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The prediction of the structures and interactions of biological macromolecules at the
atomic level and the design of new structures and interactions are critical tests of our
understanding of the interatomic interactions that underlie molecular biology. Equally
important, the capability to accurately predict and design macromolecular structures
and interactions would streamline the interpretation of genome sequence information
and allow the creation of macromolecules with new and useful functions. This review
summarizes recent progress in modeling that suggests that we are entering an era in
which high-resolution prediction and design will make increasingly important contribu-
tions to biology and medicine.

I
n 1973, Anfinsen demonstrated that the

amino acid sequence of a protein com-

pletely specifies its three-dimensional

structure and hence that the native structures

of proteins are likely to correspond to global

free-energy minima (1). Since then, the de

novo structure prediction problem has been

well posed—find the lowest free-energy con-

formation for an amino acid sequence. Yet at

the start of the structural genomics efforts

in the late 1990s, computational methods re-

mained far from achieving the high-resolution

structures available from x-ray crystallography

and nuclear magnetic resonance (NMR), and

hence embarking on large-scale experimental

structure determination with its associated high

cost was well warranted. We suggest that re-

cent progress in high-resolution modeling of

biomolecules is such that, although the de novo

folding problem is far from solved, computa-

tional structural biology is reaching a stage

where it can contribute both to determining

structures of naturally occurring biomolecules

and the creation of new ones.

There have been two distinct areas of de-

velopment in molecular modeling methodolo-

gy and software—the first aimed at simulating

macromolecular dynamics, the second at pre-

diction and design. We focus on the second

area, and for the first we refer to recent re-

views (2, 3). Two blind tests provide a gauge

of progress in prediction of the structures

of proteins and protein-protein complexes,

namely CASP Ehttp://predictioncenter.org (4)^

and CAPRI ECritical Assessment of Protein In-

teractions; http://capri.ebi.ac.uk/ (5, 6)^. Results

obtained in the recent CASP and CAPRI ex-

periments, together with recent design results,

highlight progress in modeling. This review

describes these recent results and outlines

the physical basis for the new generation of

computational models, the origins of improve-

ment in modeling, and current challenges and

bottlenecks.

Prediction Versus Design

Prediction and design are inverse problems:

The prediction problem is to find the lowest

energy structure for a specified sequence,

and the design problem, to find the lowest en-

ergy sequence for a specified structure (Fig.

1A). Success in both efforts requires devel-

opment of an accurate potential function—a

quantitative model of the energetics of mac-

romolecular interactions. Evaluation and im-

provement of the model can be spurred by

using the same potential for both problems

because the scope of the applicable tests is

thereby increased considerably. The common-

alities extend to the optimization methods

(Fig. 1B). We have taken advantage of this

in the development of the ROSETTA software

package (used in the prediction and design

examples from our laboratory described here),

which uses essentially the same protein repre-

sentation, potential function, and optimization

methodology for prediction and design (7).

Energy Function

A large collection of experimental data on the

effects of point mutations on protein stability

(8–11) has highlighted the critical contribution

of tight complementary packing in the core

to protein stability. This is likely to derive

both from attractive van der Waals interactions

among protein atoms and from the dependence

of the solvation free energy on the size of the

cavity occupied by the protein. Experimental

data have also highlighted the contribution of

hydrogen bonding and hydrophobic/polar par-

titioning to protein stability. Alterations in the

charge of surface side chains generally have

little effect on stability, suggesting that long-

range electrostatic interactions are substan-

tially screened by both dynamic and static

induced polarization effects.

