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This article discusses a recurrent connectionist network, simulating empirical phe-
nomena usually explained by current dual-process approaches of attitudes, thereby
focusing on the processing mechanisms that may underlie both central and periph-
eral routes of persuasion. Major findings in attitude formation and change involving
both processing modes are reviewed and modeled from a connectionist perspective.
We use an autoassociative network architecture with a linear activation update and
the delta learning algorithm for adjusting the connection weights. The network is ap-
plied to well-known experiments involving deliberative attitude formation, as well as
the use of heuristics of length, consensus, expertise, and mood. All these empirical
phenomena are successfully reproduced in the simulations. Moreover, the proposed
model is shown to be consistent with algebraic models of attitude formation (Fishbein
& Ajzen, 1975). The discussion centers on how the proposed network model may be
used to unite and formalize current ideas and hypotheses on the processes underlying
attitude acquisition and how it can be deployed to develop novel hypotheses in the at-
titude domain.

Evaluations of our environment are a ubiquitous as-
pect of human life. Attitudes pervade our thinking be-
cause they provide valenced summaries of favorable
and unfavorable objects and organisms and so serve as
a behavioral guide to approach or avoid them. Without
such spontaneous guidance by our evaluations, sur-
vival in a complex and, sometimes, threatening world
would be impossible.

Social psychologists have made substantial prog-
ress in the understanding of attitudes. Most definitions
proposed in the literature point to the notion that an at-
titude involves the categorization of an object along an
evaluative dimension. In an extensive overview of the-
orizing and research, Eagly and Chaiken (1993, p. 1)
defined an attitude as “a psychological tendency that is
expressed by evaluating a particular entity with some
degree of favor or disfavor.” Attitudes are stored in
memory, where they persist over time and from where
they “become active automatically on the mere pres-
ence or mention of the object in the environment”

(Bargh, Chaiken, Govender, & Pratto, 1992, p. 893).
After being activated, they provide a ready aid for in-
teraction while at the same time freeing the person
from deliberative processes. Furthermore, they aid in a
coherent interpretation of the environment by biasing
our preferences in a congruent manner (Schuette &
Fazio, 1995).

How do attitudes reside in memory? Perhaps the
most prominent view is that attitudes are stored in
memory in the form of object–evaluation associations.
Fazio (1990) noted:

An attitude is viewed as an association in memory be-
tween a given object and one’s evaluation of that ob-
ject. This definition implies that the strength of an atti-
tude, like any construct based on associative learning,
can vary. That is, the strength of the association be-
tween the object and the evaluation can vary. It is this
associative strength that is postulated to determine the
chronic accessibility of the attitude and, hence, the
likelihood that the attitude will be activated auto-
matically when the individual encounters the attitude
object. (p. 81)

Empirical tests of this view of attitudes as object—
evaluation associations have yielded confirming re-
sults. For instance, participants who had been induced
to express their attitudes repeatedly, which should
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strengthen the object—evaluation association, have
been found to respond relatively quickly to direct in-
quiries about their attitudes (for an overview, see
Fazio, 1990). However, attitudes are more than evalua-
tions. As stated by Chaiken, Duckworth, and Darke
(1999),

attitudes are represented in memory not only as mere
object—evaluation linkages [e.g., Fazio, 1990], but
also in a more complex, structural form wherein cog-
nitive, affective and behavioral associations also ap-
pear as object—association linkages …. When such
linkages are many …, or when such linkages are eval-
uatively consistent …, attitudes are stronger and thus
manifest greater persistence, resistance to change and
predictability over behavior. (p. 121)

Until now, however, there has been little theoretical
advancement in our understanding of the storage and
strengthening of attitude–object associations in human
memory. We concur with Eiser, Fazio, Stafford, and
Prescott (2003) that “attitude theorists … have tended
to make relatively little use of paradigms developed in
other areas of learning research. …The time is ripe for
a renewed analysis of the learning processes underly-
ing the acquisition of attitudes” (pp. 1221–1222). In
particular, we will present a recurrent connectionist
model (McClelland & Rumelhart, 1985) that describes
how attitude associations are developed, strengthened,
and maintained in memory. Connectionist approaches
have enjoyed an increasing interest in psychology dur-
ing the last decade, and in particular in social psychol-
ogy, because they offer a new perspective on diverse
social psychological phenomena, including person im-
pression formation (Smith & DeCoster, 1998; Van
Overwalle & Labiouse, 2004), causal attribution (Read
& Montoya, 1999; Van Overwalle, 1998), group biases
(Kashima, Woolcock, & Kashima, 2000; Queller &
Smith, 2002; Van Rooy, Van Overwalle, Vanhoomis-
sen, Labiouse, & French, 2003), and many other social
judgments (for a review, see Read & Miller, 1998).

There are several important characteristics that
make connectionist approaches superior to earlier atti-
tude models (for an accessible introduction to con-
nectionist networks, see McLeod, Plunkett, & Rolls,
1998). First, a key difference is that the connectionist
architecture and processing mechanisms are based on
analogies with properties of the human brain. This al-
lows a view of the mind as an adaptive learning mecha-
nism that develops accurate mental representations of
the world. Learning is modeled as a process of online
adaptation of existing knowledge to novel information
provided by the environment. Specifically, the net-
work changes the weights of the connections with the
attitude object so as to better represent the accumulated
history of co-occurrences between objects and their at-
tributes and evaluations. Most traditional algebraic and

associative models in social psychology (for an over-
view, see Fishbein & Ajzen, 1975), in contrast, are
incapable of learning. In many algebraic models, atti-
tudes are not stored somewhere in memory so that, in
principle, they need to be reconstructed from their con-
stituent components (i.e., attributes) every time an atti-
tude is accessed (but see Anderson, 1971). Earlier as-
sociative models proposed in social psychology, can
only spread activation along associations but provide
no mechanism to update the weights of these associa-
tions. This lack of a learning mechanism in earlier
models is a significant restriction. In connectionist
models, retrieval and judgment is also reconstructive
in the sense that activation spreading along the ob-
ject–valence association is needed to reactivate the
evaluation associated with the attitude. However, this
involves dramatically less computational steps than re-
trieving all constituent attributes and their evaluations,
and computing some sort of algebraic integration of it
(Fishbein & Ajzen, 1975). The present approach is
consistent with the idea that strong attitudes are stored
in object–valence associations that are easily accessi-
ble, whereas weak attitudes are stored in weaker asso-
ciations and are therefore more susceptible to salient
temporary information and context effects. Interest-
ingly, the ability to learn incrementally puts connect-
ionist models in broad agreement with developmental
and evolutionary constraints.

Second, connectionist models assume that the de-
velopment of internal representations and the process-
ing of these representations are done in parallel by
simple and highly interconnected units, contrary to tra-
ditional models where the processing is inherently se-
quential. As a result, these systems do not need a cen-
tral executive, which eliminates the requirement of
central and deliberative processing of attitude informa-
tion. Although many attitude theories assume that sim-
ple object associations are learned implicitly through
conditioning (e.g., Fishbein & Ajzen, 1975) or heuris-
tic processing (e.g., Chaiken, 1987; Petty & Cacioppo,
1981, 1986), the process by which the different eval-
uative reactions to a stimulus are integrated in an over-
all attitude is often left vague and couched in verbal
terms only. At most, the outcome of this integration is
described in an algebraic formula, without specifying
the underlying mental mechanism. Given that a su-
pervisory executive is superfluous in a connectionist
approach, this suggests that much of the information
processing in attitude formation is often implicit and
automatic without recourse to explicit conscious rea-
soning. This does not, of course, prevent people from
being aware of the outcome of these preconscious pro-
cesses. In addition, based on the principle that activa-
tion in a network spreads automatically to related con-
cepts and so influences their processing, connectionist
models exhibit emergent properties such as pattern
completion and generalization, (for a review, see
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Smith, 1996), which are potentially useful mecha-
nisms for an account of the biasing effect of attitudes
on the interpretation of the environment.

Finally, connectionist networks have a degree of
neurological plausibility that is generally absent in pre-
vious algebraic approaches to information integration
and storage (e.g., Anderson, 1971, 1981a, 1981b; Fish-
bein & Ajzen, 1975). They provide insight into lower
levels of human mental processes beyond what is im-
mediately perceptible or intuitively plausible although
they go not so deep as to describe real neural function-
ing. Drawing on Marr’s (1982) notion of levels of in-
formation processing (see also Kashima & Kerekes,
1994), algebraic models are regarded the computa-
tional level of human reasoning, which simply de-
scribes input–output relationships; connectionist mod-
els attempt to mimic psychological processes, and
therefore are considered the algorithmic level; and
models that describe neural circuitry and processing
that implements mental processes are regarded as the
implementational level. Thus, although it is true that
connectionist models are highly simplified versions of
real neural functioning and only describe the algorith-
mic level of mental thinking, it is commonly assumed
that they reveal a number of emergent processing prop-
erties that real human brains also exhibit. One of these
emergent properties is that there is no clear separation
between memory and processing as there is in tradi-
tional models. Connectionist models naturally inte-
grate long-term memory (i.e., connection weights) and
short-term memory (i.e., internal activation) with out-
side information (i.e., external activation). In addition,
recent concerns of the biological implementation of
evaluative reactions have started to emerge (for re-
views, see Adolphs & Damasio, 2001; Ito & Cacioppo,
2001; Ochsner & Lieberman, 2001) and this imple-
mentational level of analysis will certainly help to im-
prove our understanding of the cognitive and emo-
tional mechanisms underlying attitude formation.

A Connectionist Account
of Attitude Processes

The main goal of this article is to take current atti-
tude models couched either in verbal descriptions,
such as dual-process models (e.g., Chaiken, 1987; Pet-
ty & Cacioppo, 1981, 1986), or in computational for-
mulations, such as algebraic models (e.g., Fishbein &
Ajzen, 1975), as a starting point and to develop a
connectionist model at the algorithmic level that is
consistent with these earlier theories. This endeavor
may have significant benefits. First, it may strengthen
the foundation of these earlier theories because it pro-
vides a lower-level description of some of their major
theoretical postulates. By providing a more formal de-
scription of these underlying processes, it may perhaps

weed out some confusion about the nature of attitude
formation. For example, a connectionist approach
might underscore the growing realization among so-
cial psychologists that many processes in social cogni-
tion, and attitude formation in particular, are implicit
and nonconscious. The model can, among other things,
specify which aspects of information integration might
be largely outside awareness and how attitude heuris-
tics (Chaiken, 1987) have an impact on an attitude.

Second, it may provide a theoretical framework that
enables us to integrate various theoretical positions
that have until now resided more or less alongside each
other. By doing so, it may potentially explain a larger
set of empirical data than did earlier formal theories of
attitude formation (e.g., Fishbein & Ajzen, 1975). In
fact, many of the assumptions in our connectionist
model are drawn from previous attitude theories. We
will highlight the main sources of inspiration of the
proposed connectionist model and explain very briefly
how these notions are implemented in the model.

The model defines attitudes primarily as object—
evaluation associations (Fazio, 1990) and adopts addi-
tional cognitive and behavioral components of atti-
tudes (Katz & Stotland, 1959; Rosenberg & Hovland,
1960) as elements that shape the object—evaluation
association. In line with Fazio (1990), the model pre-
dicts that when people encounter a novel attitude ob-
ject, they will develop object—evaluation associations
in memory in accordance with the information that is
currently accessible. Once people are confronted again
with the object, their stored evaluation comes to mind
automatically and guides behavior and thoughts. Con-
sistent with Anderson’s (1971) information integration
theory, the attitude is further updated if warranted by
the novel information that is provided. In so doing, the
connectionist mechanisms specifying the underlying
information processes will end up making the same
formal predictions as the algebraic model of Fishbein
and Ajzen (1975). These connectionist updating mech-
anisms are almost identical to earlier formal theories of
classical conditioning (Rescorla & Wagner, 1972),
which have been quite popular in attitude research
(Olson & Fazio, 2001; Staats & Staats, 1958).

In addition, in line with dual-process models of at-
titude (Chaiken, 1987; Chen & Chaiken, 1999; Petty
& Cacioppo, 1981, 1986; Petty & Wegener, 1999),
the connectionist model draws on the notion of elabo-
ration likelihood (Petty & Cacioppo, 1981, 1986) or
depth of processing in assuming that sources of infor-
mation may vary in strength as well as in the depth
by which they are considered and thus receive little
or substantial weight. This leads to variation in the
strength of the attitudes as well as to different modes
of processing that comprise the cornerstone of
dual-process models. Dual-process models conceive
essentially two routes by which people use accessible
information to change their attitudes. When capacity
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and motivation are relatively high, people are as-
sumed to carefully consider and weight the available
information (central or systematic route). When ca-
pacity or motivation are low, people process the in-
formation more shallowly and rely on simple
heuristics or peripheral cues that give rise, automati-
cally, to stored decision rules, such as “experts can be
trusted,” “majority opinion is correct,” and “long
messages are valid messages” (peripheral or heuristic
route; see Chaiken, 1987; Chen & Chaiken, 1999;
Petty & Cacioppo, 1981, 1986; Petty & Wegener,
1999).1 In the connectionist model, the notion of
elaboration likelihood or depth of processing is simu-
lated by changing a single parameter in the network,
the general activation (i.e., attention) to persuasive
information that is assumed to be generally lower un-
der peripheral than under central processing. Al-
though our connectionist network is based on a single
form of knowledge representation, acquisition, and
processing, this single parametric change together
with the inclusion of prior learning of heuristic
knowledge structures allows simulating these major
differences between the processing modes.

This article is organized as follows: First, we de-
scribe the proposed connectionist model in some de-
tail, giving the precise architecture, the general learn-
ing algorithm, and the specific details of how the
model processes information. We then present a se-
ries of simulations, using the same network architec-
ture applied to a number of significantly different
phenomena, including central and heuristic process-
ing in attitude formation. Previous models of atti-
tudes are reviewed and compared with the present ap-
proach. Finally, we discuss the limitations of
the proposed connectionist model and discuss areas
where further theoretical developments are under
way or are needed.

A Recurrent Model:
Basic Characteristics

For all simulations reported in this article, we will
use the same basic network model, namely, the recur-
rent autoassociator developed by McClelland and
Rumelhart (1985). This model has already gained
some familiarity among social psychologists and has
been used to study person and group impression
(Smith & DeCoster, 1998; Van Overwalle &

Labiouse, 2004; Van Rooy et al., 2003) and causal at-
tribution (Read & Montoya, 1999). We decided to
apply this model to emphasize the theoretical similar-
ities that underlie attitude formation and change with
a great variety of other processes in social cognition.
In particular, we chose this model because it is able
to reproduce a wider range of social cognitive phe-
nomena, including attitude formation, than other
connectionist models, like feedforward networks
(Van Overwalle & Jordens, 2002; see Read &
Montoya, 1999) or constraint satisfaction models
(Shultz & Lepper, 1996; Siebler, 2002; for a critique
see Van Overwalle, 1998).

The autoassociative network can be distinguished
from other connectionist models on the basis of its ar-
chitecture (how information is represented in the mod-
el) and its learning algorithm (how information is pro-
cessed and consolidated in the model). We will discuss
these points in turn.

Architecture

The generic architecture of an autoassociative net-
work is illustrated in Figure 1. Its most salient proper-
ty is that all nodes are interconnected with all of the
other nodes (unlike, for instance, feedforward net-
works where connections exist in only one direction).
Thus, all nodes send out and receive activation. The
nodes in the network represent an attitude object as
well as various attributes of the object that are linked to
favorable or unfavorable valences. In addition, the net-
work includes general features that represent most atti-
tude objects (e.g., the notion that these objects are the
focus of someone’s evaluation) and contextual vari-
ables (e.g., sources) that are important in shaping heu-
ristic processing. The nodes in the network can repre-
sent these concepts in basically two ways. In a localist
representation, each node represents a single symbolic
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1In this article, we use the broad terms central and peripheral
(Petty & Cacioppo, 1981, 1986; Petty & Wegener, 1999) to denote
the two routes of processing in general, and we reserve the term heu-
ristic (Chaiken, 1987; Chen & Chaiken, 1999) for cases where per-
suasive heuristics are clearly involved in the peripheral process.
Although central and systematic are almost synonymous concepts,
peripheral is a broader term that includes not only heuristics but also
conditioning and other implicit processes.

Figure 1. Generic architecture of an autoassociative recurrent
network.



concept as in earlier automatic spreading activation
networks (e.g., Fazio, 1990). In contrast, in a distrib-
uted representation, each concept is represented by a
pattern of activation across a set of nodes that each rep-
resent some subsymbolic microfeature of the conept
(Thorpe, 1994). Although a distributed representation
is a more realistic neural code, for ease of presentation,
we will illustrate the basic workings of the model with
a localist representation.

Information Processing

In a recurrent network, processing information
takes place in two phases. During the first activation
phase, each node in the network receives activation
from external sources. Because the nodes are intercon-
nected, this activation is spread throughout the net-
work in proportion to the weights of the connections to
the other nodes. The activation coming from the other
nodes is called the internal activation (for each node, it
is calculated by summing all activations arriving at that
node). This activation is further updated during one or
more cycles through the network. Together with the
external activation, this internal activation determines
the final pattern of activation of the nodes, which re-
flects the short-term memory of the network.
Typically, activations and weights have lower and up-
per bounds of approximately –1 and +1.

In the linear version of the autoassociator that we
use here, the final activation is the linear sum of the
external and internal activations after two updating cy-
cles through the network. Two cycles are sufficient to
spread activation from the attitude object to the attrib-
utes and from these to the valences. In nonlinear ver-
sions used by other researchers (Read & Montoya,
1999; Smith & DeCoster, 1998), the final activation is
determined by a nonlinear combination of external and
internal inputs updated during a number of internal cy-
cles (for mathematical details, see Appendix A). Dur-
ing our simulations, however, we found that the linear
version with two internal cycles often reproduced the
observed data at least as well. Therefore, we used this
simpler linear variant of the autoassociator for all the
reported simulations.

Memory Storage

After the first activation phase, the recurrent model
enters the second learning phase in which the short-
term activations are stored in long-term weight chang-
es of the connections. Basically, these weight changes
are driven by the difference between the internal acti-
vation received from other nodes in the network and
the external activation received from outside sources.
This difference, also called the error, is reduced in pro-
portion to the learning rate that determines how fast the
network changes its weights and learns. This error-re-

ducing mechanism is known as the delta algorithm
(McClelland & Rumelhart, 1988; McLeod et al., 1998;
see also Appendix A).

For instance, if the external activation is underesti-
mated because the internal activation suggests that a
given valence node should not be activated (e.g., the
person did not develop a clear evaluation yet) although
the external activation actually does activate it (e.g.,
the person learns about a favorable aspect of a newly
encountered object), the connection weights with the
attitude object are increased to reduce this discrepancy.
Conversely, if the external activation is overestimated
because the internal activation suggests that a given
valence node should be activated (e.g., the person is
strongly in favor) although the external activation ac-
tually does not activate it (e.g., the person learns about
an unexpectedly unfavorable aspect of an object), the
weights are decreased. These weight changes allow the
network to better approximate the external activation
and to develop internal representations that accurately
describe the environment. Thus, the delta algorithm
strives to match the internal predictions of the network
as closely as possible to the actual state of the external
environment and stores this information in the connec-
tion weights.

At this point, it is interesting to note that the delta
learning algorithm is formally identical to the Rescor-
la–Wagner (1972) model of associative conditioning
(see Van Overwalle & Van Rooy, 1998, pp. 149–151
for mathematical details). Early attitude theories around
1950 assumed that attitudes are developed through
conditional learning and that affective experiences de-
termine the attitude or evaluative response (Olson &
Fazio, 2001; Staats & Staats, 1958). According to clas-
sical conditioning theory, an attitude is an evaluative
response (conditioned response) established by the
temporal association of a stimulus (unconditioned
stimulus) eliciting an affective reaction with the judg-
mental target or attitude object (conditioned stimulus).
For instance, in one of their first experiments, Staats
and Staats (1958) presented Swedish or Dutch names
paired with words having a positive (e.g., pretty) or
negative value (e.g., failure). They reported a positive
attitude toward names associated with positive words
and a negative attitude toward names associated with
negative words (see also Zanna, Kiesler, & Pilkonis,
1970).

