does not mean that it will always produce what linear approaches produce.  
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For example, scale-free phenomena are associated with nonlinear dynamics. As such 

linear approaches, such as EOF analysis cannot bring out this property. The fact that our 

network approach recovers the scale-free characteristic is a strong indication that it will 

not always produce the same result as a linear approach and that in fact it may produce 

novel insights. The following presents another example where linear approaches would 

not yield certain properties. The current standard for understanding non-local interactions 

in the atmosphere is linear inverse modeling (e.g. Winkler et al. 2001). In plain terms, 

linear inverse modeling is similar to a least squares fit linking the values of certain 

dynamical quantities at one time (e.g., a subset of empirical orthogonal functions) with 

their values at some future time. In practice, this involves making the assumption that the 

dynamics are sufficiently approximated by a linear, stable, stochastic dynamical system, 

and the propagator for that system is then calculated from data at some fixed time lag. It 

is not clear that such linear approaches are necessarily optimal, however, and specifically, 

whether they distort the network structure of the atmosphere. For an example of such 

distortion, consider a one dimensional discrete dynamical system similar to that 

introduced by Lorenz and Emanuel (1998) which is chaotic and mimics zonal wave 

propagation in the atmosphere. The relevant time-scale in this system is the error 

doubling time, which we take as one model day. This model has 40 nodes, and is 

modified to possess a long range spatial correlation by allowing nodes 20 and 40 to force 

each other. Given this set up, we calculated the correlation for each node with every other 

node at a lag of 5 model days and defined links for |r| ≥ 0.5. Our rationale in doing this 

was to see how effectively information is transferred into the future. The solid line in Fig. 

11 shows the number of links of each node. We observe that most of the nodes possess 
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just about 4-5 links but a few nodes stand above this level with more links. Interestingly, 

as expected from a nonlinear system, it is not necessarily nodes 20 and 40 that possess 

most of the links. However, a linear inverse model (broken lines) constructed to provide a 

5-day forecast does not possess a similar connectivity pattern. Apparently the linear 

inverse approach does not preserve the properties of the actual nonlinear model. 

 

True enough the correlation coefficient is a linear measure. One may question why we 

should use a linear measure to study nonlinear dynamics. This is a legitimate question. A 

nonlinear measure that could be used instead is the mutual information, but the problem 

is that its accurate estimation requires much more data than we have available. As such 

there is very little choice but to use the correlation coefficient as an indicator of a link. 

However, the correlation coefficient is used only as a construction tool. In a similar way 

it has been used successfully in the past to delineate nonlinear dynamics. For example, in 

reconstructing attractors from time series, the state space is reconstructed using 

coordinates that are shifts of the original time series. The optimum shift is often assumed 

to be the lag at which the autocorrelation function first becomes zero. This approach 

reproduces the properties of the attractor quite reasonably (Tsonis 1992, Tsonis and 

Elsner 1989). 

 

OUTLOOK. Complex network describe many natural and social dynamical systems and 

their study has revealed interesting mechanisms underlying their function. The novelty of 

networks is that they bring out topological/geometrical aspects which are related to the 

physics of the dynamical system in question thus providing a new and innovative way to 
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treat and investigate nonlinear systems and data. While several advances have been made, 

this area is still young and the future is wide open. This introductory paper presented 

some fundamental aspects of networks and some preliminary results of the application of 

networks to climatic data, which indicate that networks delineate some key features of the 

climate system. This suggests that networks have the potential to become a new and 

useful tool in climate research. 
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Figure captions 

 

Fig. 1: Illustration of a regular, a small-world and a random network (after Watts and 

Strogatz, 1998, reproduced with permission from Science News). 

Fig. 2: Route map for Continental Airlines (courtesy of Continental Airlines) 

Fig. 3: The network of interactions between the proteins in the yeast Saccharomyces 

cerevisiae, otherwise known as baker’s yeast (courtesy of A.-L. Barabasi). 

Fig. 4: Illustration of how to estimate the clustering coefficient. In (a) a node i is 

connected to ki=8 other nodes (solid lines). In (b) we consider the ki=8 closest nodes of i. 

This defines the neighborhood of i. In this neighborhood there exist ∆i=4 connections 

between nodes (excluding node i) (broken lines). The clustering coefficient of node i is 

then given by Ci=2∆i/ki(ki-1)=0.143. The average Ci over all nodes in the network 

provides the clustering coefficient of the network, C. 

Fig. 5: Synchronization of several coupled limit-cycle oscillators. Each oscillators starts 

from a random initial condition but soon they all self-organize and rotate as a 

synchronized group (after Strogatz, 2001, reproduced with permission form the author). 

Figure 6: Total number of links (connections) at each geographic location. The 

uniformity observed in the tropics indicates that each node possesses the same number of 

connections. This is not the case in the extratropics where certain nodes possess more 

links than the rest. See text for details on how this figure was produced. 

Fig. 7: Degree distribution of (a) extratropical (30N-65N, 30S-65S) grid points, and (b) 

tropical (20N-20S) grid points. 
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Fig. 8:  Same as Fig. 5 but when we start with a network with nodes north of the 30 N 

latitude only. 

Fig. 9: Same as Fig. 7 but for the streamfunction. 

Fig. 10: The relative frequency distribution of the connections according to their distance 

for the period 1951-1977 (solid line) and for the period 1978-2004 (dashed line). This 

result indicates that during periods of warming, the network acquires more long-range 

connections and less small range-connections.     

Fig. 11: An example demonstrating that linear approaches may not yield the true result of 

a nonlinear process (see text for details). 
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Figure 8 
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Figure 9 
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