In light of these data, successful approaches

have focused on packing interactions, hydro-

gen bonding, and solvation effects represented

with implicit solvation models (12, 13) that

favor burial of nonpolar atoms and exposure

of polar atoms. These approaches have bor-

rowed much from the molecular mechanics

force fields used to simulate dynamics (14–16),

notably the classical description in which ener-

gies are computed as sums over interactions

between a relatively small set of different

atom types, the use of a Lennard Jones po-

tential to describe van der Waals interactions

between atoms, and parameters for ideal bond

lengths and angles. There are also important

differences. Whereas the parameterization of

molecular mechanics force fields relies primar-

ily on experimental data on small molecules,

the new force fields also derive parameters

from experimental structural and thermody-

namic data on proteins. In contrast to most

molecular mechanics force fields, which rep-

resent hydrogen bonding as a dipole-dipole in-

teraction, the orientation dependence that arises

from the partially covalent character of the hy-

drogen bond is treated explicitly (17), both on

the basis of geometrical distributions observed

in proteins and quantum chemistry calculations

on simple model systems (18). Longer range

electrostatic interactions are generally damp-

ened considerably. Torsional potentials, which

are notoriously difficult to determine in molec-

ular mechanics force fields, are obtained by

directly inverting probability distributions from

protein structures, and the representation of

the protein chain is much stiffer—bond lengths

and angles are generally kept rigid, and side-

chain conformations are restricted to the vicin-

ity of the rotameric states observed in protein

structures. The stiffer representation reduces

the frequency of false attractors by consider-

ably reducing the size of configurational space.

These differences have been driven by the con-
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stant rigorous testing of the force field and

representation by prediction and design calcu-

lations, which have the advantage that they

can fail quite dramatically and highlight short-

comings in the approach.

Conformational Searching

A good energy function is not enough; a for-

midable challenge to prediction and design of

protein structures and interactions is the very

large size of the spaces that must be searched.

For protein structure prediction, for example,

with as few as three possible states per resi-

due, the number of states of a 100-residue

chain is astronomical [this is the often referred

to ‘‘Levinthal’s paradox’’ (19)]. Protein-protein

docking requires a search over possible rigid

body orientations of the partners, and most

current design problems involve a search over

protein backbone conformations, as well as

amino acid sequences.

An effective approach to conformational

sampling is to start with low resolution and

go to high resolution. The low-resolution step

searches for minima in an energy landscape

dominated by hydrophobicity (the burial of

nonpolar groups away from solvent), with the

sharply varying van der Waals interactions

smoothed by spatial averaging. Because sterics

(tight complementary packing) is a critical

contributor to the specificity of native protein

structures and interactions, the native minima

cannot be identified reliably with this averaged

out representation, and the goal in this step is

not to uniquely identify the native state, but to

identify a set of energy minima that is almost

certain to include the native conformation.

Low-resolution approaches to docking, pre-

diction, and design are further described in

the next sections.

The second, more computationally inten-

sive step in both the prediction and design of

structure and interactions is the search for

well-packed low-energy structures in the vicin-

ity of each of the minima of the averaged-out

landscape identified in the initial low-resolution

step. In this step, all atoms are represented

explicitly and steric interactions are not damped

or averaged out. In this very rugged landscape,

1 Å deviations of atoms from the native struc-

ture can produce overlaps and huge spikes in the

energy. This landscape is difficult to explore, but

the native minimum is generally substantially

deeper than non-native minima (which is not

generally the case at the low-resolution stage).

Because the landscape is so rugged, opti-

mization is challenging. A number of methods

have been described to address this problem

(20–22). The method used in ROSETTA cou-

ples Monte Carlo minimization (MCM) with

discrete side-chain optimization (Fig. 1B). For

each attempted move, an initial random pertur-

bation of the backbone torsion angles (protein

structure prediction) or rigid body degrees of

freedom (protein-protein docking) is fol-

lowed by discrete optimization of side-chain

rotamer conformations and then by gradient-

based local minimization on all degrees of

freedom. MCM, which effectively flattens all

barriers to the height of the nearest local min-

imum, has been found to be a powerful global

optimization method for a broad range of prob-

lems (23, 24).

Protein-Protein Docking and CAPRI

Rigid backbone protein docking is less chal-

lenging in terms of conformational searching

than structure prediction or design because

there are fewer degrees of freedom to be

sampled. The low-resolution search can be

performed using an elegant fast Fourier trans-

formation (FFT)–based approach (25) or by

real space MC. For high-resolution refinement,

it is advantageous to simultaneously optimize

both side-chain and rigid body degrees of

freedom; MCM-based methods such as that

outlined above (Fig. 1B) and that described

in (24) have proven particularly effective.

Accurate predictions by several groups who

entered CAPRI (5, 26) indicate that high-

resolution modeling methods are beginning

to work for protein docking that does not in-

volve pronounced backbone conformational

changes. As an example we show results for

two CAPRI targets, for which we carried out

the MCM with side-chain flexibility proto-

col many independent times using different

random-number seeds. The resulting energy

landscape for target 12 (cohesin-dockerin) is

shown in Fig. 2A. Three complexes have con-

siderably lower energies than the others (Fig.

2A, inset), and trajectories starting from these

low-energy complexes reveal that they lie at

the bottom of a fairly narrow energy funnel

(Fig. 2A, main panel).