Hence, by using the delta learning algorithm, the
present connectionist model incorporates these earlier
conditioning models. This is consistent with the
dual-process model of Petty and colleagues (Petty &
Cacioppo, 1981, 1986; Petty & Wegener, 1999) al-
though they did not include conditioning processes in
their theorizing at such a formal level of analysis as
in the present connectionist approach. Hence, an im-
portant advantage of our connectionist model using
the delta algorithm is that conditioning is an intrinsic
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part of it, based on the same learning principles. In
the next section, we will further describe how these
learning principles work.

A Recurrent Implementation of
Attitude Formation

To provide some background to our specific imple-
mentation of attitude formation, we illustrate its major
characteristics with an example that represents pro-
cessing persuasive information via the central route as
outlined in the theory of reasoned action by Fishbein
and Ajzen (1975; see also Ajzen, 1991; Ajzen & Mad-
den, 1986).

According to this model, an attitude is a function of

• the expectation or belief that the behavior will
lead to a certain consequence or outcome (e.g., using a
car is a fast and dry mode of transportation, but also
causes air pollution) and

• the person’s evaluation of these outcomes (e.g.,
fast and dry is good, pollution is bad).

According to Fishbein and Ajzen (1975), multiply-
ing the expectancy and value components associated
with each outcome and summing up these products de-
termines an attitude (see Appendix B). Many social
psychologists have interpreted this summed multipli-
cation as indicating that the integration of this informa-
tion typically occurs in a conscious, rational, and delib-
erative manner. For example, Fazio (1990, p. 89)
stated that “the Ajzen and Fishbein model is clearly
based upon deliberative processing.” Furthermore, he
argued, “deliberative processing is characterized by
considerable cognitive work. It involves the scrutiny of
available information and an analysis of positive and
negative attributes, of costs and benefits. The specific
attributes of the attitude object and the potential conse-
quences of engaging in a particular course of action
may be considered and weighted” (p. 88-89).

However, this characterization is not in line with
more current views. Although attitude researchers
agree that people may pay attention to available infor-
mation, they do not assume that the process involving
the integration of this information is necessarily open
to introspection or that this process needs to be re-
peated once attitudes have been established. As Ajzen
(2002) claimed,

the theory of planned behavior does not propose that
individuals review their behavioral, normative, and
control beliefs prior to every enactment of a fre-
quently performed behavior. Instead, attitudes and in-
tentions—once formed and well-established—are as-
sumed to be activated automatically and to guide

behavior without the necessity of conscious supervi-
sion. (p. 108)

Research confirmed that preferences are automati-
cally activated on the mere presence or mention of the
attitude object without explicit instruction or environ-
mental cues to evaluate the object (Bargh et al., 1992;
Fazio, 1990; Fazio, Sanbonmatsu, Powell, & Kardes,
1986) and that they facilitate decision making (Fazio &
Powell, 1997) and attitude-consistent behavior (Fazio,
1990). Nevertheless, current researchers have focused
on the indicators and outcomes of attitude processes,
leaving unspecified the underlying implicit mecha-
nisms involved in these outcomes. Although these
mechanisms were intuitively seen as nonsymbolic and
nonconscious, they were presumably not spelled out
because researchers lacked the necessary theoretical
framework to articulate this process.

Fortunately, connectionism may provide a more ap-
propriate theoretical framework for these implicit pro-
cesses. As we will argue, it only requires a conscious
encoding of attributes or persuasive arguments, where-
as the integration of this information and resulting
evaluations can occur implicitly by means of con-
nectionist learning principles. We will demonstrate
this with the example of a car as a transport vehicle.

Representing Expectations and Values

Figure 2 depicts a recurrent architecture of some-
one’s attitude toward cars as means of transportation
that illustrates how Fishbein and Ajzen’s (1975) ex-
pectancy-value theory is implemented by a
connectionist framework. As can be seen, car is the fo-
cal attitude object linked by modifiable connection
weights to various cognitive and evaluative outcomes.
The cognitive attitude component, the belief that the
use of a car will result in certain outcomes, can be rep-
resented as expectations linking the car with likely out-
comes or attributes such as how fast and how polluting
a car will be and how dry the trip will be. The likeli-
hood of these outcomes is expressed in the weight of
the car→attribute connections, acquired during prior
observations. These observations are based on one’s
own direct experiences as well as on indirect commu-
nication or observational modeling (e.g., persuasive
messages via the media, witnessing other people’s ex-
periences) although indirect information might poten-
tially have less impact. Specifically, as determined by
the delta algorithm, the more often a particular conse-
quence or a specific attribute of the attitude object is
observed, the stronger the relevant object→attribute
connection weight becomes. Conversely, the less often
a particular consequence is observed, the weaker this
weight will be. Psychologically, this is reflected in an
increased or decreased expectation or perceived likeli-
hood that this outcome will occur.
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The evaluative attitude component can be repre-
sented by affective or evaluative responses to the
cognitive attributes, such as how much the person
likes or dislikes using a fast, dry, and polluting car,
again acquired during prior experiences. Thus, in line
with Ajzen (1991, p. 191), we assume that the out-
comes linked with a behavior or attitude object are
“valued positively or negatively.” As can be seen, the
evaluative responses are represented by two separate
unipolar valence nodes, one reflecting a positive
evaluation and the other a negative evaluation. We
assume that positive and negative evaluations are rep-
resented by two separate affective systems because
recent neurological evidence suggests that the
“neurocognitive system for positive affective associa-
tions … serves different functions and can be de-
scribed without references to neurocognitive systems
for negative affect” (Ochsner & Lieberman, 2001, p.
727; see also Canli, Desmond, Zhao, Glover, &
Gabrieli, 1998; Ito & Cacioppo, 2001; Lane et al.,
1997). These evaluations are expressed in the con-
nections from the cognitive outcomes, or attributes,
to the evaluative reactions and are acquired and mod-
ified during direct or indirect experiences on the basis
of the delta algorithm. Specifically, the more often an
evaluation is experienced as a consequence of an at-

tribute, the stronger the relevant attribute→valence
connection weight becomes.

In line with Fazio (1990), we suggest that a person’s
attitude is reflected in the connection between a given
object and one’s evaluation of that object. Specifically,
we define an attitude as the activation of the valence
nodes after the attitude object (e.g., car) was activated.
This spreading mechanism implements Fazio’s (1990)
idea that the role of attitudes depends on the extent that
“encountering the attitude object [will] automatically
activate the evaluation from memory” (pp. 93–94). In
this definition, an attitude depends solely on the con-
nections between objects and evaluations that are ac-
cessible in memory at the time of judgment. Outcomes
reflecting cognitions related to the attitude object (e.g.,
fast, dry, and polluting attributes) can be computed in
the network and “retrieved” later, but they are actually
not taken into account for constructing an attitude. This
is consistent with the dominant view in the attitude
literature that takes attitudes primarily as evaluative
responses.
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Figure 2. Network architecture with one attitude object (car) connected to three cognitive nodes (fast, dry, and pollutes) and two valence
nodes. All nodes are interconnected to all other nodes, but for a clear understanding of the major mechanisms underlying attitude forma-
tion, only the most important (feedforward) connections are shown.



Integrating Expectations and Values:
The Attitude

How are the cognitive and evaluative components
integrated to create a novel attitude? The core idea of
the expectancy-value model is that any object is asso-
ciated with an evaluation, so that when some objects
form a (first-order) connection with an evaluation,
these connections mediate the formation of sec-
ond-order connections and this is repeated for
higher-order connections. Thus, what we have called
attribute→valence connections in the previous sec-
tion are basically also object→valence connections.
From this perspective, the attribute→valence (e.g.,
fast→positive) connections are first-order connec-
tions that mediate the formation of second-order ob-
ject→valence (e.g., car→positive) connections. This
will, of course, go on recursively so that these newly
formed object→valence connections will mediate the
formation of still further higher-order connections.
This expectancy-value logic has been adopted in the
implementation of our connectionist framework and
has several consequences.

One implication is that the evaluative reactions to
some attributes are learned relatively early in human
life (first-order), whereas others are learned relatively
late (second-order). We presume that what is learned
relatively early are evaluative responses to attributes
such as dry, fast, and polluting because these are con-
sequences of direct experiences as well as responses to
substantive arguments. These arguments often rely on
simple persuasive phrases such as “improved,” “bet-
ter,” “advantageous,” “do’s and don’ts,” and so on that
children and adolescents are repeatedly exposed to via
advertisements, school, and family. In contrast, people
are continuously faced with new objects—products
and social agents—so that these are unfamiliar and
their constituent attributes are learned only much later.
Consequently, for the model depicted in Figure 2,
we assume that the attribute→valence connections are
typically developed early and constitute first-order con-
nections, whereas the object→attribute connections
are developed relatively later.

Now comes the integration of cognitive and eval-
uative components (see Figure 2). In the connectionist
model we implemented two activation spreading cy-
cles, so that activation sent out by the attitude object to
the attributes (along the object→attribute connections)
is further spread to the evaluative reactions (along the
attribute→valence connections). These connections
were shaped during earlier learning, as explained pre-
viously, and may be further updated given novel infor-
mation. However, what is most crucial is that this acti-
vation spreading leads to the co-activation of the
attitude object and valence nodes, resulting in the de-
velopment of novel second-order connections from the
object to the evaluative responses. These second-order

object→valence connections reflect the formation of a
novel attitude.

It is interesting to note that our definition of an atti-
tude is mathematically very close to the multiplicative
function of expectations and values in Fishbein and
Ajzen’s (1975) theory of reasoned action. To see this,
replace “expectations” in their model by object→at-
tribute connection weights and “values” by attrib-
ute→valence connection weights. If the activation
from the attitude object is turned on, it spreads to the
valence nodes in proportion to the combined weight of
these two connections. Mathematically, this is accom-
plished by multiplying these connection weights, which
is very similar to Fishbein and Ajzen’s proposed algo-
rithm (see Appendix B for a formal proof).

A second implication of the recursive expectan-
cy-value mechanism is that we augmented the standard
recurrent approach with additional features to enable
the network to generate and use evaluative reactions in
the formation of higher-order connections. In particu-
lar, after a standard network has learned the attrib-
ute→valence connections, it cannot use these first-or-
der connections to generate these same evaluative re-
actions again by means of spreading of activation. This
is because in the absence of an explicit coding of the
valenced outcome, the network will recognize the in-
ternal activation spread to the valence nodes as mere
internal predictions by the system. This will cause a de-
crease in the existing connections (e.g., the delta algo-
rithm interprets the absence of an explicit evaluation at
a valence node while receiving high internal activa-
tion, as an error of overestimation, to which it reacts by
reducing the connection weight). One way to over-
come this limitation of standard recurrent networks
is by coding the evaluations generated by automatic
spreading of internal activation as genuine or external
input (denoted by “i” to represent “internal input,” see
Table 2). However, this does not yet allow second-or-
der learning as there is no error in the learning algo-
rithm because the internal and external activation
match. To allow the development of second-order con-
nections, we created error by “boosting” these external
activations beyond the internal activation. Spe-
cifically, we forced them to approach the extremes of
–1 and +1, using a standard nonlinear updating algo-
rithm with 10 internal cycles and decay = .15 (see Ap-
pendix A for more mathematical details). In effect,
these two mechanisms give the valence nodes a special
status, as compared to all other nodes. This can be seen
as a limitation of the current implementation. On the
other hand, with evaluation being a ubiquitous aspect
of everyday life, people may actually have learned to
use their evaluative responses in a somewhat different
way than other information (for a similar argument, see
De Houwer, Thomas, & Baeyens, 2001). If so, then our
connectionist implementation would model a psycho-
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logical tendency to rely particularly strongly on one’s
evaluation as a basis for judgment and learning.

Developing Expectations and Values

Before moving on, we will illustrate how connec-
tion weights with attribute nodes (or expectations) and
with valence node (or values) are developed through
experiences with the attitude object. We will illustrate
this with a small simulation example. To make the un-
derstanding of this example as easy as possible, the
reader should focus mainly on the most important up-
ward connections drawn in Figure 2 although all inter-
connections between all nodes play a role in an auto-
associative network.

In general, according to the delta algorithm, the
more often an attitude object is experienced with the
same pleasant or unpleasant evaluations, the stronger
the connection between the corresponding (un)favor-
able valence nodes and the attitude object node be-
comes. This illustrates an important property of the
delta learning algorithm, namely that as more confir-
matory information is received, the connections grad-
ually grow in strength. We call this the acquisition
property (Van Overwalle & Labiouse, 2004; Van
Rooy et al., 2003).

The sensitivity to sample size of the delta algorithm
has been exploited in the earlier associative learning
models that preceded connectionism, such as the popu-
lar Rescorla–Wagner (1972) model of animal condi-
tioning and human contingency judgments. As noted
earlier, conditioning has often been used in past atti-
tude research to explain attitude change (e.g., Ber-
kowitz & Knurek, 1969; Staats & Staats, 1958; for a re-
view see Petty & Cacioppo, 1981). Consistent with the
sample size prediction, it has been found that the more
often an initially neutral cue (i.e., conditioned stim-
ulus) is paired with another stimulus that strongly
evokes an evaluative response (i.e., unconditioned
stimulus), the stronger the cue value association be-
comes, resulting in more vigorous evaluative or affec-
tive responses when the cue is present.

Sample size effects have also been documented
in many areas of social cognition. For instance, when
receiving more supportive information, people tend
to agree more with persuasive messages (Eagly &
Chaiken, 1993), to hold more extreme impressions
about other persons (Anderson, 1967, 1981a), to make
more extreme causal judgments (Baker, Berbier, &
ValléeTourangeau, 1989; Försterling, 1989; Shanks,
1985, 1987; Shanks, Lopez, Darby, & Dickinson,
1996), to make more polarized group decisions
(Ebbesen & Bowers, 1974; Fiedler, 1996; ), to endorse
more firmly a hypothesis (Fiedler, Walther, & Nickel,
1999), and to make more extreme predictions (Manis,
Dovalina, Avis, & Cardoze, 1980).

Figure 3 depicts an idealized example of the acqui-
sition process in attitude formation. Consider first the
simplest case in which a person experiences once each
cognitive consequence, or attribute, of car driving.
First, activation is spread to the attribute of pollution
(e.g., the person realizes that cars pollute the air). This
activation is then spread to the unfavorable valence
node where it generates a negative evaluative reaction
(e.g., the person feels uncomfortable about using a pol-
luting car). For simplicity, let’s assume that the unfa-
vorable node is activated to its maximum value of +1,
but the favorable node remains inactive. The concur-
rent activation of the car and the unfavorable reaction
leads to an increase of the connection between these
two nodes. With a learning rate of .20, the connection
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Figure 3. Graphical illustration of the principle of acquisition
with learning rate 0.20. The Y axis represents the weight of the
connection linking the attitude node with the favorable and un-
favorable valence nodes. (A) Weights after two favorable and
one unfavorable experiences. (B) Favorable and unfavorable
weights growing to asymptote after multiple experiences.



weight increases to .20 (see bottom half of Figure 3A).
Similarly, following the same mechanism as described
earlier, for each of the two positive consequences (i.e.,
fast and dry), the favorable valence node is activated
(e.g., the person feels good about this), resulting in an
increase of the connection between the car and the fa-
vorable evaluation. Because this increase occurs two
times, the resulting weight is .36 given the same learn-
ing rate (see top half of Figure 3A). Taken together, the
weights of the favorable evaluations exceed those of
the unfavorable evaluations. When testing for the atti-
tude response, that is, after activating the car attitude
object, this results in a stronger activation of the favor-
able node than the unfavorable node or a differential
activation of .16, leading to a positive attitude in favor
of car driving.

In general, however, an attitude depends not only on
the direction of the evaluative responses for each of the
cognitive outcomes as illustrated in the preceding ex-
ample, but also on the perceived likelihood of these
consequences. As noted earlier, the perceived likeli-
hood is represented in the connection weights of the
attitude object and the cognitive consequences, or at-
tributes. Each of these weights, as well as the weights
of the attitude object with the evaluative responses,
increases as a consequence of the number of
experiences with each outcome. For example, if we
repeated the favorable information of the previous
example, this would result in an increase of connection
weight (see Figure 3B, top). After many positive
experiences, the acquisition property of the delta
algorithm dictates that the weight of the favorable
valence node becomes much stronger than that of the
unfavorable node, resulting in an overall positive
attitude in favorofcardriving.Conversely, imagine that
the unfavorable consequences of pollution are
experienced more often because of recent media
coverage. By the property of acquisition of the delta
algorithm, this should lead to an increase of the
connection weights with the unfavrable valence node as
illustrated in Figure 3B (bottom).

It is important to note that according to the delta al-
goithm when getting closer to the external environ-
ment, the learning error shrinks and learning slows
down, resulting in a negatively accelerating learning

curve. Thus, acquisition is fast and steep at the begin-
ning but then gradually gets slower and flat toward an
asymptote (+1 or –1 in this example, see Figure 3B).
Stated more generally, during the first phases of learn-
ing, the connection weights reflect the amount of evi-
dence, that is, the network is sensitive to sample size.
However, the error decreases as more information is
processed in the network, so that after some time,
learning reaches asymptote and the weight of the con-
nections reflects the average of the favorable versus
unfavorable evidence.

In sum, the delta learning algorithm shapes the con-
nections between attitude object nodes with the cogni-
tive and evaluative responses. The acquisition property
describes how the connections from the attitude object
grow stronger in function of a growing sample size,
and so result in the preponderance of favorable or unfa-
vorable evaluations in proportion to the number of ex-
periences with each of these consequences.

General Methodology
of the Simulations

Webasicallyused thesamemethodologythroughout
all simulations. We applied the connectionist process-
ing principles, including the property of acquisition and
sample size, to a number of classic findings in the atti-
tude literature. For explanatory purposes, we most often
replicated a well-known representative experiment that
illustrates a particular phenomenon although we also
simulated a theoretical prediction. Table 1 lists the top-
ics of the simulations we will report shortly, the relevant
empirical study or theory that we attempted to replicate,
and the major underlying processing principle responsi-
ble for reproducing the data. Although not all relevant
data in the vast attitude literature can be addressed in a
single article, we are confident that we have included
some of the most relevant phenomena from the current
literature of dual-process models.

We first describe the successive learning phases in
the simulations, the general parameters of the model,
how cognitions and evaluations were coded, how often
they were presented to the network, and how attitudes
and attribute-relevant thoughts were measured.
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Table 1. Overview of the Simulations

Number Topic Major Processing Principle Empirical Evidence / Theoretical Prediction

1 Reasoned Action Acquisition of valued information Fishbein and Ajzen, 1975
2 Length Heuristic Prior acquisition of few versus many values Petty and Cacioppo, 1984
3 Consensus Heuristic Prior acquisition of few versus many values Maheswaran and Chaiken, 1991, exp. 1
4 Expertise Heuristic Prior acquisition of high (expert) versus

low (non-expert) values
Chaiken and Maheswaran, 1994

5 Mood Heuristic Prior acquisition of high (positive mood)
versus mixed (neutral mood) values

Petty, Schumann, Richman, and Strathman, 1993, exp.
2

6 Ease of Retrieval Competition with valences acquired earlier Tormala, Petty, and Briñol, 2002, exp. 2



Learning Phases

In all simulations, we assumed that participants
brought with them learning experiences taking place
before the experiment. We argued before that eval-
uative responses to attributes and outcomes typically
develop early. This was simulated by inserting a Prior
Valence Learning phase during which the connections
between the object’s attributes and their evaluations
were developed. When appropriate, we also inserted a
Prior Heuristic Learning phase during which connec-
tions were established between attitude objects and the
heuristic cues of the environment in which they were
generated. These two prior learning phases are based
on earlier direct experiences or observations of similar
situations or indirect experiences through communica-
tion or observation of others’ experiences. Thus, the
connection weights established during these pre-ex-
perimental phases reflect the beliefs and evaluations
that participants bring with them into the experimental
situation.

We then simulated specific experiments. The par-
ticular conditions and trial orders of the focused exper-
iments were reproduced as faithfully as possible al-
though minor changes were introduced to simplify the
presentation (e.g., fewer trials or arguments than in the
actual experiments). Nevertheless, the major results
hold across a wide range of stimulus distributions.

Model Parameters

For all simulations, we used the linear autoas-
sociative recurrent network described earlier, with pa-
rameters for decay and excitation (for internal and ex-
ternal activation) all set to 1 and with two internal
activation cycles. This means that activation is propa-
gated to neighboring nodes and cycled two times
through the system, so that nodes linked via one or two
connections receive activation from an external
source. The activation of a node is computed as the lin-
ear sum of all internal and external activations received
by this node (McClelland & Rumelhart, 1988; McLeod
et al., 1998; for technical details, see Appendix A).
Assuming that the major experiments to be simulated
used very similar stimulus materials, measures, and
procedures, the general learning rate that determines
the speed by which the weights of the connections are
allowed to change was set to 0.35. This learning rate
was chosen because it accommodated all simulations
to be reported, although any value between 0.33 and
0.37 typically yielded the same general pattern. All
connection weights were initialized at zero. To ensure
that prior learning would not overshadow the learning
of the experimental information, external activation
during prior learning was set to 0.5 or –0.5 instead of
the standard level of +1 or –1, whereas learning during
the experimental phase was set to the standard level.

Trial Frequencies

For simulating prior valance learning, in all simula-
tions we first ran a number of trials in which positive and
negative attributes, or strong and weak arguments, were
paired with the favorable and unfavorable valence nodes,
respectively. The rationale for this is that strong argu-
ments elicit primarily favorable evaluations about the
attitude object, whereas weak arguments elicit primar-
ily unfavorable evaluations (see Petty & Cacioppo,
1984,p.73).Thenumberof trials foreachattributeorar-
gument was set to 15 to ensure that the connection
weights approached asymptote. For simulating prior
heuristic learning, we first ran a number of pre-experi-
mental trials that varied between 1 and 12 (to be dis-
cussed later). These pre-experimental phases and one
condition in the experimental phase were run till com-
pletion by going once through all trials. To generalize
across a range of presentation orders, each network run
was repeated for 50 different random orders, thus simu-
lating 50 different participants. Because of the random
ordering of trials, the results for each run (or participant)
were somewhat different, reflecting the variable condi-
tions of human perception in the actual experiments.

Given that a critical experimental manipulation usu-
ally lasts about 1 min (the time to read the information),
it seemed reasonable to assume that participants would
think at least once about each piece of information and
that this would generate their evaluations about it. This
was implemented by using one trial for each attribute
presented in the experimental condition. It is important
to note that the frequencies in the experimental phase
were intentionally kept low for two reasons. First, it
seemed to us that individuals do not exert extreme effort
in thinking about attributes or in interpreting substan-
tive arguments, so that a single trial for each attribute or
argument seemed appropriate. Second, having a limited
numberof trials avoids thedestructionof theconnection
weights learned previously—a result that is known as
catastrophic interference (French, 1997; McCloskey &
Cohen, 1989). It is implausible that a novel piece of
information would totally reverse long-term back-
ground knowledge, and this indeed never occurred in
the simulations (more on this later).

Measuring Attitudes
and Relevant Thoughts

At the end of each simulated experimental condi-
tion, test trials were run in which certain nodes of inter-
est were turned on and the resulting activation in other
nodes was recorded to evaluate our predictions or to
compare with observed experimental data. For mea-
suring the attitude, we turned on the attitude object and
recorded the resulting activation at the favorable and
unfavorable valence nodes. The unfavorable activation
was subtracted from the favorable activation to arrive
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at an overall attitude measure. For measuring attrib-
ute-relevant thoughts, we also activated the attitude
object and recorded not only the differential activation
of the valence nodes, but also the activation of the
nodes reflecting the attributes or arguments presented.
Hence, this measure reflects a combination of valences
and thoughts about the object’s attributes, which seems
most appropriate to measure valenced thought or the
degree of positively versus negatively valenced think-
ing. This will be explained in more detail for each sim-
ulation. These obtained test activations were averaged
across all participants and then projected onto the ob-
served data using linear regression (with intercept and
a positive slope) to visually demonstrate the fit be-
tween the simulations and experimental data because
only the pattern of test activations is of interest, not the
exact values.

Central Processing

Dual-process models of persuasive communication
assume that given sufficient motivation and capacity,
an audience will process incoming arguments exten-
sively via the central or systematic route of persuasion.
Perhaps the most influential model of attitude forma-
tion that describes this sort of deliberative weighting of
all salient alternatives and consequences is Fishbein
and Ajzen’s (1975) theory of reasoned action (see also
Ajzen, 1991; Ajzen & Madden, 1986). As noted ear-
lier, according to this theory, an attitude is a function of
the expectation that the behavior will lead to certain
consequences or outcomes (e.g., a car is fast and dry,
but also pollutes the air), and the person’s evaluation of
these outcomes (e.g., fast and dry is good, pollution is
bad). The attitude is the outcome of this weighting pro-
cess and is computed by multiplying the expectancy
and value components associated with each outcome
and summing up these products. This formula of atti-
tude formation has received considerable empirical
support in many studies (see Ajzen, 1991; Ajzen &
Madden, 1986; Fishbein & Ajzen, 1975) although it
has been found that other factors besides attitudes may
also exert an influence on behavior. However, a limita-
tion of the theory is that it remained vague about the
underlying integration process.

Current views on the attitude process assume that
many aspects of deliberative attitude formation and
change through the central route to persuasion is im-
plicit. For instance, Chen and Chaiken (1999) claimed
that “although perceivers are clearly aware when they
are systematically processing information, they are by
no means necessarily aware of the precise form of this
processing or of the factors that may influence it” (p.
86). Our connectionist model is consistent with this po-
sition and assumes that perceivers must be minimally
aware only of the information provided at the time of

encoding. In contrast, the generation of evaluative re-
actions to this information and the integration of these
evaluations depend on automatic spreading of activa-
tion and weight updating, which proceed at an auto-
matic and implicit level as we have seen earlier.

Recent evidence supports this view (e.g., Betsch,
Plessner, Schwieren, & Gütig, 2001; Lieberman,
Ochsner, Gilbert, & Schacter, 2001; Olson & Fazio,
2001). A very convincing neuropsychological study by
Lieberman et al. (2001) documented that amnesic pa-
tients could form and change their attitudes for various
pictures at different moments in time, despite a severe
impairment in their ability to consciously remember
the pictures they had encountered earlier, in contrast to
control participants who were able to recollect their
earlier preferences. Thus, although the amnesic pa-
tients might have been aware of the pictures at the time
of exposure and probably also of their preferences
for some pictures, the online evaluative integration
over time of these preferences occurred largely outside
awareness.

Simulation 1: Central Processing
of Expectations and Valences

We will demonstrate the integration of persuasive
information using the central route by mimicking the
predictions of the theory of reasoned action (Fishbein
& Ajzen, 1975). As assumed by Ajzen (1988), this in-
tegration will follow “reasonably from the beliefs peo-
ple hold about the object of the attitude” so that “we
learn to like objects we believe have largely desirable
characteristics, and we form unfavorable attitudes to-
ward objects we associate with mostly undesirable
characteristics” (p. 32). To illustrate this “reasoned”
integration of persuasive information, we extend the
car example used in the introduction with other trans-
portation modes such as public buses or bicycles. Ta-
ble 2 lists a simplified simulated learning history of
this example.

Simulation. Each line in the top panel of Table 2
represents a pattern of external activation at a trial that
corresponds to either a direct personal encounter or an
indirect persuasive statement. The first three cells of
each line represent the attitude object presented in each
trial. The next three cells reflect the attributes paired
with an attitude object. The last two cells denote the
evaluation of these attributes, which is either favorable
or unfavorable. As can be seen, each node was turned
on (activation level of +1, 0.5, –0.5, or –1) or turned off
(activation level 0).

As argued earlier, the likelihood variable in the
Fishbein and Ajzen (1975) formula is determined by
the frequency that an attitude object is paired with an
attribute, and the evaluation variable is determined by
the degree of satisfaction or dissatisfaction experi-
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enced when that attribute is present. We further as-
sumed that learning the attribute→valence connec-
tions occurs relatively early, whereas the object→at-
tribute connections develop relatively late. Therefore,
in the simulation history, first a prior learning phase is
inserted, during which valences are developed, and
then the main learning phase, in which the attributes of
each transportation vehicles are learned.

These learning phases do not only determine the
weight of the object→attribute and attribute→valence
connections, but they also shape the object→valence
connections that reflect the attitude. Thus, an attitude is
stored in the network in the connections from each atti-
tude object with the favorable and unfavorable evalua-
tions. Consequently, testing or measuring an attitude in
the network is accomplished by activating the attitude
object and reading off the resulting activation of the fa-
vorable and unfavorable valence nodes (denoted by ?
in the bottom panel of Table 2). In particular, we tested
the differential activation of the favorable and unfavor-
able nodes.

We compared the predictions of the recurrent net-
work model with those of the theory of reasoned action
using the summed multiplicative equation outlined
earlier (Fishbein & Ajzen, 1975; see also Appendix B).
For computing this equation, we used the trial frequen-
cies as estimates of the likelihood of outcomes, and we
used a value of +1 for favorable attributes and a value

of –1 for unfavorable attributes. Assuming that higher
frequencies lead to stronger beliefs, we took the raw
trial frequencies rather than proportions or probabili-
ties. Hence, the predictions reflect the relative attitude
toward each object; and the pattern is identical if taken
proportional to the total number of trials.

Results. The statements listed in Table 2 were
processed by the network for 50 participants with dif-
ferent random orders. In Figure 4, the simulated values
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Table 2. Learning Experiences During Reasoned Behavior (Simulation 1)

Objects Attributes Valence

Car Bicycle Bus Fast Dry Pollutes

Prior Valence Learning

#15 0 0 0 + 0 0 + 0
#15 0 0 0 0 + 0 + 0
#15 0 0 0 0 0 + 0 +

Car

#1 1 0 0 1 0 0 i i
#1 1 0 0 0 1 0 i i
#1 1 0 0 0 0 1 i i

Bicycle

#1 0 1 0 1 0 0 i i
#2 0 1 0 0 –1 0 i i

Bus

#2 0 0 1 –1 0 0 i i
#1 0 0 1 0 1 0 i i
#2 0 0 1 0 0 1 i i

Test

Attitude Toward Car 1 0 0 0 0 0 ? –?
Attitude Toward Bicycle 0 1 0 0 0 0 ? –?
Attitude Toward Bus 0 0 1 0 0 0 ? –?

Note. Schematic version of learning experiences in attitude formation along Fishbein and Ajzen (1975). J = favorable; L = unfavorable; # =
frequency of trial, + = external activation of 0.5, i = internal activation (generated mainly by the attributes) is taken as external activation. Each of
the transportation means was trained separately, and was always preceded by the Prior Valence Learning phase and followed by the Test phase.
Trial order was randomized in each phase and condition.

Figure 4. Attitude formation: Predicted data from Fishbein and
Ajzen (1975) and simulation results. Theoretically predicted
data are denoted by bars, simulated values by broken lines.



(broken lines) are compared to the predictions from the
theory of reasoned action (striped bars). As can be
seen, the simulated and predicted data match almost
perfectly. Furthermore, an ANOVA on the simulated
attitude revealed that the main effect of transportation
modes was significant, F(2,147) = 53.72, p < .0001,
and further t tests indicated that all transportation
modes differed significantly from each other, t(98) =
3.67 – 10.85, ps < .001.

It is important to note that as soon as the external ac-
tivation was turned on for the attitude objects and their
attributes during the main learning phase, all the re-
maining mechanisms were implicit as they involved
only activation spreading and weight updating. Thus,
this simulation presents a formal mechanism that ex-
plicates that perceivers need only be aware of the infor-
mation provided (i.e., the attitude object and its at-
tributes, either perceived directly or communicated
through persuasive arguments) and that the rest of
deliberative attitude processing may proceed outside
awareness.

Heuristic Processing

Although people may prefer to systematically scru-
tinize all relevant information for forming an opinion
about an important issue (Gollwitzer, 1990), in many
cases attitudes are created or changed in a more shal-
low or heuristic manner. This distinction is crucial to
dual-process models like the elaboration likelihood
model (Petty & Cacioppo, 1981, 1986; Petty &
Wegener, 1999) and the heuristic-systematic model
(Chaiken, 1980, 1987; Chen & Chaiken, 1999). Ac-
cording to these dual-process models, when motiva-
tion or capacity for systematic scrutiny of information
is low, such as when the issue is of low personal rele-
vance or when time is limited, people use a heuristic
processing strategy. Heuristic processing implies that
people form or change their attitudes by using situa-
tional cues that automatically give rise to stored deci-
sion rules such as “experts can be trusted,” “majority
opinion is correct,” and “long messages are valid mes-
sages.”

The Nature of Heuristics

What are heuristics and how do they work? Accord-
ing to Chaiken, Liberman, and Eagly (1989, p. 213),
“rules or heuristics that define heuristic processing are
learned knowledge structures … perceivers sometimes
use heuristics in a highly deliberate, self-conscious
fashion, but at other times they may use heuristics
more spontaneously, with relatively little awareness of
having done so.” They argued that heuristics are ab-
stracted on the basis of past experiences and observa-
tions or via direct instruction from socializing agents.

Consequently, they can vary in their strength or per-
ceived reliability, depending on the statistical
relationship between situational cues and agreement
with messages during prior learning. As Chaiken et al.
(1989, p. 218) put it,

a person whose past experience with likable and un-
likable persons has yielded many confirmations and
few disconfirmations of the liking-agreement rule,
should perceive a stronger association between the
concept of liking and interpersonal agreement than a
person whose experience has yielded proportionally
more disconfirmations.

Heuristics will only exert an impact on the attitude to
the extent that they are reliable and available in mem-
ory and to the extent that the situation provides cues
that can be processed heuristically.

However, except for the notion that heuristics are
knowledge structures reactivated from memory before
they can take effect, as far as we know, dual-process
theories did not spell out in much detail how these
heuristics are applied and integrated into an attitude
judgment. Heuristic processing in the attitude litera-
ture is often equated with inferential rules, schemas,
and procedural knowledge. Hence, one interpretation
is that heuristics consist of well-learned abstracted
rules like “I agree with people I like” that are applied in
some way or another on the current attitude. Another
interpretation is that heuristics consist of summarized
past knowledge people have about similar situations
and the statistical relation between situational cues and
agreement with messages. This latter interpretation
does not involve the development of abstract, rule-
based knowledge and is compatible with a connection-
ist perspective (see also Smith & DeCoster, 2000;
Strack & Deutsch, 2004).

Indeed, numerous simulations in connectionist re-
search have suggested that sensitivity to an abstract
rule need not involve the acquisition of a correspond-
ing abstract rule and that a single connectionist net-
work is quite capable of processing both rule-abiding
and rule-deviating behaviors and judgments (cf. Pac-
ton, Perruchet, Fayol, & Cleeremans, 2001). Many
instances of seemingly rule-like behavior need not
necessarily depend on explicit rule knowledge and
instead may be based on the processing of exemplars
and subsymbolic properties of connectionist models
(McLeod et al., 1998). A very well known example is
the Rumelhart and McClelland (1986) model of the ac-
quisition of past tense morphology. In that model, not
only are regular verbs processed in just the same way
as exceptions, but neither are learned through anything
like processes of abstract rule acquisition. In the do-
main of social cognition, Smith and DeCoster (1998)
demonstrated that a connectionist network can learn a
schema from exposure to exemplars of a category (e.g.,
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learn a stereotype about a social group from exposure
to its members) and apply this knowledge to make in-
ferences about unobserved attributes of the category.

Heuristics as Learned Connections

Our core idea on heuristics is that they consist
of summarized exemplar knowledge embedded in con-
nection weights reflecting past co-occurrences of heu-
ristic cues and attitude agreement. Hence, there is
no storage of explicit abstracted or symbolic rules
(see also Smith & DeCoster, 2000). In an early phase,
when heuristic learning occurs, the communicated mes-
sage establishes a cue→valence connection such as that
between a likeable source and attitude agreement
(Chaiken et al., 1989). This heuristic learning phase can
result indifferentheuristic “rules”byassociationsof the
valences with different cues such as message length,
consensus, and expertise and by variations in the associ-
ation frequencies or valences. In a later application
phase, whatever heuristics is operative at the time di-
rects the system at reusing the heuristic knowledge on
the basis of the cue→valence connection, with little in-
put from the object→attribute→valence connections
(used in central processing). We believe that the prefer-
ential use of one of these connections or “routes” de-
pends on differences in attention to either heuristic cue
information or substantive arguments (i.e., attributes).
We assume that these differences in attentional focus
(and thus of heuristic vs. central processing) is governed
by the same factors of motivation and capacity that de-
termine elaboration likelihood as proposed by
dual-modelsofattitude(Chen&Chaiken,1999;Petty&
Wegener, 1999).

Let us first elaborate on the prior heuristic learning
phase. Our perspective on heuristic learning posits that
heuristic knowledge is principally built from earlier
persuasive messages in which some arguments drive
the valences in a positive or negative direction (e.g.,
strong arguments producing a favorable valence, weak
arguments generating an unfavorable valence). What
results from this learning process is an association be-
tween the heuristic cue and the valence. The specific
arguments in this process are of no further substance
and are easily forgotten later because they typically
differ between situations and so become random noise
that drops out. Thus, what is stored in memory is a
direct association between a cue, such as message
source, and attitude agreement or disagreement (with-
out arguments) that reflects the statistical relationship
during prior learning of messages varying in source ex-
pertise and acceptance of opinions. For instance, many
confirmations that experts’ strong arguments in favor
of a certain position leads to attitude agreement will
create a strong connection between trustworthy pro-
arguing sources and positive valences. Conversely,
one can also develop source knowledge indicating that

trustworthy experts arguing against a certain position
most often leads to attitude disagreement. (For ease of
presentation, however, we tacitly assume a favoring
expert in most examples.) People can also abstract the
functional realm of application of a heuristic cue. For
instance, an “expert” source is defined as trustworthy
only in a limited range of domains. Thus, a doctor is an
expert in diagnosing diseases but not in advising how
to enjoy rock-and-roll.

Second, once this cue→valence connection is
formed, it resides in memory so that any heuristic
processing of novel messages that contains informa-
tion about the cue (e.g., source) will not start from
scratch, but instead will start from a nonzero connec-
tion. This nonzero connection will facilitate all fur-
ther activation spreading and learning on similar is-
sues. For example, an expert’s message will be
received favorably if processed heuristically because
the only thing that matters is the reactivation of the
valence associated with the expert cue. This is how
our model conceives the spontaneous application of
heuristics without depending on symbolic abstraction
of rules. Of course, it is possible that under some cir-
cumstances “people can reflect on their own past ex-
periences and summarize them, perhaps in the form
of a symbolically represented rule” (Smith &
DeCoster, 2000, p. 116). In this case, perceivers con-
sciously decide “whether it is appropriate to use acti-
vated mental constructs as guides to judgment” (Chen
& Chaiken, 1999, p. 83). In sum, we typically see
heuristics as implicit knowledge based on past exem-
plars although they may sometimes be abstracted as
symbolic rules. As we will argue later, this view may
have important consequences on how heuristics influ-
ence attitude formation.

Simulating Heuristic Learning

In the simulations, we implemented heuristic pro-
cessing in two steps. First, we assumed that alongside
attributes of an attitude, the system also stores old ex-
periences with heuristic cues (see Figure 5). Specific-
ally, as shown on the right side of Figure 5, we pro-
grammed a pre-experimental heuristic learning phase
in which cue→valence connections were built up (via
arguments that shape the valence but which are of no
further importance and therefore not shown). Second,
after this heuristic learning phase, a novel attitude is
developed under heuristic processing by a generaliza-
tion of the cue’s valence to the attitude object. With
generalization we mean that the prior cue→valence
connection creates a similar object→valence connec-
tion during the co-occurrence of the cue and the atti-
tude object. This object→valence connection stands
on its own. For instance, although the sheer number of
favorable reviews in the media shaped our high respect
for an artist and created a cue→valence link, because
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of this generalization to the artist himself we may be
able to report later that we evaluated this artist very
highly but do not remember that is was because of a
great number of flattering reviews.

The fact that the attitude is directly based on an ob-
ject→valence link without strong supporting links to
attributes or environmental cues may explain why atti-
tudes formed by the heuristic route are not very endur-
ing. As soon as a novel generalization is established
between the attitude object and another situational cue
(or new links with substantive arguments under central
processing), the earlier object→valence link changes.
For instance, if a friendly expert tells us that she read
negative reviews, we might change our mind about this
artist more quickly than if we had developed our own
arguments under central processing.