The lowest energy predicted structures for

the cohesin-dockerin complex, as well as for

CAPRI target 15: the colicin-immunity protein

complex, are shown in Fig. 3, A and B, super-

imposed on the experimentally determined crys-

tal structures, which were released after the

predictions were submitted to CAPRI. Not only

the rigid body orientation, but also the con-

formations of almost all of the side chains, are

predicted correctly. Other groups achieved sim-

ilar successes (5, 26). Current research is di-

rected at incorporating backbone flexibility into

protein-protein docking [e.g., (27)], which is

closely related to the high-resolution protein

structure prediction problem.

Structure Prediction and CASP

Many creative approaches to the de novo pre-

diction of protein structure at low resolution

have been described (28–32). The approach in

ROSETTA to de novo structure prediction seeks

to recapitulate the trade-off between local and

nonlocal interactions during protein folding, by

allowing short segments of the chain to flicker

between alternative low-energy local confor-

mations while searching for the lowest energy

overall conformation of the chain (33). The

search space is confined to that defined by the

local conformational preferences of the protein

sequence, and energy minima are identified

using MC sampling with the low-resolution

representation of the chain described earlier.

Plausible candidate structures with primarily

Design:

Find lowest 
energy 
sequence 
for fixed 
structure

Prediction:

Find lowest 
energy 
structure 
for fixed 
sequence

A Prediction and design are inverse problems

Randomly perturb backbone and/or rigid body
degrees of freedom

Similarity of flexible backbone design
and structure prediction

Design:
All rotamers for
all amino acids

Prediction:
All rotamers for

native amino acid

Gradient-based local minimization of energy
with respect to all degrees of freedom

A
cc

ep
t?

B

Discrete optimization of side-chain rotamers

Sequence

Structure

Model of energetics of
inter- and intramolecular

interactions

Fig. 1. Prediction and design. (A) Structure prediction and fixed backbone
design are inverse problems. Completing the cycle corresponds to flexible
backbone design, which requires optimization of both sequence and struc-

ture. (B) Algorithmic similarity of structure prediction, protein-protein
docking, and flexible backbone design illustrated by the Monte Carlo
minimization (MCM) high-resolution refinement protocol.
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hydrophobic cores and paired b strands can

be rapidly generated (È1 min on 1 CPU for a

100-residue protein), but because atomic detail

is neglected, the accuracy is generally low

and any individual model is likely to be glob-

ally incorrect. Conformational sampling at this

stage can be improved by generating structures

not only for the protein of interest, but also for

sequence homologs, which each have some-

what different low-resolution energy landscapes

(34). High-resolution refinement of the low-

resolution models is again carried out using the

MCM with side-chain packing protocol

described in Fig. 1B.

Progress in de novo struc-

ture prediction was high-

lighted at CASP6, where

the first moderately high-

resolution de novo struc-

ture prediction was made

using the two-stage pro-

cedure protocol described

above, with the initial low-

resolution search followed

by the flexible side-chain

MCM optimization proto-

col. The root mean square

deviation (RMSD) to the

native structure after the low-

resolution search was 2.2 Å

and decreased to 1.6 Å

during the flexible side-chain

MCM refinement step (Fig.

3C). Although clearly at a

lower level of accuracy than

the docking predictions

shown in Fig. 3, A and B,

it is encouraging that some

features of the native side-

chain packing arrangement

are correctly recapitulated.

More recently, the same pro-

tocol was found to produce

accurate predictions for a

subset of small protein do-

mains (34). The goal of cur-

rent work on protein structure

prediction is to consistently

achieve the accuracy of the

docking predictions in Fig.

3, A and B.

Examples of Protein Design

Protein design has a long history, starting from

the realization that side-chain conformations

in proteins could to a first approximation be

treated as a set of discrete rotameric states and

that new sequences and conformations could

be derived by combinatorial optimization of

this set (35). Mayo and co-workers showed

that the lowest energy sequence computed for

a small naturally occurring structure adopted

a structure very close to that of the target

starting structure (36). Harbury and co-workers

(37) showed that new helical bundle structures

could be created by designing sequences for a

set of parametrically generated bundle ar-

rangements. These studies correspond to the

right arrow in Fig. 1A. Conceptually similar

rotamer search-based design methods have

been used to design new protein-protein in-

terfaces, which have been confirmed by x-ray

crystallography (38–41).