We also explored an alternative process in which
heuristic processing is not based on a direct generaliza-
tion of the cue’s valence to the attitude object, but
rather on an indirect generalization through an ob -
ject→cue→valence link. This alternative implies that
the reactivation of the cue is a crucial mediator in atti-
tude activation. To take our previous artist example,

we would be able to report later that the reason we
evaluated this artist very highly was the great number
of flattering reviews (without remembering the content
of it). This approach converges on very similar simula-
tion results. However, because it seems to us that most
people tend to forget the heuristic cue under which
they developed their attitude, this alternative seemed
less intuitively plausible and is therefore not reported.
However, future research should establish convinc-
ingly that none of the heuristic cues is remembered at a
later stage or only very little of it.

Returning to the heuristic learning phase, how often
need heuristic events be repeated before the statistical
relationship between the cue and message acceptance
is stored in memory? For instance, if a perceiver agrees
with a message that was advocated by a trustworthy
source, how many times should this event (and the op-
posite event involving an untrustworthy source and
disagreement) be repeated before a strong connection
is established with the valence nodes? Obviously, per-
ceivers need to be exposed to multiple events or epi-
sodes before the heuristic cue is summarized and its
application automated. Moreover, there is a growing
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Figure 5. Network architecture with one attitude object (current car) and a heuristic cue (car expert). The example illustrates prior
learning when the expert is negatively disposed toward cars. For a clear understanding of the major mechanisms underlying heuristic
processing, only one attribute is listed and only the most important connections are shown. The table on the bottom reflects the activation
of the network involved in different phases of learning and testing; a lighter shade of gray reflects less activation than the default (activa-
tion level indicated by %).



realization that memory for specific episodic events
and the extraction of more generalized statistical
knowledge resides in different memory systems in the
brain (the hippocampus and neocortex, respectively;
see McClelland, McNaughton, & O’Reilly, 1995;
Smith & DeCoster, 2000). Prior knowledge—such as
schemas and stereotypes—is often built up slowly and
is often resistant to change in the presence of new con-
tradictory information. Various modelers have pro-
posed modular connectionist architectures mimicking
this dual-memory system with one subsystem dedi-
cated to the rapid learning of unexpected and novel in-
formation and the building of episodic memory traces
and another subsystem responsible for slow incremen-
tal learning of statistical regularities of the environ-
ment and gradual consolidation of information learned
in the first subsystem (Ans & Rousset, 1997, 2000;
French, 1997, 1999; McClelland et al., 1995). Efforts
to improve these models are still under way.

Therefore, a full-blown dual-memory system is be-
yond the scope of this article. However, all these ap-
proaches agree that learning in semantic memory is
much slower than in episodic memory. Based on this
central idea, in the present simulations, we used a sin-
gle system in which the heuristic episodes were re-
peated 10 times with a learning rate that was only 10%
of the learning rate of the other material. This imple-
mentation conserves the basic tenet that learning statis-
tical regularities embedded in earlier messages is much
slower than learning a specific (i.e., current) message.

Heuristic Versus Central Processing:
Differences in Attention

As noted earlier, to explain the difference between
heuristic and central modes of processing, we borrow
the elaboration likelihood assumption from dual-pro-
cess models (Petty & Wegener, 1999), which implies
that

central route attitude changes are those that are based
on relatively extensive and effortful information-pro-
cessing activity, aimed at scrutinizing and uncovering
the central merits of the issue or advocacy. Periph-
eral-route attitude changes are based on a variety of at-
titude change processes that typically require less cog-
nitive effort. (p. 42)

Thus, during central processing, people assess the rele-
vance and favorability of the persuasive arguments,
which requires a lot of mental effort and attention,
whereas during heuristic processing, due to lack of
cognitive resources or motivation, current persuasive
arguments are less well attended to. Because of the
shallower encoding of novel persuasive arguments
during heuristic processing, they will have less effect
on the final attitude than prior heuristic knowledge, so

that heuristic knowledge will prevail. In contrast, dur-
ing central processing, the persuasive arguments are
more carefully attended to and scrutinized, so that they
largely override prior knowledge and dominate the fi-
nal attitude.

These differences in attentional focus put our ap-
proach in large agreement with dual-process models.
Heuristic and central processing differ both quantita-
tively and qualitatively (Petty & Wegener, 1999).
They differ quantitatively because they presume dif-
ferences in elaboration likelihood of information that
is learned by the same fundamental delta algorithm,
whether it was learned previously or currently. How-
ever, they also differ qualitatively because the infor-
mation base underlying previous heuristic learning and
current central processing differs completely.

Simulating Differences in Attention

We have already seen how the model implements
the different learning histories of heuristic and central
processing (the qualitative difference). How do we
simulate differences in elaboration likelihood (the quan-
titative difference)? We propose that the degree of elab-
oration essentially depends on differences in attention
to earlier versus recent information and that this deter-
mines what type of information will have the most im-
pact on attitude formation. Specifically, we argue that
under heuristic processing, there is a general reduction
in attention so that it becomes negligible for novel ar-
guments but remains influential for the cue. This re-
maining attention for the cue allows the generalization
of the cue’s valence to the attitude. In connectionist
models, variation in attention is typically implemented
by differences in external activation.

Research has demonstrated that differences in at-
tention can originate from modulations in basic arousal
and behavioral activation (e.g., the sleep–wake cycle),
responsiveness to salient stimuli, or to task-specific
attentional focus and voluntary control of exploring,
scanning, and encoding information. Research on the
neurological underpinnings of attention suggests that
general arousal is driven by lower-level nuclei and
pathways from the brain stem, whereas basic features
of the stimuli are detected by the thalamus and related
subcortical nuclei (e.g., amygdala, basal ganglia). In
contrast, task-specific attention and voluntary control
are most likely modulated by supervisory executive
centers in the prefrontal neocortex (LaBerge, 1997,
2000; Posner, 1992). Variations in elaboration likeli-
hood stem mainly from such conscious control over
one’s attentional focus. Some connectionist research-
ers have attempted to model these higher-level volun-
tary attention processes (e.g., O’Reilly & Munakata,
2000, pp. 305–312, 379–410). The basic idea of their
approach is that motivation or task instructions main-
tain activation in the frontal areas of the brain (through
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dopamine-based modulation) and that this “attention-
al” activation spreads to other internal representation
in the brain where it results in greater accessibility and
activation of other internal representations.

In line with the basic ideas of O’Reilly and Muna-
kata’s (2000) model, but somewhat more simplified,
we incorporated a general attentional module in our
model that served as a gateway to all other areas of our
network and that modulated the activation of the nodes
in some areas. By varying the attention level in this
general attentional module during heuristic process-
ing, all activation levels in some areas were changed to
the same degree (see also bottom scheme in Figure 5).
Of course, this is again a simplification of real life. It
may well be that during heuristic processing, some
members of the audience evaluate some arguments
with high motivation and attention and then stop upon
realizing that it is of little personal relevance. This
could be built in the simulations. On average, however,
all arguments will be processed less extensively, and
therefore we kept the simpler simulation procedure.
Note that changes in the activation level do not violate
the locality principle of connectionism, which says that
each connection weight should be updated using only
locally available information from associated nodes.
That is because the activation level only affects the
general speed of learning, not how much and in which
direction weight adaptation should occur, which is
uniquely determined by local information according to
the delta learning algorithm.

In the next simulations, we implemented four heu-
ristic “rules” of length, consensus, expertise, and mood
that were largely based on this assumption although
there were some essential differences between each
heuristic which prompted us to consider each of them
separately. We are focusing here on the effects of
heuristics given low and high elaboration conditions
and do not address how the heuristics themselves
can sometimes determine the extent of thinking (see
the section “Quantitative and qualitative processing
differences”).

Simulation 2: Length Heuristic

We begin the demonstration of our connectionist
approach to heuristic reasoning with the length heuris-
tic. In empirical research, lengthy messages are typi-
cally manipulated by providing more arguments or by
repeating the same arguments in different words with
more detail (Haugtvedt, Schumann, Schneier, & War-
ren, 1994; Petty & Cacioppo, 1984; Schumann, Petty,
& Clemons, 1990; Wood, Kallgren, & Preisler, 1985).
According to the principle of acquisition, greater sam-
ple size of arguments should result in stronger effects
on attitude judgments. Thus, the more often an argu-
ment that an attitude object possesses a positive or neg-

ative attribute is repeated, the stronger the
object→valence connection will grow.

Sometimes, people are misled by the apparent
length of a message even if it does not include more
persuasive arguments but only contains cosmetic alter-
ations such as the use of larger fonts and margins
(Wood et al., 1985) or minor rewording (Haugtvedt et
al., 1994; but see Schumann et al., 1990). This seems to
suggest that superficial characteristics of a message
can sometimes influence processing rather than the ar-
guments themselves. A connectionist framework can
account for this effect by assuming that such superfi-
cial characteristics of length are often correlated with
actual differences in message length and so may influ-
ence attitudes also.

Key experiment. Petty and Cacioppo (1984) pro-
vided a well-known demonstration of the length heu-
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Figure 6. Length heuristic: Observed data from Petty and Caci-
oppo (1984) and simulation results of attitudes (top panel) and
valenced thoughts (bottom panel). Human data are denoted by
bars, simulated values by broken lines. The human data are
from Table 1 in “The effects of involvement on responses to ar-
gument quantity and quality: Central and peripheral routes to
persuasion” by R. E. Petty & J. T. Cacioppo, 1984, Journal of
Personality and Social Psychology, 46, p. 75. Copyright 1984 by
the American Psychological Association.



ristic. Participants read about a committee that would
advise a change in academic examination policy. In-
volvement in the issue was manipulated by telling par-
ticipants that the recommendations would be initiated
the following year (high involvement) or after 10 years
(low involvement). Next, participants read either three
or nine arguments in favor of the proposed changes
that were all strong or weak. As can be seen in Figure 6
(top panel), under low involvement the number of ar-
guments had a strong impact, suggesting that the
length heuristic was applied. In contrast, under high in-
volvement, the quality of the arguments had a greater
impact so that nine strong arguments lead to more atti-
tude change than three strong arguments and, simi-
larly, that nine weak arguments lead to less attitude
change than three weak arguments.

It is important to note that the length heuristic in the
Petty and Cacioppo (1984) study revealed only more
agreement with the advocated position although in
principle the length heuristic might result in less agree-
ment if weak or unconvincing arguments had been
considered. This seems to suggest that under heuristic
processing, perceivers primarily reactivate knowledge
indicating that lengthy arguments were strong and con-
vincing. This may reflect statistical regularities in
perceivers’ past experiences, in that among all natu-
rally encountered messages in the past, the longer ones
might usually have been the more convincing ones.

This idea is reproduced in the simulations by using
only strong arguments in the Prior Heuristic Learning
phase, and this assumption is crucial in simulating the
results from the experimental data.

Dual-process models assume that the cognitive re-
sponses while receiving a persuasive message are cru-
cial mediators in forming an attitude. The greater the
proportion of favorable responses and the smaller the
proportion of unfavorable responses elicited by a mes-
sage, the greater is the attitude change in the direction
advocated. To measure these cognitive responses, Pet-
ty and Cacioppo (1984) gave their participants a
thought-listing task in which they had to “try to re-
member the thoughts that crossed your mind while you
were reading the material” (p. 74). The results of this
thought-listing task, taking into account the favorable
or unfavorable valence of the thoughts, are depicted in
Figure 6 (bottom panel). Under conditions of high in-
volvement, they show a similar pattern of increased
agreement with the message given more arguments,
but under conditions of low involvement, they reveal
little explicit thinking. These results are consistent
with the dual-process model’s hypothesis that
valenced attribute-relevant thoughts mediate attitude
change given central processing but that heuristic pro-
cessing elicits little thought about the attitude-related
arguments.
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Table 3. Learning Experiences and the Length Heuristic (Simulation 2)

Object & Cue Argumentsa Valence

Exam Length Str1 Str2 Str3 Wk1 Wk2 Wk3

#10 Prior Heuristic Learning: Short (Long) Strong Message

#1 (4) 0 + + 0 0 0 0 0 + 0
#1 (4) 0 + 0 + 0 0 0 0 + 0
#1 (4) 0 + 0 0 + 0 0 0 + 0

Short Strong (Weak) Message

#1 1 1 1(0) 0 0 0(1) 0 0 i i

Long Strong (Weak) Message

#1 1 1 1(0) 0 0 0(1) 0 0 i i
#1 1 1 0 1(0) 0 0 0(1) 0 i i
#1 1 1 0 0 1(0) 0 0 0(1) i i

Test

Attitude Toward Exam 1 0 0 0 0 0 0 0 ? –?
Valenced Thoughts 1 0 ? ? ? ? ? ? 6? –6?

Note. Simplified version of the experimental design by Petty and Cacioppo (1984). Str = strong, Wk = weak, J = favorable; L = unfavorable; #
= frequency of trial or condition, + = external activation of 0.5, i = internal activation (generated mainly by the arguments) is taken as external ac-
tivation. Each experimental condition was run separately, and always preceded by a Prior Valence Learning phase (not shown) and Prior Heuris-
tic Learning phase, followed by the Test phase. Trial order was randomized in each phase and condition. During Prior Valence Learning (not
shown), all strong and weak argument nodes were paired with the favorable or unfavorable valence nodes respectively for 15 trials (see also Sim-
ulation 1). During Prior Heuristic Learning, each condition was repeated 10 times with 10% of the default learning rate. During heuristic process-
ing of the experimental phase, activation was reduced to 10% for the cue and to 1% for the arguments during acquisition of novel information &
testing of attribute-relevant thoughts.
aThe arguments during prior learning are completely different from those in the experimental and test conditions, but are shown in the same col-
umns to conserve space. The arguments during prior heuristic learning serve to drive the cue’s valence into a positive or negative direction, but
are of no further importance.



Based on these findings, Petty and Cacioppo (1984)
concluded that the number of arguments in a message
leads to agreement with a message by serving as a sim-
ple heuristic cue when personal involvement was low,
whereas it increases issue-relevant thinking when per-
sonal involvement was high.

Simulation. Table 3 represents a simplified sim-
ulated learning history of the experiment by Petty and
Cacioppo (1984). As can be seen, the network consists
of a current attitude object (exam) and a contextual cue
(message length) and six strong and six weak argu-
ments and two (favorable and unfavorable) valences,
each represented by a node. The table lists three strong
and weak arguments during prior heuristic learning
and three strong and weak arguments during the exper-
imental phase. Note, however, that these arguments are
totally different between the two phases but are listed
in the same columns to conserve space. As in the first
simulation, each line or trial in the top panel of Table 3
corresponds to an argument presented to participants.
Because this is the first of four simulations on heuristic
processing, we will describe it in somewhat more detail.

First, during the Prior Valence Learning phase, ar-
gument quality was paired with the valences. This as-
pect of the simulation is not listed in the table but is
similar to the previous simulation (see top panel of Ta-
ble 2). Specifically, all six strong arguments and all six
weak arguments were paired 15 times with favorable
or unfavorable valences, respectively. The rationale
for this pairing is that, in most empirical studies, strong
arguments are represented by descriptions of attributes
that are predominantly superior to alternative attitude
objects, whereas weak arguments are represented by
predominantly inferior attributes. Consequently,
strong arguments elicit primarily favorable thoughts
and evaluations about the attitude object, and weak ar-
guments elicit primarily unfavorable thoughts and
evaluations (see Petty & Cacioppo, 1984, p. 73). Note
that this implementation ignores the fact that argu-
ments may be sensitive to the context or attitude for
which they are used (e.g., “improved colors” are cru-
cial for a TV-screen but irrelevant for an answering
machine; see also Barden, Maddux, Petty, & Brewer,
2004). This sensitivity could be built in by incorporat-
ing a more distributed representation in which the ar-
guments are bound with an attitudinal context or cate-
gory (by so-called configural nodes) and so develop
weak or strong connections with the valence nodes de-
pending on the attitudinal context (also see the section
Alternative Implementations).

Second, during the Prior Heuristic Learning phase,
the acquisition of the length heuristic was simulated. In
particular, to reflect prior learning of short messages, a
single trial was presented for each of the three strong
arguments, whereas to reflect prior learning of long
messages, four trials were presented for each argument

or 3 versus 12 arguments overall (we used these fre-
quencies in most of the subsequent simulations).
Recall that we used different subsets of arguments for
Prior Learning versus the Experimental phase. To sim-
plify the simulation, during Prior Learning, we re-
peated the arguments from the Prior-Learning subset.
This is admissible because the specific arguments
themselves do not matter and only serve to activate a
positive valence and so increase the connection from
the length cue to the positive valence node. As noted
earlier, given that research indicates that the length
heuristic typically increases endorsement of a message
(although in principle it might also decrease endorse-
ment if the audience assumes a weak or unconvincing
argumentation), we assumed here that lengthy mes-
sages are retrieved mainly from strong and convincing
arguments, leading to a link with positive valence. To
simulate the idea that multiple heuristic experiences
are necessary to detect statistical regularities and con-
solidate them in long-term memory, the entire heuristic
episode of this phase was repeated 10 times with a
learning rate that was only 10% of the learning rate for
the other material.

Next, during the Experimental phase, the simula-
tion ran through each experimental condition that con-
sisted of a simplified replication of Petty and Caciop-
po’s (1984) experiment. In one condition, the attitude
object (the exam) was paired with strong arguments
that elicited favorable evaluations, whereas in the other
condition, the attitude object was paired with weak ar-
guments that elicited unfavorable evaluations. To rep-
resent short versus long messages, the simulation was
run through either one or three arguments, which re-
flects the same proportion of arguments as in Petty and
Cacioppo’s (1984) empirical study. During the high in-
volvement conditions, central processing was repro-
duced by setting the activation levels of all nodes in the
experimental phase to standard levels. During low in-
volvement, heuristic processing was implemented by
setting the activation levels of the heuristic cue to one
10th of these standard levels (= .10), and activation for
the arguments was reduced even further one 10th (=
.01). Other activation values are also possible, but in-
creasing the activation much above the levels de-
scribed here may result in an indirect generalization of
the cue’s valence rather than a direct generalization, as
discussed earlier.

Finally, in the Test phase, measuring the attitude
was accomplished in the same manner as the previous
simulation (see bottom panel of Table 3). We addition-
ally measured post-message attribute-relevant thoughts,
taking into account their favorable or unfavorable va-
lence. Like our measures of attitude, this involves acti-
vating the attitude object node and then reading off the
activation of the valence nodes and the activation of
the cognitive nodes representing the arguments.
Specifically, as shown in the last line of Table 3, the ac-
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tivation of the attitude object node was turned on, and
the activation of the arguments and valence nodes was
measured and then averaged. To balance the output ac-
tivation of the arguments and valences, the activation
of the valences was multiplied by the number of argu-
ments before all output activations were averaged. (In
this network model, this procedure is analogous to test-
ing each argument and its associated evaluative activa-
tion one after the other, and then averaging the results).
During heuristic processing, all testing activation lev-
els of the attribute-relevant thoughts (including those
indicated by ?) were reduced to 1% of the standard ac-
tivation level (in the same manner as for the activation
of the arguments in the Experimental phase).

Results. The statements of each condition listed
in Table 3 were processed by the network for 50 partic-
ipants in each condition with different random orders
for each phase. Figure 6 depicts the mean test activa-
tion for all simulated attitude measures (top panel) and
thought measures (bottom panel) projected on top of
the empirical data from Petty and Cacioppo (1984). As
can be seen, the simulation matched the attitude data
reasonably well. Under low involvement, the length
heuristic had the strongest impact on the simulated atti-
tude, whereas under high involvement, the quality and
number of the arguments had a greater impact. As can
be seen, under high involvement, the simulation repro-
duced a significant increase and decrease of attitude
given more strong or weak arguments, respectively.
The thought data were also replicated although to a
somewhat lesser degree. Under low involvement, there
were few simulated thoughts, and under high involve-
ment, thought favorability revealed the same general
pattern as the simulated attitudes.

These observations were verified with an ANOVA
with three between-subjects factors: Involvement (low
and high), Quality of Arguments (strong and weak), and
Number of Arguments (few and many). The analysis on
the simulated attitudes revealed the expected three-way
interaction, F(1,392) = 1225.20, p < .0001. Two interac-
tions were of special interest and were also observed in
the empirical data (Petty & Cacioppo, 1984). First, there
was a significant interaction between Involvement and
Number of Arguments, F(1,392) = 1043.71, p < .0001.
As expected, increasing the number of arguments pro-
duced significantly more agreement under low involve-
ment, t(396) = 5.33, p < .0001, and less so under high in-
volvement, t(396) = 2.81, p < .01. Second, there was a
significant interaction between Involvement and Qual-
ityofArguments,F(1,392)=4385.29,p<.0001.Aspre-
dicted, strong arguments produced significantly more
agreement than did weak arguments under high in-
volvement, t(396) = 29.60, p < .0001, but not under low
involvement, t < 1, ns.