More recently, a globular protein fold was

designed by alternating between sequence and

structure optimization (the complete cycle in

Fig. 1A) (42). The low-resolution and high-

resolution optimization is similar to that used

for protein structure prediction; the only no-

table differences are that in the low-resolution

search constraints are added to favor the de-

sired topology, and in the high-resolution

search the discrete side-chain optimization is

over the conformations of all 20 amino acids

(Fig. 1B). The designed protein is exception-

ally stable, with a free energy of folding

roughly twice that of most naturally occurring

proteins in its size range. The high-resolution

crystal structure of the designed protein showed

that its structure is similar (1.2 Å RMSD) to

that of the computer-generated design model

(Fig. 3D). The accuracy of the design and the

high stability are both likely to stem from the

fact that the sequence of the designed protein

was optimized entirely for stability; in contrast

to most naturally occurring proteins, it con-

tains no regions that are locally suboptimal

owing to functional constraints. Consistent with

this, prediction of the structure of the designed

protein from sequence results in a more ac-

curate prediction than for almost all naturally

occurring proteins (43).

Recent years have seen important mile-

stones in the design of existing proteins with

new functions. A series of small-molecule

receptors have been designed that respond to

specific ligands—a particularly spectacular

achievement is a receptor that causes bacte-

ria to turn green when ex-

posed to TNT (44). As in the

flexible side-chain docking

protocol, these calculations

coupled side-chain repack-

ing with rigid body sampling.

There has also been exciting

progress in the design of

new enzymes (45–47).

Role of
High-Performance
Computing

There has been a steady

increase in CPU power and

decrease in the cost of com-

puting resources over the

past 20 years, and this is

likely to continue in the near

future [Moore’s law (48)]. It

is of considerable sociolog-

ical interest to identify the

stage in this growth of com-

puting power at which dif-

ferent scientific problems

become tractable. The cou-

pling of side-chain combi-

natorial optimization with

backbone and/or rigid

body optimization as in

the protein-protein docking

MCM procedure described

above, the flexible back-

bone protein design proto-

col used to design TOP7,

and binding site design for

very large numbers of different ligand ori-

entations by Hellinga and co-workers (47) were

enabled by the increase in computer power; the

simultaneous optimization of side-chain and

backbone/rigid body degrees of freedom would

not have been possible with the computing

power available 15 years ago. The example in

Fig. 2A shows that in 2005, only three solutions

close to the native structure were found in 15

processor (3.2 GHz) days. Carrying out the

calculation using a 1995 vintage processor (133

MHz) would have required roughly a year of

processor time. Even today, the primary bottle-

neck to high-resolution structure prediction

appears to be conformational sampling, because

Fig. 2. Energy landscapes. Each point represents the lowest energy structure sampled
in a single MCM trajectory. (A) Docking energy landscape for Capri Target 12 [cohesin-
dockerin complex; PDB (Protein Data Bank) ID 1ohz (66)]. (Inset) In a large collection of
trajectories starting from different random orientations that were carried out for the
CAPRI experiment, a small number of structures (þ) are distinguished from the back-
ground population by a significant energy gap. The x axis is the RMSD to an arbitrary
reference orientation. (Main panel) Trajectories starting from these low-energy struc-
tures map out a narrow energy funnel. The x axis is the RMSD to the native structure. A
deep energy funnel, as in this example, is a strong indicator that a prediction is correct.
(B) Folding landscape for double-stranded RNA binding protein [PDB ID 1di2 (67)]. The
backbone RMSD is to the native structure. The energy function (units are in kcal/mol)
includes entropic contributions from solvation effects, but not the configurational en-
tropy associated with protein vibrational and side-chain degrees of freedom, and hence
is not the true free energy.
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the native structure almost always has lower

energy than the predicted structures (34). The

anticipated increase in processor power over

the next several years will bring closer in

reach the refinement of large protein structures

and flexible backbone protein-protein docking,

which requires simultaneous optimization of

side-chain, backbone, and rigid body degrees

of freedom.

Energy Landscapes

The successful predictions and de-

signs described here suggest that

the energy function underlying

the calculations may be accurate

enough to provide insights into

the general properties of the fold-

ing and docking free-energy land-

scapes. Figure 2 shows the energy

landscapes for both the docking

and structure prediction problems.