The same ANOVA applied to the valenced thoughts
revealed the predicted interaction between Involve-

ment and Quality of Arguments, F(1,392) = 4526.89,
p < .0001. Strong arguments generated significantly
more thoughts that were consistent with the valence of
the arguments than did weak arguments under high in-
volvement, t(396) = 34.51, p < .0001, but not under
low involvement, t < 1.

Simulation 3: Consensus Heuristic

Let us now turn to the consensus heuristic. Dual-
process research has documented that under heuristic
processing, a higher consensus or majority endorse-
ment of a message implies correctness of that message
(Axsom, Yates, & Chaiken, 1987; Darke et al., 1998;
Erb, Bohner, Schmälzle, & Rank, 1998; Maheswaran
& Chaiken, 1991). This consensus heuristic works in
ways very similar to those of the length heuristic. In-
stead of the sheer number of arguments, here it is the
number of people endorsing the arguments that is cru-
cial. In both cases, however, the arguments are more
often repeated and therefore influence our attitudes
more strongly. Thus, past encounters with many peo-
ple providing strong arguments in favor of an attitude
position led to links of high consensus with positive
valence. Conversely, past encounters with many peo-
ple providing weak arguments in favor of an attitude
position (or strong arguments counter to that position)
led to links of low consensus with negative valence. In
sum, high consensus builds a link with a positive va-
lence, whereas low consensus builds a link with nega-
tive valence. In a connectionist framework, this prior
consensus knowledge is “retrieved” under heuristic
processing and dominates attitude formation because
little attention is given the novel information, whereas
under central processing, the novel information is fully
attended to and tends to overwrite the effects of prior
consensus beliefs.

Key experiment. We explore our connectionist
approach to the consensus heuristic by simulating
a prominent study by Maheswaran and Chaiken (1991,
experiment 1). Participants read about a fictitious
“XT100” telephone answering machine. Involvement
in the issue was manipulated by telling the participants
that their reactions would be used to decide whether to
distribute the product in their own state (high involve-
ment) or in another state (low involvement). Next, par-
ticipants read the results of an ostensible marketing test
that revealed that either 81% (high consensus) or less
than 3% (low consensus) of the consumers were ex-
tremely satisfied with the product. Finally, they read a
message that described the answering machine as
mainly superior to competing brands (strong argu-
ments) or mainly inferior (weak arguments). As can be
seen in Figure 7 (top panel), the results confirmed the
dual-process predictions. Under low involvement, the
proportion of satisfied customers had a strong impact,
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suggesting that the consensus heuristic was applied.
The smaller the proportion of satisfied customers indi-
cating satisfaction with the product, the smaller the
agreement with the message, and the greater the pro-
portion, the higher the agreement. In contrast, under
high involvement, the quality of the arguments had a
greater impact so that strong arguments led to more at-
titude change than weak arguments.

What about the cognitive responses mediating at-
titude formation? Unfortunately, Maheswaran and
Chaiken (1991) reported only the amount of thoughts
without their valence, so that Figure 7 (bottom panel)
presents nonvalenced thoughts. They suggested that
apart from the influence of the consensus heuristic,
incongruency between the majority position and the
novel arguments would result in increased central pro-
cessing by undermining perceivers’ confidence in their
heuristic-based judgments (see also Erb et al., 1998;
Mackie, 1987). That is indeed what they found. As can

be seen in Figure 7, the amount of nonvalenced thinking
under heuristic processing reveals the expected interac-
tion between congruency and consensus. There was lit-
tle thinkingunder lowinvolvementwhen therewascon-
gruencybetweenconsensus informationandpersuasive
arguments. In contrast, when there was incongruency,
the amount of thinking under low involvement was as
high as under high involvement. However, these results
are theoretically less informative as they do not reveal to
what extent valenced thoughts mediated attitude change
although Maheswaran and Chaiken (1991) reported re-
gression analyses revealing a positive relationship that
was stronger under high than low involvement.

Although valenced thoughts were not available, we
found it interesting to see whether we could simulate
nonvalenced thinking instead.Todoso,wehad to incor-
porate Maheswaran and Chaiken’s (1991) finding that
there is increased thinking given incongruency. We pre-
sume that the incongruency in the stimulus material
alerted the attentional control system so that more acti-
vation was devoted to it. Specifically, we implemented
the same test procedure as in the previous simulation for
the thought-listing task (i.e., with only 1% of the default
attention during heuristic processing), with the excep-
tion that—in line with Maheswaran and Chaiken
(1991)—attention was back at the default level during
recall of incongruent thoughts.

Simulation. Table 4 represents a schematic learn-
ing history of our simulation of the experiment by
Maheswaran and Chaiken (1991, experiment 1). The ra-
tionale is similar to that in the simulation of the length
heuristic. During the Prior Heuristic Learning phase, to
reflect low consensus, four trials were presented for
each unfavorable argument, and four trials were pre-
sentedof favorablearguments to reflecthighconsensus.
These trial frequencies reflect an arbitrary number of
other people who expressed their opinions on the issue
and were chosen to represent a simple learning history
of extreme low consensus (all perceivers disagree) and
high consensus (all perceivers agree). As before, this
whole phase was repeated 10 times with a learning rate
reduced to 10% to mimic consolidation of heuristic in-
formation in long-term memory.

Next, the network ran through the Experimental
phase. Each argument was presented once, and their
quality—strong versus weak—differed according to
condition. During the low involvement conditions,
heuristic processing was simulated by setting the acti-
vation of the cue to 10% of the default and to 1% for
the arguments, and during high involvement condi-
tions, central processing was implemented by setting
the standard activation levels.

Measuring the attitude and post-message valenced
thoughts was accomplished in the same manner as the
previous simulation (see bottom panel of Table 4). We
additionally measured nonvalenced thought by reading
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Figure7. Consensusheuristic:ObserveddatafromMaheswaran
and Chaiken (1991, experiment 1) and simulation results of atti-
tudes (top panel) and unvalenced thoughts (bottom panel). Hu-
man data are denoted by bars, simulated values by broken lines.
The human data are from Table 1 in “Promoting systematic pro-
cessing in low-motivation settings: Effect of incongruent infor-
mation on processing and judgment” by D. Maheswaran & S.
Chaiken,1991,JournalofPersonalityandSocialPsychology,61,p.
18. Copyright 1991 by the American Psychological Association.



off the total amount of favorable and unfavorable eval-
uation, instead of the differential activation of the fa-
vorable and unfavorable evaluation, using the activa-
tion levels as indicated earlier. That is, when there was
incongruency between the information implied by the
consensus information and the novel arguments, we
assumed that the activation levels were restored to the
standard levels while measuring these thought (but not
when the learning phases were running).

Results. The information listed in Table 4 was
processed by the network for 50 participants in each
condition with different random orders. Figure 7 de-
picts the mean test activation for all simulated attitude
measures (top panel) and thought measures (bottom
panel) on top of the empirical data of Maheswaran and
Chaiken (1991). It can be seen that the simulation
closely matched the attitude data. Under low involve-
ment, level of consensus had the strongest impact on
the simulated attitude, and under high involvement, the
quality of the arguments had a greater impact. The sim-
ulation also replicated the observed data on the non-
valenced attribute-relevant thoughts. Fewer thoughts
were found under congruent conditions of low in-
volvement, whereas the largest number of thoughts
was observed under incongruent conditions as well as
under high involvement.

These observations were tested with an ANOVA
with three between-subjects factors: Involvement (low
and high), Quality of Arguments (strong and weak), and

Consensus (low and high). The analysis on the simu-
lated attitudes revealed two predicted interactions that
were also observed in the empirical data (Maheswaran
& Chaiken, 1991). First, there was a significant interac-
tion between Involvement and Consensus, F(1,392) =
2096.25, p < .0001. As expected, increasing the consen-
sus produced significantly more agreement under low
involvement, t(396)=9.51,p<.0001,butnotunderhigh
involvement, t(396) = 1.27, ns. Second, there was a sig-
nificant interaction between Involvement and Quality
of Arguments, F(1,392) = 6419.85, p < .0001. As pre-
dicted, strong arguments produced significantly more
agreement than did weak arguments under high in-
volvement, t(396) = 38.46, p < .0001, but not under low
involvement, t(396) = 1.46, ns.

We applied the same ANOVA on the simulated
valenced thoughts, that is, the thoughts including their
valence (not in Figure 7). The analysis revealed the
predicted interaction between Involvement and Qual-
ity of Arguments, F(1,392) = 9956.85, p < .0001.
Strong arguments generated significantly more posi-
tive thoughts than weak arguments primarily under
high involvement, t(396) = 68.14, p < .0001, and less
so under low involvement, t(396) = 15.05, p < .0001. In
addition, an analysis on the nonvalenced thoughts re-
vealed (see Figure 7), consistent with Maheswaran and
Chaiken’s (1991) congruency hypothesis, a significant
interaction between Consensus and Quality of Argu-
ments under low involvement, F(1, 392) = 606.19, p <
.0001. Congruency between consensus and argument
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Table 4. Learning Experiences and the Consensus Heuristic (Simulation 3)

Object & Cue Argumentsa Valence

XT–100 Consensus Str1 Str2 Str3 Wk1 Wk2 Wk3

#10 Prior Heuristic Learning: High (Low) Consensus

#4 0 + +(0) 0 0 0(+) 0 0 i i
#4 0 + 0 +(0) 0 0 0(+) 0 i i
#4 0 + 0 0 +(0) 0 0 0(+) i i

Strong (Weak) Message

#1 1 1 1(0) 0 0 0(1) 0 0 i i
#1 1 1 0 1(0) 0 0 0(1) 0 i i
#1 1 1 0 0 1(0) 0 0 0(1) i i

Test

Attitude Toward XT-100 1 0 0 0 0 0 0 0 ? –?
Non-Valenced Thoughts 1 0 ? ? ? ? ? ? 6? 6?

Note. Simplified version of the experimental design by Maheswaran and Chaiken (1991, exp. 1). Str = strong, Wk = weak, J = favorable; L =
unfavorable; # = frequency of trial or condition, + = external activation of 0.5, i = internal activation (generated mainly by the arguments) is taken
as external activation. Each experimental condition was run separately, and always preceded by a Prior Valence Learning phase (not shown) and
Prior Heuristic Learning phase, followed by the Test phase. Trial order was randomized in each phase and condition. During Prior Valence
Learning (not shown), all strong and weak argument nodes were paired with the favorable or unfavorable valence nodes respectively for 15 trials
(see also Simulation 1). During Prior Heuristic Learning, each condition was repeated 10 times with 10% of the default learning rate. During heu-
ristic processing of the experimental phase, activation was reduced to 10% for the cue and to 1% for the arguments during acquisition of novel in-
formation & testing of attribute-relevant thoughts.
aThe arguments during prior learning are completely different from those in the experimental and test conditions, but are shown in the same col-
umns to conserve space. The arguments during prior heuristic learning serve to drive the cue’s valence into a positive or negative direction, but
are of no further importance.



quality led to less nonvalenced thoughts than incon-
gruency, t(396) = 6.14, p < .0001.

Simulation 4: Expertise Heuristic

Another heuristic cue often explored in the context
of dual-process approaches is the expertise heuristic,
which says that “experts can be trusted.” Again, this
heuristic can be viewed as another instance of the ac-
quisition property of the delta learning algorithm, by
assuming that the arguments and thoughts compiled
from highly regarded experts are more favorable than
those compiled from nonexperts. This is consistent
with the assumption by Bohner, Ruder, and Erb (2002)
that source expertise may lead people to form different
expectations about message strength. This can be sim-
ulated by a prior heuristic learning phase in which
experts or trusted sources are seen as using stronger
arguments that elicit more favorable valences than
nonexperts or untrustworthy sources.

Several studies revealed different effects of heuris-
tic and central processing given different levels of
source credibility, in line with predictions of dual-pro-
cess models. It was found that source credibility deter-
mined attitudes under heuristic processing but not un-
der central processing where argument quality was
of major importance (Chaiken & Maheswaran, 1994;
Petty, Cacioppo, & Goldman, 1981; Ratneshwar &
Chaiken, 1991). Similar results have also been re-
ported for likeable or famous sources (Chaiken, 1980;
Petty, Cacioppo, & Schumann, 1983) because such
communicators are seen as more expert and trustwor-
thy (Chaiken, 1980; Chaiken & Eagly, 1983).

Key experiment. One of the studies by Chaiken
and Maheswaran (1994) is particularly important be-
cause it also demonstrated that central and heuristic
processing modes are not mutually exclusive. For in-
stance, when the arguments are too ambiguous to form
an opinion by extensive processing alone, heuristic
cues may additionally help to form an opinion by bi-
asing the selection and interpretation of ambiguous
information. This interaction between central and heu-
ristic processing, referred to as the bias hypothesis
(Chaiken et al., 1989; Chen & Chaiken, 1999), was in-
vestigated by Chaiken and Maheswaran (1994). They
presented a message about a fictitious “XT100” an-
swering machine in which different attributes were de-
scribed. Involvement was manipulated in the typical
manner by telling the respondents that their opinion
about the answering machine would have little bearing
on the manufacturer’s decision to distribute the prod-
uct in another state (low involvement) or would count
heavily on the decision to distribute the product in their
own state (high involvement). Expertise was manipu-
lated by taking this information ostensibly from a
highly regarded magazine specialized in scientific test-

ing of new products (high expertise) or in a pro-
motional pamphlet prepared by sales personnel (low
expertise). The message described the answering
machine as superior to competing brands on all impor-
tant attributes (strong arguments), inferior on all
important attributes (weak arguments), or superior on
some attributes while inferior on others (ambiguous
arguments).

As can be seen in Figure 8 (top panel), consistent
with the predictions of Maheswaran and Chaiken
(1991), source credibility was the only determinant of
people’s attitude under low involvement. In contrast,
under high involvement, argument quality was the
main determining factor, except when the message was
ambiguous and source credibility alone influenced the
attitude. As might be expected, the valenced thoughts
reflected a similar pattern under high involvement and
little thought under low involvement (see Figure 8,
bottom panel).
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Figure 8. Expertise heuristic: Observed attitude data (top
panel) and observed valenced thoughts (bottom panel) from
Chaiken and Maheswaran (1994). The human data are from
Figure 1 and Table 2, respectively, in “Heuristic processing can
bias systematic processing: Effects of source credibility, argu-
ment ambiguity, and task importance on attitude judgment” by
S. Chaiken & D. Maheswaran, 1994, Journal of Personality and
Social Psychology, 66, p. 466. Copyright 1994 by the American
Psychological Association. Adapted with permission.



Simulation. We simulated the biasing nature of
heuristic cues on central processing as investigated by
Chaiken and Maheswaran (1994). Table 5 presents a
simplified learning history with similar network archi-
tecture and history as before except for the elements
detailed next.

In the Prior Heuristic phase, knowledge about ex-
pertise is built up by several experiences of good and
bad argumentation by expert and nonexpert sources,
respectively. As in the earlier simulations, three argu-
ments were each presented in four trials (or 12 argu-
ments overall), so that strong connections from the ex-
pert source to the favorable or unfavorable valences
were established for expert and nonexpert sources re-
spectively. This whole phase was repeated 10 times
with a learning rate reduced to 10% of the standard
rate.

During the Experimental phase, we ran one of three
message types, involving strong, weak, and ambiguous
arguments. As before, strong messages were repre-
sented by three strong arguments associated with a fa-
vorable evaluation, whereas weak messages were rep-
resented by three weak arguments associated with an
unfavorable evaluation. In addition, ambiguous mes-
sages were represented by one strong and one weak
argument. This reflects—in a simplified manner—
the quality and direction of the arguments in Chaiken

and Maheswaran’s (1994) empirical study. Simulating
heuristic versus central processing and measuring the
attitude and post-message valenced thoughts was ac-
complished in the same manner as in the previous sim-
ulation (see also Table 5 note).

Results. The statements in each condition listed
in Table 5 were processed by the network for 50 partic-
ipants in each condition with different random orders.
Figure 9 depicts the mean test activation for all simu-
lated attitude measures (top panel) and thought mea-
sures (bottom panel). When comparing with the empir-
ical results of Chaiken and Maheswaran (1994; see
Figure 8), it can be seen that the simulation closely
matched the attitude data. Source credibility strongly
determined the simulated attitudes under low involve-
ment, whereas under high involvement, argument
quality was the main determining factor, except when
the message was ambiguous and source credibility
alone influenced the attitude. The thought data were
also replicated although to a somewhat lesser degree.
There were few simulated thoughts under low in-
volvement, and under high involvement, the thoughts
revealed the same pattern as the simulated attitudes.

These observations were verified with an ANOVA
with three between-subjects factors, Involvement (low
and high), Quality of Arguments (strong, ambiguous,
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Table 5. Learning Experiences and the Expertise Heuristic (Simulation 4)

Object & Cue Argumentsa Valence

XT-10
0 Source Str1 Str2 Str3 Wk1 Wk2 Wk3

#10 Prior Heuristic Learning: High (Low) Expertise

#4 0 + +(0) 0 0 0(+) 0 0 i i
#4 0 + 0 +(0) 0 0 0(+) 0 i i
#4 0 + 0 0 +(0) 0 0 0(+) i i

Strong (Weak) Message

#1 1 1 1(0) 0 0 0(1) 0 0 i i
#1 1 1 0 1(0) 0 0 0(1) 0 i i
#1 1 1 0 0 1(0) 0 0 0(1) i i

Ambiguous Message

#1 1 1 1 0 0 0 0 0 i i
#1 1 1 0 0 0 1 0 0 i i

Test

Attitude Toward
XT-100

1 0 0 0 0 0 0 0 ? –?

Valenced Thoughts 1 0 ? ? ? ? ? ? 6? 6?

Note. Simplified version of the experimental design by Chaiken and Maheswaran (1994). Str = strong, Wk = weak, J = favorable; L = unfa-
vorable; # = frequency of trial or condition, + = external activation of 0.5, i = internal activation (generated mainly by the arguments) is taken as
external activation. Each experimental condition was run separately, and always preceded by a Prior Valence Learning phase (not shown) and
Prior Heuristic Learning phase, followed by the Test phase. Trial order was randomized in each phase and condition. During Prior Valence
Learning (not shown), all strong and weak argument nodes were paired with the favorable or unfavorable valence nodes respectively for 15 trials
(see also Simulation 1). During Prior Heuristic Learning, each condition was repeated 10 times with 10% of the default learning rate. During heu-
ristic processing of the experimental phase, activation was reduced to 10% for the cue and to 1% for the arguments during acquisition of novel in-
formation & testing of attribute-relevant thoughts.



and weak) and Expertise (low and high). The analysis
on the simulated attitudes revealed the expected three-
way interaction, F(2,588) = 105.48, p < .0001. Two in-
teractions were of special interest and were also ob-
served in the empirical data (Chaiken & Maheswaran,
1994). First, there was a significant interaction be-
tween Involvement and Expertise, F(1,588) = 118.97,
p < .0001. As expected, increasing the expertise pro-
duced significantly more agreement under low in-
volvement, t(596) = 11.16, p < .0001, and much less so
under high involvement, t(596) = 4.07, p < .0001. Sec-
ond, there was a significant interaction between In-
volvement and Quality of Arguments, F(2,588) =
438.26, p < .0001. As predicted, strong arguments pro-
duced significantly more agreement than did weak ar-
guments under high involvement, t(594) = 26.44, p <
.0001, but not under low involvement, t < 1, ns. More
important, as predicted by the bias hypothesis, when
the arguments were ambiguous, higher expertise pro-
duced more agreement, t(594) = 13.27, p < .0001.

The same ANOVA applied on the valenced
thoughts revealed the predicted interaction between In-
volvement and Quality of Arguments, F(2,588) =

520.74, p < .0001. Strong arguments generated signifi-
cantly more thoughts that were consistent with the
valence of the arguments than did weak arguments un-
der high involvement, t(594) = 32.85, p < .0001, but
not under low involvement, t < 1, ns. Again, as pre-
dicted by the bias hypothesis, when the arguments
were ambiguous, high expertise elicited more favor-
able thoughts about the message than low expertise,
t(594) = 7.96, p < .0001.

Simulation 5: Mood Heuristic

Dual-process research has revealed that mood also
operates like a heuristic and that it also influences cen-
tral processing (e.g., Petty, Schumann, Richman, &
Strathman, 1993; for discussion, see Schwarz, Bless, &
Bohner, 1991). Our connectionist approach to the heu-
ristic impact of mood on cognition shares many similar-
itieswithaffectprimingtheories (e.g.,Bower,1981)and
affect-as-information theories (e.g., Schwarz & Clore,
1983) that instigated a lot of research on mood-
congruent judgments (for an overview, see Forgas,
2001). According to affect priming theory (Bower,
1981; Isen, 1984), mood biases occur through mood-
congruent attention, encoding, and retrieval of informa-
tion involved in judgmental processes. These biases
were explained by the mechanism of activation spread-
ing inanassociativememorynetwork.This isobviously
consistent with the present connectionist approach that
assumes the same mechanism of automatic activation
spreading. According to affect-as-information theory
(Schwarz, 1990; Schwarz & Clore, 1983), affect has an
informational value because people ask themselves
“How do I feel about it?” when they evaluate persons or
objects. More importantly, this theory posits that mood
biases occur when people attribute (erroneously) the
source of their affect to the attitude object.

In these simulations, we take this former mood acti-
vation spreading approach to simulate the impact of
the mood heuristic. This assumes that, unlike the previ-
ous heuristic simulations, mood has a direct effect on
valence without the aid of arguments. Thus, we learned
in the past that a positive mood is favorable and a neu-
tral mood is a mixture of favorable and unfavorable va-
lences. However, if we take the latter misattribution
approach, which assumes that perceivers often errone-
ously associate their feelings with the quality of the ar-
guments or attributes of an attitude object, we obtain
similar simulation results. This alternative presup-
poses that perceivers attribute their positive mood dur-
ing heuristic processing to attributes and arguments of
high quality, which elicits a positive valence, whereas
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2Research has shown that people can discount their current mood
as a source of information when made aware of it (e.g., Sinclair,
Mark, & Clore, 1994). Such strategic use of mood is not modeled in
our simulation.

Figure 9. Expertise heuristic: Simulation results of attitudes
(top panel) and valenced thoughts (bottom panel) from the simu-
lation of the Chaiken and Maheswaran (1994) study.



they interpret their neutral or negative mood as indicat-
ing that the attributes and arguments are of low quality,
which elicits a negative valence. In other words, mood
acts as if it is equivalent to a piece of positive or nega-
tive information.2

Key experiment. In a prominent study by Petty
et al. (1993, experiment 2), the effects of mood on atti-
tude formation were investigated under low and high
personal involvement. After a positive or neutral mood
induction, participants were exposed to persuasive
communication concerning a fictitious “Maestro” pen.
Involvement was manipulated by telling the partici-
pants either that the Maestro pen would be marketed
soon in their community and they had to make a selec-
tion between several brands of writing implements
(high involvement) or that the marketing would take
place in other cities and they had to make a selection
between several brands of instant coffee (low involve-
ment). Quality of argumentation was manipulated in
this study but had no significant effects on attitudes
(see Petty et al., 1993, for details3). This factor will
therefore not be further discussed here. As can be seen
in Figure 10 (top panel), positive mood produced more
positive attitudes in agreement with the persuasive
message under both low and high involvement, where-
as positive mood influenced the positivity of thoughts
only under high involvement (bottom panel).

Simulation. We simulated the effects of mood
as explored by Petty et al. (1993, experiment 2). Ta-
ble 6 presents a schematic learning history that is
similar to earlier simulations of heuristic processing,
except for the following elements. As mentioned pre-
viously, because quality of arguments had no effect,
to simplify the simulation we simulated only strong
arguments. In the Prior Heuristic phase, we assume
that positive mood generates favorable evaluations
directly, whereas neutral mood generates favorable
and unfavorable evaluations.

Results. The statements listed in Table 6 were
processed by the network for 50 participants with dif-
ferent random orders. Figure 10 depicts the mean test
activation for all simulated attitude measures (top pan-
el) and thought measures (bottom panel) on top of the
empirical data of Petty et al. (1993). As can be seen, the
simulation closely matched the attitude data. Positive
mood increased the simulated attitude under both low
and high involvement. The valenced thoughts were
also replicated although to a somewhat lesser degree.
There were few simulated thoughts under low involve-

ment, and under high involvement, the thoughts re-
vealed the same pattern as the simulated attitudes.

These observations were verified with an ANOVA
with two between-subjects factors, Involvement (low
and high) and Mood (neutral and happy). The analysis
on the simulated attitudes revealed a main effect of
Mood, F(1,196) = 2666.88, p < .0001, indicating that a
happy mood produced significantly more agreement.
There was also an expected main effect of Involve-
ment, F(1,196) = 1702.67, p < .0001, indicating that
high involvement (in the processing of strong argu-
ments) led to more agreement with the message than
low involvement.

The analysis on the valenced thoughts revealed the
predicted interaction between Mood and Involvement,
F(1,196) = 213.17, p < .0001. A happy mood generated
significantly more positive thoughts than did a neutral
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Figure 10. Mood heuristic: Observed data from Petty et al.
(1993, experiment 2) and simulation results of attitudes (top
panel) and valenced thoughts (bottom panel). Human data are
denoted by bars, simulated values by broken lines. The human
data are from Figure 3 in “Positive mood and persuasion: Differ-
ent roles for affect under high- and low-elaboration conditions”
by R. E. Petty, D. W. Schumann, S. A. Richman, & A. J. Strath-
man, 1993, Journal of Personality and Social Psychology, 64,
p. 16. Copyright 1993 by the American Psychological Associa-
tion. Adapted with permission.

3For their first study, Petty et al. (1993) reported a similar prob-
lem in that “it was possible … to interpret the weak arguments in a
positive light” (p. 10).



mood under high involvement, t(196) = 20.96, p <
.0001, but not under low involvement, t < 1, ns.

Implications and Extensions

All simulations in the preceding sections success-
fully reproduced the observed attitude and thought
data from the empirical studies that tested a dual-pro-
cess approach to attitude formation and change
(Chaiken, 1987; Chen & Chaiken, 1999; Petty &
Cacioppo, 1981, 1986; Petty & Wegener, 1999). Pro-
viding a formal account of the most important psycho-
logical processes in attitude formation by a unitary
connectionist framework is an important achievement
in its own right, because it organizes existing research
and also because earlier attempts (e.g., Fishbein &
Ajzen, 1975) articulated only fragments of these pro-
cesses (e.g., central processes) at a mere input–output
or computational level (cf. Marr, 1982). Perhaps more
crucially, it allows making some tentative hypotheses
about the nature of these underlying processes. To the
extent that other comprehensive formalizations are
lacking, it gives more weight to the present hypotheses
than to alternative hypotheses that are not supported by
a connectionist approach. In addition, it points to simi-
larities with other connectionist models of social cog-
nition (Van Overwalle & Labiouse, 2004; Van Rooy et
al., 2003), which may suggest how attitude research
can be extended to similar phenomena uncovered in
these areas. Although we touched on some of these is-
sues already, we first recapitulate some implications of

the present model and then discuss empirical and theo-
retical extensions.

Implications for the Underlying
Psychological Mechanisms

Quantitative and qualitative processing differ-
ences. Perhaps, the most central idea of this article
was that the delta learning algorithm may provide a
common underlying psychological mechanism re-
sponsible for different routes or modes of processing at
a surface level of perceivers’ intuition and awareness.
We assumed that heuristic and central processes are
based on different information bases (prior knowledge
vs. novel information respectively) that are developed
and applied somewhat differently (generalized cue
knowledge vs. second-order object→valence connec-
tions) rather than involving radically different process-
ing systems or brain structures. In this manner, we
were able to account for qualitative differences in per-
suasion that attitude researchers have uncovered (Petty
& Wegener, 1999). However, the network was en-
dowed with sufficient flexibility through a supervisory
attentional system that funneled activation to one of
these information bases, so that it also could account
not only for these qualitative differences, but also for
quantitative differences in elaboration likelihood (Pet-
ty & Wegener, 1999). One implication of this flexibil-
ity is that it allows the network to consider heuristic
cues also as information bases for deliberative scrutiny
if attention is sufficiently large (see also Chen &
Chaiken, 1999). For example, several studies have
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Table 6. Learning Experiences and the Mood Heuristic (Simulation 5)

Object & Cue Arguments Valence

Pen Mood Str1 Str2 Str3

#10 Prior Heuristic Learning: Positive (Neutral) Mood

#4 0 + 0 0 0 1 0(1)
#4 0 + 0 0 0 1 0(1)
#4 0 + 0 0 0 1 0(1)

Strong Message

#1 1 1 1 0 0 i i
#1 1 1 0 1 0 i i
#1 1 1 0 0 1 i i

Test

Attitude Toward
Pen

1 0 0 0 0 ? –?

Valenced Thoughts 1 0 ? ? ? 3 ? 3 ?

Note. Simplified version of the experimental design by Petty, Schumann, Richman, and Strathman (1993, exp. 2). Str = strong, Wk = weak, J
= favorable; L = unfavorable; # = frequency of trial or condition, + = external activation of 0.5, i = internal activation (generated mainly by the ar-
guments) is taken as external activation. Each experimental condition was run separately, and always preceded by a Prior Valence Learning
phase (not shown) and Prior Heuristic Learning phase, followed by the Test phase. Trial order was randomized in each phase and condition. Dur-
ing Prior Valence Learning (not shown), all strong and weak argument nodes were paired with the favorable or unfavorable valence nodes respec-
tively for 15 trials (see also Simulation 1). During Prior Heuristic Learning, each condition was repeated 10 times with 10% of the default learning
rate. During heuristic processing of the experimental phase, activation was reduced to 10% for the cue and to 1% for the arguments during acqui-
sition of novel information and testing of attribute-relevant thoughts.



documented that under moderate elaboration, exper-
tise can determine the extent of thinking (e.g.,
Heesacker, Petty, & Caciopppo, 1983) as can mood
(e.g., Mackie & Worth, 1989; Schwarz et al., 1991). In
general, the supervisory attention module in our model
can account for switching of strategies although the ex-
ecutive processes that implement such changes in at-
tention are not yet part of the model.

Nevertheless, there is another sense of qualitative
difference that is not captured in our model. Some au-
thors argued that central processing involves the ef-
fortful analysis of logical links via the use of proposi-
tional reasoning (e.g., Smith & DeCoster, 2000; Strack
& Deutsch, 2004). Needless to say that propositional
or symbolic processing is not part of our model. We
only assume that once the essence of the arguments
(e.g., the attributes) are symbolically understood (which
is sometimes very easy when simple persuasive ap-
peals are used such as “better” etc.), then our model
proposes that their associated valences are automati-
cally retrieved from memory and combined into a
novel attitude. Thus, our model cannot fully accommo-
date all aspects of central processing, as it leaves prop-
ositional understanding and reasoning on the coher-
ence and relevance of the arguments to a higher-level
symbolic subsystem of the brain.

Valenced thoughts mediate attitude formation.
We simulated the typical finding in dual-process re-
search, borrowed from the cognitive response approach
(Greenwald, 1968), that the quality and valence of the
object’s attributes as expressed in thought-listing mea-
sures determine attitude change under effortful or cen-
tral processing. Although some authors claimed that
attribute-relevant thoughts may just represent an alter-
nate dependent measure of persuasion (Miller &
Colman, 1981), in our connectionist model, the atti-
tudes depended entirely on the favorable or unfavor-
able evaluations generated by the object’s attributes,
and without these, no object→valence connections
would be established. Thus, consistent with the dual-
process approach, our formalization points out that the
evaluations generated by attribute-relevant thoughts
(as later revealed in a thought-listing task) greatly af-
fect attitude formation under central processing.

Implicit integration of valences. Our simulations
also suggest that after the object’s attributes have been
symbolically analyzed during central processing (see
aforementioned), the subsequent integration of evalua-
tions into a single attitude estimate can occur largely
outside awareness. This is because the delta learning
algorithm that implements this integration does not
need a central supervisory unit to control this process,
as all changes involve low-level modifications in ob-
ject→valence connection strength. As discussed ear-
lier, this is consistent with recent theorizing in attitude

models (e.g., Ajzen, 2002; Chen & Chaiken, 1999) and
findings documenting that the processes underlying at-
titude formation and change are largely nonsymbolic
and nonconscious (Betsch et al., 2001; Betsch, Pless-
ner, & Schallies, 2004; Lieberman et al., 2001; Olson
& Fazio, 2001). It also puts the present approach closer
to lower-level processes like (subliminal) conditioning
(e.g., Dijksterhuis, 2002; Riketta & Dauenheimer,
2002) and mere exposure effects, which do not require
conscious attention either.

Recent neural imaging research suggests that there
are distinct subsystems responsible for the controlled
integration of valenced information versus the auto-
matic conditioning and activation of valences (located
in the medial prefrontal cortex vs. amygdala respec-
tively, cf. Cunningham, Johnson, Gatenby, Gore, &
Banaji, 2003). It would be interesting to see how the re-
sults of these imaging studies would extend to a typical
persuasive paradigm although neural techniques may
not allow revealing in a clear-cut manner the distinc-
tion made here between controlled information access
and automatic evaluative integration.

Heuristics are not abstracted rules. As noted
earlier, there are at least two possible interpretations of
heuristics that were not clearly distinguished in dual-
process attitude theories (e.g., Chaiken et al., 1989).
One interpretation is that heuristics are knowledge
structures consisting of abstracted inferential rules that
are activated from memory and applied as tools for
cognitive work. Another interpretation, consistent
with our connectionist approach, sees heuristics as
exemplar-based summarized experiences that reflect
people’s implicit knowledge about the statistical re-
lation between situational cues and agreement with
messages. These summarized exemplars reside in
cue→valence connections, which are automatically in-
tegrated into novel information upon mere perceiving
or thinking about the cue. This is in line with an in-
creasing number of connectionist simulations in other
domains of psychology illustrating that many rule-like
behaviors are not necessarily driven by abstract infer-
ential rules and can be more parsimoniously explained
by subsymbolic properties of connectionist models
(e.g., McLeod et al., 1998; Pacton et al., 2001; Rumel-
hart & McClelland, 1986; Smith & DeCoster, 2000).

Initial Evidence of Heuristics
as Exemplar Based

If it is indeed true that persuasion heuristics in peo-
ple’s minds reflect summarized exemplar knowledge
rather than explicit inferential rules, this may have test-
able implications. For instance, our approach predicts
that under peripheral processing, one can induce the
application of heuristics by priming relevant exem-
plars more so than by priming explicit heuristic rules.
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Take, for instance, the consensus heuristic. Accord-
ing to an inferential rule approach, priming an abstract
consensus rule like “I agree often with the majority”
should lead to stronger attitude agreement under heu-
ristic processing. There is some research that investi-
gated the effect of priming heuristic rules. Chaiken
(1987) reported on two unpublished studies in which
the consensus and length rule were made more accessi-
ble by priming. During an ostensibly unrelated experi-
ment, eight sentences were provided that conveyed the
gist of the rule (pp. 27–29). However, overall, there
were no significant attitude effects and only par-
ticipants who were low in Need For Cognition (i.e.,
who tend to avoid extensive thinking and elaboration;
Cacioppo & Petty, 1982) were somewhat influenced
by the primed rule. Chaiken (1987) admitted that none
of these results “yielded statistically robust effects fa-
voring our [rule] priming hypotheses” (p. 29).

Our connectionist or exemplar-based approach
makes a different prediction. Instead of rules, priming
many versus few exemplars of relevant people should
lead to stronger attitude agreement. Recent studies
from our lab confirmed this prediction. In one study
(Van Duynslaeger & Van Overwalle, 2004) that ma-
nipulated the consensus heuristic, 292 freshmen read
five weak or strong arguments about a topic ostensible
given by “some student associations” and were then
asked to provide their opinion about it. To induce heu-
ristic processing, the topic was of little concern to them
because it involved research in nonuniversity higher
education. Before that, they were primed with either
exemplars or a rule indicating low or high consensus.
Specifically, in the exemplar priming condition, they
were primed with one or eight exemplar sources (i.e.,
different students from different student associations
featured in an article on the renovation of the univer-
sity restaurant). In the rule priming condition, they
were primed one or five times with the consensus rule
(i.e., “I always agree with the opinion of the major-
ity”), using the repeated expression procedure of
Powell and Fazio (1984) that is typically applied to
manipulate the activation of attitudes.

The results (see Figure 11, top panel) were largely
consistent with our predictions. An ANOVA revealed
the predicted interaction between type and degree
of priming, F(1, 284) = 4.95, p < .05. After priming
more exemplars, the participants changed their atti-
tudes more, F(1, 141) = 3.42, p < .05 (one-tailed),
whereas after priming the consensus rule, there was
no change, F < 2. However, one aspect of the results
was unexpected. The exemplar priming was effective
for strong arguments, t(141) = 2.76, p < .01, but not for
weak arguments, t < 1. Although this raises the possi-
bility that attitude change was due to more systematic
processing of the arguments or of the heuristic cues, a
correlational analysis with the thought data ruled out
this explanation. Perhaps, the stronger quality of the

arguments induced a minimal amount of cognitive at-
tention that was necessary for the exemplars to have an
impact.

In another study (Van Duynslaeger, 2004) that ma-
nipulated the expert heuristic, 160 students from high-
er education school read the same five weak or strong
arguments ostensible given by an unspecified “famous
Flemish person.” Before that, they were primed with
either well-known exemplars varying in expertise on
scientific issues (i.e., an astronaut vs. a reality show ce-
lebrity), or they were primed with the expert rule (i.e.,
“I often agree with the opinion of a trustworthy ex-
pert”) using the repeated expression procedure. The re-
sults (see Figure 11, bottom panel) were again in agree-
ment with our predictions. An ANOVA revealed the
predicted interaction between type and degree of prim-
ing, F(1, 152) = 4.54, p < .05. After priming the expert
exemplar, the participants changed their attitudes more
than after priming the nonexpert exemplar, F(1, 79) =
3.85, p < .05 (one-tailed), whereas priming the expert
rule did not have any effect, F < 2. Again, exemplar
priming was more effective for strong arguments, t(76)
= 1.72, p < .05 (one-tailed), than for weak arguments, t
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Figure 11. Heuristic use as a function of exemplar or rule prim-
ing: Observed data on the consensus heuristic from Van Over-
walle and Van Duynslaeger (2004) and on the expertise heuristic
from Van Duynslaeger (2004).



< 1.1. Taken together, consistent with our prediction,
priming heuristics had an effect only if it involved ex-
emplars and not symbolic rules.

Extensions From Simulations
in Other Domains

One of the major goals of this article was to demon-
strate that attitude formation processes, like many
other processes in social cognition, can be interpreted
in a connectionist framework. Besides its theoretical
interest as a step in the construction of a unifying the-
ory of social thinking, it may also introduce novel
cross-domain predictions that have been rarely tested
in attitude research. We would like to suggest a number
of such cross-domain findings that may perhaps lay the
groundwork for more hypotheses and research in the
future.

Attitude ambivalence. Sometimes people expe-
rience a great deal of conflict and ambivalence about
attitude (e.g., Kaplan, 1972; for a review, see Priester
& Petty, 1996). Ambivalence in one’s attitudes may
have important consequences. It may result in de-
creased attitude accessibility (Bargh et al., 1992) and
less attitudinal confidence and persistence (Jonas,
Diehl, & Brömer, 1997; MacDonald & Zanna, 1998).
According to Kaplan (1972), ambivalence is deter-
mined in part by the sum of positive and negative atti-
tude components. Thus, as more opposing beliefs are
considered, the person would experience more ambiv-
alence. Hence, in connectionist terms, the most simple
and direct manner to measure ambivalence is by tak-
ing—instead of the differential activation of the favor-
able and unfavorable valences for measuring atti-
tude—their summed activation. This measure provides
an indication of the spread or range between the two
opposing valences and is akin to a connectionist mea-
sure of people’s estimates of the heterogeneity of
group attributes recently proposed by Van Rooy et al.
(2003). Using this measure, it is possible to “postdict”
the finding of Priester and Petty (1996, Experiments 2
and 3) that ambivalence is a function of the number of
deviant or conflicting pieces of information that are
negatively accelerating. That is, as more conflicting in-
formation contributes to ambivalence, its contribution
becomes increasingly smaller. This is precisely what
the emergent acquisition property of the delta algo-
rithm would predict.

Increased memory for inconsistent arguments.
Simulations with a recurrent network using the delta
learning algorithm in the domain of person perception
(Van Overwalle & Labiouse, 2004) replicated the in-
triguing finding that inconsistent or unexpected behav-
ioral information about an actor is often better recalled
than information that is consistent with the dominant

trait expectation (for a review, see Stangor & McMil-
lan, 1992). Earlier theorizing explained this finding in
terms of deeper processing of inconsistent information
which results in more dense associations with the in-
consistent behavior (Hastie, 1980). However, Van
Overwalle and Labiouse (2004) proposed a novel
emergent connectionist property of diffusion to ex-
plain this finding in terms of weakened memory for
consistent behavioral information. This same emer-
gent property may operate for attitudes and may like-
wise result in weaker memory for majority and consis-
tent arguments as opposed to minority and inconsistent
arguments. In addition, this emergent property predicts
that the recall advantage should (a) increase for argu-
ments at the end of a list, (b) decrease when the number
of inconsistent arguments increases, but (c) remain
high even when the number of consistent and inconsis-
tent arguments is equal and inconsistency is manipu-
lated by inducing a prior attitude.

Subtyping of deviant sources. Another finding
in group processes that was simulated in a recurrent
network by Van Rooy et al. (2003) is subtyping. Mem-
bers of a group with extreme positions on an issue are
typically subtyped into subcategories and separated
from the rest of the group, more so than members with
moderate deviating positions. This insulates the group
from dissenting members, so that the content of the ex-
isting group stereotype is preserved. Van Rooy et al.
(2003) explained this phenomenon by the delta algo-
rithm’s emergent property of competition, which pre-
dicts that the more information is concentrated in a few
members, the more it must compete against the group
stereotype and is discounted. This emergent property
may also apply in attitude formation. Hence, we pre-
dict that extreme deviant positions on issues that are
defended by a few sources are more easily discount-
ed than mildly deviant positions supported by many
sources. Consequently, the best tactic to change atti-
tudes is to distribute disconfirming information among
as many sources as possible, so as to avoid subtyping
of extreme deviant sources.

Contrast effect in ease of retrieval. This ap-
proach can be extended to other heuristic effects, such
as the ease of retrieval effect under central processing
conditions (Tormala, Petty, & Briñol, 2002). The ease
of retrieval effect refers to the phenomenon that when
people are asked to come up with arguments for a
given attitude position, they are more in favor of com-
munication if they have to generate only a few argu-
ments, and less in favor if they have to generate a high
number of arguments (see also Wänke & Bless, 2000;
Wänke, Bless, & Biller, 1996; Wänke, Bohner, &
Jurkowitsch, 1997). People thus reveal a contrast away
from the requested number of arguments (e.g., less in
favor if more arguments are requested). This effect can
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be simulated based on the idea that the requested num-
ber of arguments serves as a standard of comparison.
Recently, Van Overwalle and Labiouse (2004) pro-
posed a connectionist account for contrast effects in
person perception through the presence or priming of
exemplary others who serve as a standard of compari-
son. They documented that this contrast effect may be
due to the emergent property of competition against a
standard, and this idea might be extended to the atti-
tude domain. To understand how this might work, we
will describe a simulation of the ease of retrieval effect
in somewhat more detail.

Simulation 6: Ease of Retrieval Effect

Key experiment. Tormala et al. (2002, Experi-
ment 2) asked their participants to read a persuasive
communication concerning a new exam policy and
requested them to generate either 2 or 10 favorable ar-
guments in response. They found that under central pro-
cessing, participants were more in favor of the commu-
nication if they had to generate only 2 arguments, and
they were less in favor if they had to generate 10 argu-
ments. However, under peripheral processing, the op-
posite pattern was found. Presumably participants did
not consider the material thoroughly but were rather in-
fluenced by the sheer number of the arguments required
and generated. Tormala et al. (2002) explained these re-
sults by arguing that subjective confidence influences
judgments.Theeasier it is togeneratea list of arguments
(because a low number is required), the more confi-
dence an individual has in them. The more difficult it is
to generate a list of arguments (because a high number is
required), the less confidence an individual has in them.
Confidence in one’s thoughts is especially important
under central processing when people’s motivation and
ability to process the information is relatively high, and
less so under peripheral processing.

The previous explanations of the ease of retrieval
effect rely on metacognitive processes, that is, the sub-
jective sense of ease or difficulty of generating argu-
ments, or confidence. These processes are not part of
our model. Therefore, we suggest an alternative con-
nectionist explanation of Tormala et al.’s (2002) find-
ings that does not involve metacognitive processes and
where these subjective feelings are merely an epipheno-
menon of an underlying connectionist mechanism.

To understand our approach, it is important to real-
ize that participants in this type of research typically
retrieve fewer arguments than the requested high num-
ber and are thus forced to generate novel arguments
(e.g., Wänke et al., 1996). We argue that these novel
arguments are less convincing because the difficulty in
generating them “will be attributed some qualitative
aspect of the information” (Wänke & Bless, 2000, p.
158) or, alternatively, because they are mostly redun-
dant with respect to the already retrieved arguments.

For instance, after retrieving “good health” as a reason
for engaging in sports, people might construe “on doc-
tor’s advice” as a novel argument that actually only
rephrases the original one. Although observers read
novel arguments as equally convincing in isolation
(Wänke et al., 1996), participants themselves find
them less “compelling” (Wänke & Bless, 2000) and
less “strong” (Haddock, 2000; but see Haddock,
Rothman, & Schwarz, 1996) and have less “confi-
dence” in them (Tormala et al., 2002). There is also re-
search demonstrating that the ease of retrieval effect is
found regardless of whether the requested arguments
are actually listed or not (Wänke et al., 1997), suggest-
ing that participants have the intuition that they only
rephrase or use less compelling arguments. Because
the exact reason for the reduced convincingness is not
known, future research may explore in more depth the
source of it and whether argument overlap plays a sig-
nificant role (e.g., by assessing the perceived redun-
dancy of newly construed arguments). In the simula-
tion, we implemented our interpretation in terms of
reduced perceived quality by ignoring additional con-
structed (but less convincing) arguments, thus keeping
the same amount of spontaneously retrieved argu-
ments in all conditions.

We suggest that the required number of arguments
may act like a situational length cue. Under peripheral
processing, this promotes the operation of the length
heuristic and so dominates attitude formation in much
the same way as in Simulation 2. However, under cen-
tral processing, the reverse effect of ease of retrieval is
due to a contrast effect of the heuristic length cue
against one’s own spontaneously retrieved number of
arguments. In line with Van Overwalle and Labiouse
(2004, Simulation 5) analysis of contrast effect in per-
son impression formation, this latter effect relies on the
emergent connectionist property of competition. This
property arises when multiple factors compete in pre-
dicting or causing an outcome and produces a lowering
of the connection weights, similar to discounting in
causal attribution (Kelley, 1971) and blocking in the
conditioning literature (Rescorla & Wagner, 1972).
The connectionist mechanism behind competition is
that the internal activation in the valence nodes is de-
termined by the sum of all activations received from
the attitude object and all other external cues present.
Discounting of an attitude occurs when the connection
weights of external cues are already strong so that any
additional growth of the object→valence connection is
blocked.

In the simulations, the competition effect ensues
most strongly under central processing, because the
novel information receives full activation so that it
may compete more against prior knowledge. Spe-
cifically, when a high number of arguments is re-
quested, competition will ensue between the strong
cue→valence connection and the object→valence
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connection, resulting in discounting of the latter con-
nection. This mechanism produces a contrastive effect
away from the advocated position in the communica-
tion (i.e., ease of retrieval effect). In contrast, when a
low number of arguments is requested, little competi-
tion will ensue between the weak cue→valence con-
nection and the object→valence connection, and so the
attitude will be relatively favorable.

Simulation. Table 7 represents a simplified sim-
ulated learning history of Tormala et al. (2002; Experi-
ment 2). The Prior Valence and Prior Heuristic Learn-
ing phases were identical to Simulation 2 of the length
heuristic. A request of a low versus high number of ar-
guments was simulated in a Prior Heuristic Learning
phase by simulating one or six arguments, which is
roughly equivalent to the number of arguments used by
Tormala et al. (2002). Next, the Experimental phase
replicated the generation of arguments. In this line of
research, the two requested numbers are selected by
the experimenter such that they are smaller and larger,
respectively, than the number of arguments that people
would retrieve spontaneously (see, e.g., Wänke et al.,
1996). Accordingly, we choose two arguments.

Results. The statements of each condition listed
in Table 7 were processed by the network for 50 partic-
ipants in each condition with different random orders.
Figure 12 depicts the mean test activation for all simu-
lated attitude measures, projected on top of the empiri-
cal data from Tormala et al. (2002). As can be seen, the

simulation closely matched the attitude data. An
ANOVA with Involvement (low and high) and Num-
ber of Requested Arguments (low and high) as
between-subjects factors, revealed that the expected
interaction was significant, F(1, 396) = 308.13, p <
.0001. Since Tormala et al. (2002) did not report sub-
jective ease of retrieval, we were not able to assess
their role in this simulation.
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Table 7. Learning Experiences and Ease of Retrieval Effect (Simulation 6)

Object & Cue Argumentsa Valence

Exam Length Str1 Str2 Str3

#10 Prior Heuristic Learning: Short (Long) Strong Message

#0 (2) 0 + + 0 0 i i
#1 (2) 0 + 0 + 0 i i
#0 (2) 0 + 0 0 + i i

Strong Message

#1 1 1 1 0 0 i i
#1 1 1 0 0 1 i i

Test

Attitude Toward
Exam

1 0 0 0 0 ? –?

Note. Simplified version of the experimental design by Tormala, Petty, and Briñol (2002, exp. 2). Exam = Exam policy, Str = strong, J = fa-
vorable; L = unfavorable; # = frequency of trial or condition, + = external activation of 0.5, i = internal activation (generated mainly by the argu-
ments) is taken as external activation. Each experimental condition was run separately, and always preceded by a Prior Valence Learning phase
(not shown) and Prior Heuristic Learning phase, followed by the Test phase. Trial order was randomized in each phase and condition. During
Prior Valence Learning (not shown), all strong argument nodes were paired with the favorable valence nodes respectively for 15 trials (see also
Simulation 1). During Prior Heuristic Learning, each condition was repeated 10 times with 10% of the default learning rate. During heuristic pro-
cessing of the experimental phase, activation was reduced to 10% for the cue and to 1% for the arguments during acquisition of novel information
and testing of attribute-relevant thoughts.
aThe arguments during prior learning are completely different from those in the experimental and test conditions, but are shown in the same col-
umns to conserve space. The arguments during prior heuristic learning serve to drive the cue’s valence into a positive or negative direction, but
are of no further importance.

Figure 12. Ease of retrieval effect: Observed data from Tormala
et al. (2002, experiment 2) and simulation results. Human data
are denoted by bars, simulated values by broken lines. The hu-
man data are from Figure 1 in “Ease of retrieval effect in persua-
sion: A self-validation analysis” by Z. L. Tormala et al., 2002,
Personality and Social Psychology Bulletin, 28, pp. 1705—1707.
Copyright 2002 by the Society for Personality and Social Psy-
chology. Adapted with permission.



Model Comparisons

What do other recent approaches in the literature
besides dual-process models have to say about attitude
formation, and how do they compare with the present
approach? In addition, how robust are the present sim-
ulations with respect to other possible connectionist
implementations? We begin with the last issue and
then turn to a comparison with alternative models.

Alternative Implementations
of the Simulations

The simulations that we have reported replicate the
empirical data or theoretical predictions reasonably
well. However, it is possible that this fit is due to some
procedural choices of the simulations rather than con-
ceptual validity. To explore whether our simulations
are robust to changes in implementational choices, we
applied a number of alternative encodings and process-
ing parameters. First, we compared the present localist
coding with a distributed coding to add more realism to
the simulations. In a distributed coding, each concept
or object is represented by a set of nodes, instead of one
node as in localist encoding. The advantage is that
these nodes reflect subsymbolic features that we are
not always aware of but that nevertheless may influ-
ence our attitudes and that may also include the context
in which the attitude is typically applied. As a first at-
tempt toward such a more realistic implementation,
each concept was represented by a distributed pattern
of activation across four nodes, drawn from a normal
distribution with mean as indicated in the learning his-
tories and SD .10. In addition, in all prior learning
phases, random noise drawn from a normal distribu-
tion with mean 1 and SD .10 was added to these activa-
tions to reflect the variation in past experiences. Sec-

ond, we compared the present dual encoding of favor-
able versus unfavorable evaluations with a unitary va-
lence encoding in which unfavorable evaluations are
represented by negative activation levels (instead of
positive activation levels of an unfavorable valence).
Third, we also used, instead of the present linear updat-
ing activation algorithm with two internal cycles, a
nonlinear activation updating algorithm as used by
other social researchers (Read & Montoya, 1999;
Smith & DeCoster, 1998). Note that apart from these
alterations, all alternative implementations used the
same simulation specifications, unless noted otherwise
in Table 8.

Table 8 lists the correlations between the simulated
values and the observed or theoretical data from the
original as well as from each of the alternative imple-
mentations. As can been seen from the mean correla-
tions (see last two bottom rows), although some of the
alternative implementations are adequate, the present
simulations are often superior. First, the distributed
coding is adequate for all simulations, except that the
biasing effect of the expert heuristic on ambiguous in-
formation (Simulation 4) was not replicated. This find-
ing is puzzling, and we have no clear answer for it. Sec-
ond, the unitary valence coding generally leads to a
weaker fit with the data (especially for thoughts), pre-
sumably because a single valence node does not allow
for a neutral or ambivalent evaluation that dual valence
nodes can support (by coding the valences as both low
or both high respectively). Finally, a nonlinear recur-
rent model (with parameter values very close to the lin-
ear model) provides the weakest fit with the data.
Overall, the results suggest that the present specifica-
tions are preferable to a unitary valence coding scheme
and a nonlinear activation update algorithm, and the re-
sults of the distributed coding were equivalent, with
one exception. Of course, other implementations of the
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Table 8. Fit and Robustness of the Simulations, Including Alternative Encoding and Models

Number and Topic
Dependent
Measure

Original
Simulation

Distributed
Coding

Unitary
Valence

Nonlinear
Recurrent

1. Central Attitude 1.00* .99* .88 .99*a

2. Length Attitude .96* .94* .97* .90*a

Thoughts .80* .76* .54 .75*a

3. Consensus Attitude .88* .85* .91* .71*a

Thoughts .84* .62* .21 .56*a

4. Expertise Attitude .94* .73*b .89* .70*
Thoughts .88* .84*b .74* .86*

5. Mood Attitude .97* .92* .78 < 0
Thoughts .45 .69 .49 .79

6. Retrieval Attitude .95* .92* .92* .82*

Means Attitude .95 .89 .89 .65
Thoughts .74 .73 .50 .74

Notes: Cell entries are correlations between mean simulated values (averaged across randomizations) and empirical data or theoretical predic-
tions. The learning rate parameter for the distributed coding was the best fitting value between .01 and .05. The parameters for the nonlinear re-
current model were similar to the linear model, except that Decay = .77 (McClelland & Rumelhart, 1988).
aDecay = .70. bThe biasing effect of the heuristic on ambiguous information was not reproduced. *p < .05 (one-tailed).



learning history and the network architecture that we
did not explore are also conceivable.

Siebler’s (2002) Parallel Constraint
Satisfaction Network

Recently, Siebler (2002) proposed a connectionist
parallel-constraint-satisfaction model (McClelland &
Rumelhart, 1988; McLeod et al., 1998) with a single
connectionist mechanism to account for dual-process-
ing routes in attitude formation and change (see also
Kunda & Thagard, 1996; Read & Marcus-Newhall,
1993; Shultz & Lepper, 1996; Spellman & Holyoak,
1992; Thagard, 1989). Siebler’s constraint satisfaction
model involves the simultaneous satisfaction of multi-
ple, sometimes conflicting constraints on an individ-
ual’s cognitions, including the attitude itself, positive
and negative heuristic cues, weak and strong argu-
ments and favorable and unfavorable cognitive re-
sponses. The model architecture assumes that cues are
associated with attitudes in a relatively direct manner,
whereas arguments are associated with attitudes more
indirectly, via cognitive responses. These connections
impose constraints that are soft rather than hard, so that
they are desirable, but not essential to satisfy.

Although Siebler (2002) reports excellent fits with
the empirical data of two experiments manipulating
source expertise (Chaiken & Maheswaran, 1994; Petty
et al., 1981), the constraint satisfaction network has a
number of shortcomings. First, the constraint satisfac-
tion network has no learning mechanism. The process
of developing the connections in the network is not
modeled. As a result, the model is nonadaptive, as the
connections have to be hand set by the experimenter
and do not develop automatically from prior or current
learning. Second, the constraint satisfaction network
limits attitude formation and change to temporary chang-
es of activation in the network, driven by satisfying all
constraints present. Hence, the network reflects only a
short-lived mental state of attitude that occurs only
when all relevant prior beliefs, heuristic cues, and per-
suasive arguments are activated (consciously or sub-
consciously) in the individual’s mind. However, this is
contradicted by a variety of empirical research show-
ing that there is no substantial correlation between argu-
ment recall and attitude. Instead, it is now well estab-
lished that most attitudes are formed online, and novel
information is encoded and processed. To allow such
online adjustment, a learning algorithm is essential.

Van Overwalle and Jordens’s
(2002) Feedforward Network
of Cognitive Dissonance

Our attitudes are not only driven by immediate eval-
uations of attitude objects, but sometimes also by re-
actions to our own behaviors, especially when these

behaviors go against our initial preferences. This di-
lemma has been investigated under the heading of
cognitive dissonance (Festinger, 1957). For instance,
when induced to write an essay that runs counter to
one’s initial attitude (e.g., a student defending stricter
exam criteria), an individual will tend to reduce disso-
nance by changing his or her attitude in the direction of
the position taken in the essay. This tendency is stron-
ger when alternative explanatory factors or justifica-
tions, such as high payment or social pressure, are ab-
sent. In contrast, when such external demands provide
sufficient justification for engaging in the dissonant
behavior, dissonance reduction does not occur (e.g.,
Linder, Cooper, & Jones, 1967; Cooper & Fazio,
1984).

Van Overwalle and Jordens (2002) provided a feed-
forward model of this cognitive dissonance process.
Their network involves the same type of concepts and
connections as in the present recurrent model, with the
important addition of a connection between the atti-
tude object and behaviors performed by the person.
The rationale was that individuals attempt not only to
understand their evaluations, but also to justify their
discrepant behavior. Both outcomes influence their at-
titudes. When alternative causal explanations for the
discrepant behavior are absent, only the attitude object
is sufficiently connected to these novel outcomes, re-
sulting in the psychological realization that the object
is liked more than initially thought. This results in atti-
tude change. Conversely, when sufficient external ex-
planations are available, their connections may suffi-
ciently explain the outcomes, resulting in discounting
and little attitude change. The mechanism responsible
for this latter process in the network model of Van
Overwalle and Jordens (2002) is the emergent property
of competition.

This connectionist implementation of cognitive dis-
sonance is largely consistent with the present network.
First, in persuasive communication, little effect de-
rives from one’s behaviors, so that this factor could be
safely ignored here. Second, because feedforward net-
works are more limited than recurrent models in the
type of connections and the flow of activation, Van
Overwalle and Jordens’s (2002) feedforward network
can be subsumed in the present more general recurrent
model. They reported that their feedforward simula-
tions of cognitive dissonance could easily be “up-
graded” with very similar results to a recurrent archi-
tecture. Third, Van Overwalle and Jordens’s (2002)
hand coded all valences as +1, whereas in this model
they were indirectly “coded” by the recurrent activa-
tion accumulated through the object’s attributes. In this
respect, again the recurrent model is more general than
theirs. This leads to the conclusion that the present re-
current model encompasses perhaps a large range of
earlier findings and models in the attitude literature, in-
cluding attitude change due to cognitive dissonance
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(Festinger, 1957; see also Van Overwalle & Jordens,
2002).

Eiser et al.’s (2003) Back-
Propagation Network

Recently, Eiser et al. (2003) developed a connect-
ionist model of attitude acquisition that differed from
the previous connectionist models in that it assumes a
more active role of the perceiver. Thus, not only pas-
sive exposure was modeled, but also active exploration
of the environment. It was assumed that through such
active learning, people will choose to engage in activi-
ties that they find enjoyable and avoid unpleasant ac-
tivities as much as possible. Consequently, perceivers
are much less accurate at identifying enjoyable versus
unpleasant objects, resulting in an asymmetry in the
appreciation of objects. In particular, unfamiliar ob-
jects are often seen as more negative than positive.
Eiser et al. (2003) reported empirical support for this
prediction, and also replicated these results with a
multilayer feedforward model with the generalized
delta (or back propagation) learning algorithm. The
main advantages of their model are (a) a hidden layer
that facilitates generalization from one situation to an-
other and (b) a behavioral output component that
makes active exploration in a virtual environment pos-
sible. However, a limitation is that the Eiser et al.
(2003) model does not include nodes to represent the
objects’ attributes. Even after incorporating these, it
remains to be seen to what extent this model is capable
of replicating the empirical findings that were covered
in this article. Our recurrent model does not incorpo-
rate a behavioral exploration process and hence does
not expect differential learning of positive and nega-
tive attitudes, something that in any case was not re-
ported in the persuasive literature discussed so far.

Kruglanski and Thompson’s
(1999) Unimodel

Kruglanski and Thompson (1999) questioned the
assumption of dual-process theories that attitude
change is attainable via two qualitatively distinct routes,
and instead argued that these routes are functionally
equivalent and differ only to the extent that they in-
volve cognitive effort in decoding simple versus com-
plex persuasive information. They proposed a uni-
model that adopts a more abstract level of analysis in
which the two persuasion modes are viewed as special
cases of the same underlying process. Specifically,
heuristic rules that are derived from prior beliefs and
schemata stored in memory as well as explicit thought-
ful elaboration of persuasive arguments rest on the
same type of propositional if–then reasoning leading
from evidence to a conclusion. For instance, heuristics
are represented by an if–then propositional logic such

as “if an opinion is offered by an expert, then it is
valid” (p. 90), and central processing is also repre-
sented by if–then reasoning such as “if something con-
tributes to the thinning of the ozone layer, then it
should be prohibited” (p. 90). Thus, Kruglanski and
Thompson (1999) concluded, “rule-based reasoning is
common to both persuasion modes” (p. 104). In a se-
ries of experiments, Kruglanski and Thompson (1999)
demonstrated that if the heuristic information (e.g., on
the expertise of the source) is sufficiently complex,
then such “heuristic” information might also require
central processing before it has any impact. Con-
versely, if the “central” arguments are sufficiently
brief and simple, they can have an impact under pe-
ripheral processing.

Our connectionist network is in agreement with the
unimodel in its claim that there is a single core mecha-
nism underlying both central and peripheral routes of
persuasion, and both perspectives see the degree of
elaboration as the main quantitative difference be-
tween the two processing routes. Although both mod-
els were developed independently from each other,
they are remarkably similar in these respects. How-
ever, there are some noteworthy differences. First,
there is a radically different view on the underlying
mental processes responsible for attitude formation.
Instead of the unimodel’s explicit, symbolic, and se-
quential if–then reasoning logic of evidence, we pro-
posed a lower-level connectionist mechanism, with a
parallel, subsymbolic, and implicit processing of this
information, ultimately leading to an explicit attitude
belief. As noted earlier, we believe that this perspec-
tive is more in agreement with neurological evidence
on the working of the brain and with recent findings
showing that attitudes can be formed with little aware-
ness of the integration process (Betsch et al., 2001;
Lieberman et al., 2001). Second, our model proposes
qualitative differences between processing modes, in
that heuristic and central processes are based on differ-
ent information bases (prior knowledge vs. novel in-
formation, respectively) that are developed and ap-
plied differently (generalized cue knowledge
embedded in cue→valence connections vs. second-or-
der object→valence knowledge), whereas the
unimodel treats these as similar and built from the
same if–then propositional logic.

Betsch et al.’s (2004) Value–
Account Model

Recently, Betsch et al. (2004) put forward a Value-
Account model that assumes that aggregation of pref-
erences into a summary evaluation or value-account is
by default implicit and automatic. Only when provided
with sufficient motivation and capacity, perceivers
will develop an aggregated attitude through explicit
deliberation and weighting of specific information or
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episodes. This is consistent with most recent views on
attitude processes, including ours. More importantly,
based on a large series of experiments (e.g., Betsch et
al., 2001), Betsch and colleagues suggested that im-
plicit aggregation is guided by a summation principle,
whereas explicit aggregation follows an averaging
principle. Similarly, in evaluative conditioning re-
search, De Houwer et al. (2001) argued that a summa-
tion pattern (based on a simple Hebbian learning algo-
rithm) might be more typical of implicit preference
learning, whereas an averaging pattern (by the delta
learning algorithm) is more typical of explicit signal
learning. How can these findings be reconciled with
our model?

Recall that the delta algorithm predicts a negatively
accelerating learning curve. In the beginning of learn-
ing, the learning error is still large so that each novel
input results in substantial weight adjustments that
are added to each other, reflecting a summation of
the favorable and unfavorable valences. However, to-
ward asymptote, the error is much reduced (i.e., peo-
ple reached an overall evaluative estimate based on the
evidence given), so that novel evidence results in
less weight adjustments, reflecting an averaging of
prior and novel valences (see Appendix B). Hence, the
different patterns of integration can be accommodated
in the present model by making the same assumption
as we did for heuristic reasoning, that is, by taking the
assumption that implicit learning is slower or shal-
lower than explicit learning. Applied in the present
context, this suggests that during implicit learning, the
delta algorithm is still in its early “summation” phase,
whereas explicit learning is faster so that delta learning
enters its later “averaging” phase much more quickly.
An interesting implication of this assumption is that
implicit learning should attain an averaging phase af-
ter an extended time in which more information is
presented.

Wilson et al.’s (2000) Model
of Dual Attitudes

An intriguing challenge to the present approach was
recently posed by the dual-attitude model of Wilson,
Lindsey, and Schooler (2000). According to these au-
thors, people may hold in memory different explicit
and implicit attitudes toward the same attitude object.
When such dual attitudes exist, the implicit attitude is
activated automatically, whereas the explicit attitude

requires more capacity and motivation to retrieve. The
implicit attitude changes more slowly like old habits,
whereas the explicit attitude changes relatively easily.
Most attitude researchers agree that this distinction ex-
ists, but there is disagreement as to what may cause it.

In some cases, different outcomes from explicit and
implicit measures may be due to the fact that each mea-
sure focuses on different aspects of the same attitude
object in memory. In terms of this model, it would re-
flect testing the network by priming the subfeatures of
the same attitude object with a different distributed ac-
tivation pattern.4 In other cases, it seems evident that
the explicit attitude reflects some sort of suppression of
illegitimate or unwanted thoughts, such as when peo-
ple remove racial attitudes in explicit measures but dis-
close their implicit racial stereotypes when measured
implicitly (e.g., under time constraints). Another ex-
ample is when people realize that the information re-
ceived earlier was incorrect, but still hold in memory
the (incorrect) association between the object and their
negative evaluations, a phenomenon known as
evaluative perseverance (Wilson et al., 2000). This
model cannot account for this dissociation because we
did not model episodic (recent) and semantic (old)
memory as separate memory structures but simply as
different learning phases in time.

As noted earlier, several authors have made propos-
als for a dual memory system of the brain that may ex-
plain the dissociation between old and recent memo-
ries (French, 1997; McClelland et al., 1995; Smith &
DeCoster, 2000). One subsystem would be dedicated
to the rapid learning of unexpected and novel informa-
tion and the building of episodic memory traces (e.g.,
the main experimental phase in our simulations). How-
ever, not only the learning, but also the decay of epi-
sodic traces is relatively fast in this subsystem. Hence,
episodic memory lasts only a few days. In contrast, the
other subsystem would be responsible for slow incre-
mental learning of statistical regularities of the envi-
ronment and gradual consolidation of information
learned in the first subsystem, resulting in stable and
more lasting semantic memory traces (e.g., the prior
learning phases of our simulations). Because this latter
subsystem has more permanent memory traces, novel
information has relatively little effect so that the older
attitudes often persist over time. The process of consol-
idation of recent memory into lasting memory could
start a few minutes after receiving the novel informa-
tion and last for several days. Consistent with this idea,
Schooler (1990, cited in Wilson et al., 2000) reported
that explicit attitude change resulted in a substantial
dissociation between implicit and explicit attitude
measures immediately afterwards, but that 48 hr later
this difference gradually began to wear off.
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4In addition to differences between implicit and explicit atti-
tudes, people sometimes report different explicit attitudes depending
on what information was activated before, what subset of data they
attended to or retrieved from memory, what standard of comparison
was salient, and so on (e.g., Wilson & Hodges, 1992). Our approach
can accommodate many (but not all) of these results as reflecting the
impact of a person’s recent, pre-message learning history, through
priming or attentional focus.



General Conclusions

This article introduced a novel connectionist frame-
work of attitudes that provides an integrative account
of many earlier perspectives of attitude formation,
change, and use. The proposed model rests on the
shoulders of pioneering work that was incorporated in
its architecture and processing mechanisms. The mod-
el’s architecture adopted the three-component view on
attitudes as consisting of beliefs, evaluations, and be-
havioral tendencies (Katz & Stotland, 1959; Rosen-
berg & Hovland, 1960) and also implemented the basic
idea from spreading activation networks that attitudes
consist of object–evaluation associations in memory
(Fazio, 1990). The model’s learning algorithm was
based on older work on associative learning processes
(Rescorla & Wagner, 1972) and classical conditioning
of attitudes (Olson & Fazio, 2001; Staats & Staats,
1958) and was shown to incorporate algebraic ap-
proaches to attitude formation (Fishbein & Ajzen,
1975). Of most importance was that this model could
simulate heuristic and central processing as proposed
in earlier dual-process models (Chaiken, 1987; Petty &
Cacioppo, 1981, 1986; Petty & Wegener, 1999).

The proposed connectionist perspective offers a
novel view on how information may be encoded in the
brain, how it may be structured and activated, and how
it may be retrieved and used for attitude judgments.
One major advantage of a connectionist perspective is
that it incorporates a learning algorithm that allows the
model to associate patterns that reflect social concepts
and evaluations by means of very elementary learning
processes. Hence, complex social reasoning and learn-
ing can be accomplished by putting together an array
of simple interconnected elements, which greatly en-
hance the network’s computational power without the
need for a central executive or awareness of its pro-
cessing mechanisms. In addition, connectionist models
have other capacities that we did not address such as its
content-addressable memory, its ability to do pattern
completion, and its noise tolerance (for more on these
issues, see McClelland & Rumelhart, 1988; McLeod et
al., 1998; Smith, 1996).

Given the extensive breadth of attitude research, we
inevitably were not able to include many other interest-
ing findings and phenomena that have now been simu-
lated by similar connectionist models, such as cogni-
tive dissonance (Van Overwalle & Jordens, 2002) and
impression formation about persons or groups (Kashi-
ma et al., 2000; Queller & Smith, 2002; Smith &
DeCoster, 1998; Van Overwalle & Labiouse, 2004;
Van Rooy et al., 2003). There are other obvious limita-
tions of the present model such as the lack of hidden or
exemplar nodes (e.g., Kruschke & Johansen, 1999;
McClelland & Rumelhart, 1988; McLeod et al., 1998;
O’Reilly & Rudy, 2001) which limit its computational
power, and the lack of distinct episodic and semantic

memory structures to overcome the problem of “cata-
strophic interference” (McCloskey & Cohen, 1989;
Ratcliff, 1990) and the parallel existence of different
implicit and explicit attitudes (Wilson et al., 2000).

Given the importance of attention and motivation in
attitude formation and change, it will ultimately be nec-
essary to incorporate these factors into an improved
model. For the time being, we manipulated the overall
attention by a supervisory activation module. However,
other aspects of attention are not part of the dynamics of
our network. For instance, salient situational factors
such as heuristic cues can sometimes motivate people to
scrutinize persuasive information more carefully. Cred-
ible and likeable sources, or majority positions may mo-
tivate people to consider the message arguments more
attentively,because thesesourcesaremore likely topro-
vide correct or valuable information (Erb et al., 1998;
Heesacker et al., 1983; Mackie, 1987; Roskos-Ewold-
sen,Bichsel,&Hoffman,2002)whereasnegativemood
may signal that the message content is problematic
(Mackie & Worth, 1989; Sinclair et al., 1994; Wegener
& Petty, 1996; Worth & Mackie, 1987; but see Bohner
& Weinerth, 2001). It strikes us that the next step in
connectionistmodelingofattitudesandsocialcognition
in general will involve exploring connectionist archi-
tectures built from separate but complementary systems
with more consideration for the interaction between dif-
ferent subsystems of the brain.
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Appendix A: The Linear
Autoassociative Model

In an autoassociative network, concepts are repre-
sented in nodes that are all interconnected. Processing
information in this model takes place in two phases. In
the first phase, the activation of the nodes is computed,
and in the second phase, the weights of the connections
are updated (see also McClelland & Rumelhart, 1988).

Node Activation

During the first phase of information processing,
each node in the network receives activation from ex-
ternal sources. Because the nodes are all intercon-
nected, this activation is then spread throughout the
network where it influences all other nodes. The acti-
vation coming from the other nodes is called the inter-
nal activation. Together with the external activation,
this internal activation determines the final pattern of
activation of the nodes, which reflects the short-term
memory of the network.

In mathematical terms, every node i in the network
receives external activation, termed exti. In the auto-
associative model, every node i also receives internal
activation inti, which is the sum of the activation from
the other nodes j (denoted by aj) in proportion to the
weight of their connection wij, or

inti = Σ(aj * wij), (1)

for all j ≠ i. Typically, activations and weights range
approximately between –1 and +1. The external activa-
tion and internal activation are then summed to the net
activation, or

neti = E * exti + I * inti, (2)

where E and I reflect the degree to which the net activa-
tion is determined by the external and internal activa-
tion, respectively. In a recurrent network, the activa-
tion of each node i is updated during a number of
cycles until it eventually converges to a stable pattern
that reflects the network’s short-term memory. Ac-
cording to the linear activation algorithm (McClelland
& Rumelhart, 1988, p. 167), the updating of activation
is governed by the following equation:

∆ai = neti – D * ai, (3)

where D reflects a memory decay term. In the present
simulations, we used the parameter values D = I = E =
1. Given these simplifying parameters, the final activa-
tion of node i reduces simply to the sum of the external
and internal activation, or:

ai = neti = exti + inti (3’)
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Weight Updating

After this first phase, the autoassociative model en-
ters into its second learning phase, where the short-
term activation is consolidated in long-term weight
changes to better represent and anticipate future exter-
nal activation. Basically, weight changes are driven by
the discrepancy between the internal activation from
the last updating cycle of the network and the external
activation received from outside sources, formally ex-
pressed in the delta algorithm (McClelland & Rumel-
hart, 1988, p. 166):

∆wij = ε (exti – inti) aj, (4)

where ∆wij is the weight of the connection from node j
to i, and ε is a learning rate that determines how fast the
network learns.

Generating Evaluative Reactions

As noted in the text, to generate evaluative re-
sponses that the network recognizes as genuine, the in-
ternal activation generated at the valence nodes is
taken as external activation. First, the internal activa-
tion arriving at the valence nodes is computed by
Equation 1. Next, this internal activation is further
“boosted” toward the extremes of +1 and –1 by run-
ning 10 internal cycles of the nonlinear activation up-
dating algorithm. In mathematical terms,

if neti > 0 then ∆ai = neti (1 – ai) – D * ai (5a)

if neti < 0 then ∆ai = neti (ai + 1) – D * ai (5b)

where D reflects a memory decay term. After cycling
10 times, the resulting activation ai is then taken as ex-
ternal activation.

Appendix B: Fishbein and Ajzen’s
(1975) Model and the Delta Algorithm

This appendix demonstrates that the delta algorithm
converges at asymptote to the expectancy-value model
of attitude formation by Fishbein and Ajzen (1975;
Ajzen, 1991). According to this model, an attitude is
formed by summing the multiplicative combination of
(a) the strength of a salient belief that a behavior will
produce a given outcome and (b) the subjective evalua-
tion of this outcome, or (Ajzen, 1991, p. 191):

attitude ≈ Σbiei, (6)

were bi represents the strength of the belief and ei the
evaluation. Beliefs and evaluations are typically
scored on 7-point scales. Although Fishbein and Ajzen
(1975) suggest that the integration (of the multiplica-

tion of beliefs and evaluations) is a summative process,
they acknowledge that evidence in favor of summation
versus averaging is rather inconsistent and inconclu-
sive (pp. 234–235). Moreover, to prevent their
summative function to grow out of bounds, they re-
strict their formula to salient beliefs about an attitude
object (typically not more than 10). Because of this im-
plicit boundary assumption and because there is “no
rational a priori criterion we can use to decide how the
belief and evaluation scales should be scored” (Ajzen,
1991, p. 193), the preceding formula can be normal-
ized by dividing it by the mean belief strengths, or:

attitude ≈ Σbiei/Σbi (7)

This proof uses the same logic as Chapman and
Robbins (1990) in their demonstration that the delta al-
gorithm converges to the probabilistic expression of
covariation. In line with the conventional representa-
tion of covariation information, attitude relevant infor-
mation can be represented in a contingency table with
two cells. Cell a represents all cases where the attitude
object is followed by a given (positive) evaluation, and
cell b represents all cases where the same object is fol-
lowed by the opposite (negative) evaluation. For sim-
plicity, we use only an object with a single expectation
or belief although this proof can easily be extended to
multiple beliefs.

In a recurrent connectionist architecture with local-
ist encoding, the object j and the evaluation i are each
represented by a node, which are connected by adjust-
able weights wij. We use a localist encoding to simplify
the proof. When the object is present, its corresponding
node receives external activation, and this activation is
spread to both valence nodes. As defined in the text, we
assume that the overall internal activation received at
the valence nodes i after priming the object node j re-
flects the attitude.

According to the delta algorithm in Equation 4, the
weights wij are adjusted proportional to the error be-
tween the actual evaluation (represented by its external
activation ext) and the evaluation as predicted by the
network (represented by its internal activation int). If
we take the default activation for aj (which is 1), then
the following equations can be constructed for the two
cells in the contingency table:

For the a cell: ∆wij = ε(e1 – int), (8)

For the b cell: ∆wij = ε(e2 – int). (9)

Note that e1 reflects a positive evaluation and e2 a
negative evaluation. The change in overall attitude is
the sum of Equations 8 and 9 weighted for the corre-
sponding frequencies a and b, in the two cells, or:

∆wij = a[ε(e1 – int)] + b[ε (e2 – int)] (10)
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These adjustments will continue until asymptote,
that is, until the error between actual and expected cat-
egory is zero. This implies that at asymptote, the
changes will become zero, or ∆wij = 0. Consequently,
Equation 8 becomes

0 = a[ε(e1 – int)] + b[ε(e2 – int)]

= a[e1 – int] + b[e2 – int]

= [a * e1 + b * e2] – [a + b] int

so that

int = [a * e1 + b * e2] / [a + b],

As noted earlier, the internal activation int received
at the valence nodes after priming the object node re-
flects the attitude. Because e1 was expressed in posi-
tive terms and e2 in negative terms, the equation re-
flects the differential internal activation of the
favorable and unfavorable valence nodes. Hence, the
left side of the equation can simply be interpreted as
the attitude. In addition, the right side of the equation
can be rewritten in Fishbein and Ajzen’s (1975) terms
as

attitude = Σfiei/Σf, (11)

where f represents the frequency that the attitude object
leads to a given outcome and evaluation (which we as-
sume determine the belief strength b). The equivalence
between Equations 7 and 11 demonstrates that the
delta algorithm predicts a (normalized) multiplicative
function at asymptote for making attitude judgments,
where the strength of the beliefs is determined by the
frequencies by which the attitude object and evalua-
tions co-occur.

Note that although the delta algorithm predicts an
averaging multiplicative function after a large amount
of input (i.e., at asymptote), in its beginning phase, the
algorithm actually predicts an additive function. At the
start of learning, every new piece of information re-
sults in relatively substantial weight adjustments be-
cause the error is still large. The more learning occurs,
the greater the likelihood that the error decreases, so
that novel information has less effect and is integrated
with older information, resulting in a sort of averaging
of earlier nd recent novel input.
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