Notable features include the pro-

nounced minimum in the vicinity

of the native structure, and the

sharp increase in energy asso-

ciated with È2 Å deviations from

the native structure. It is impor-

tant to note that configurational

entropy is not accounted for in

these landscapes, so the actual

free energy landscapes will have

somewhat broader minima. The

folding and binding ‘‘funnels’’ (49)

that have been the subject of

much discussion are evident, but

only in the immediate vicinity of

the global minimum. Physically,

the short range reflects the criti-

cal contribution to the energy from

close complementary side-chain

packing: Once the backbone co-

ordinates have diverged by more

than È2 Å, the native side-chain

packing arrangement is complete-

ly disrupted (50) and the energy

increases substantially. The nar-

row aperture to the binding and

folding funnels may be a charac-

teristic feature of biomolecular

recognition and folding.

Is the short-range nature of

landscapes compatible with the

observation that complexes form

and proteins fold in finite time?

In the case of complexes, it has

been possible to rigorously answer this ques-

tion in the affirmative by solving the steady-

state diffusion equation for interacting partners

with ‘‘reactive zones’’ corresponding to the

aperture of the binding funnels—the computed

rates are on the order of 106 per second (51)—

consistent with experimentally observed rates

for many proteins (faster association rates

are likely to reflect long-range electrostatic

steering). In the case of monomeric folding,

folding can still proceed rapidly if native in-

teractions are on average lower in energy

than non-native interactions—the principle of

minimal frustration (49, 52)—and indeed for

most compact subdomains the native confor-

mation has a lower computed energy than

that of essentially all sampled non-native con-

formations. This is expected given the dom-

inant contribution of short-range packing and

hydrogen bonding interactions—a confor-

mation that is very low in energy on a global

scale must also be low in energy on a more

local scale, just as the optimal solution for a

jigsaw puzzle is also optimal (perfectly packed)

on a local scale. Indeed, broader energy fun-

nels are observed when the reaction coordi-

nate (x axis in Fig. 2) is the fraction of native

contacts, rather than the RMSD, consistent

with protein folding landscape theory.

The narrow energy funnels around native

structures, and the close correspondence of

both prediction and designs with experimen-

tally determined structures, have direct bear-

ing on the fundamental question of the range

of structures adopted by proteins in solution.

Some simulation studies have suggested that

in solution, proteins populate a broad range

of conformations up to 4 Å RMSD from the

crystal structure. In contrast, the

short range of the folding and

binding funnels suggests that pro-

tein cores are confined to within

È1.5 Å of the experimentally de-

termined crystal structures; the

substantial increases in energy

accompanying larger deviations

suggest that such structures are

populated at relatively low levels.

The coincidence of the energy

minima in the prediction and de-

sign calculations with the location

of the experimentally determined

structure further supports this con-

clusion: If crystal packing inter-

actions randomly selected out a

member of a broad ensemble of

structures spanning 3 to 4 Å

RMSD, one would not expect

RMSDs of much less than this

between predicted structures and

crystal structures or between de-

sign models and crystal structures

(53). Experimental support for this

conclusion comes from compari-

son of protein structures deter-

mined in different crystal forms,

which suggests backbone varia-

tion of less than 1 Å (54, 55), and

from recent NMR studies (56) that

show that agreement between the

dipolar couplings and structure is

not limited by the intrinsic dy-

namic behavior of proteins.

Current Challenges

Considerable challenges remain

for high-resolution modeling—this

review should not be taken to sug-

gest that the critical problems are

by any means solved, but rather

that accurate modeling now appears

to be an achievable goal. Short-

comings in potential functions in-

clude the treatment of buried polar

interactions, which are complicated by po-

larization effects, and the delicate balance

between the cost of desolvating a polar or

charged group and the favorable hydrogen

bonding and electrostatic interactions the group

may make upon burial. Consistent prediction

and design of polar active sites will require

progress in modeling such interactions (57).

On the sampling side, improvements in meth-

odology and increases in computing capabil-

A

B

C D

Fig. 3. Examples of high-resolution prediction and design. (A) CAPRI Tar-
get 12 [dockerin–cohesin (66); interface residue backbone RMSD 0 0.27 Å].
The lowest energy structure in Fig. 2A, main panel, is shown here. The side
chain of Leu-83 (green in the free monomer) changes conformation upon
binding. Side-chain conformations in red were provided; those in blue were
predicted. (B) CAPRI Target 15 [ColicinD–Immunity protein D (68); interface
residue backbone RMSD 0 0.23 Å]. No side-chain information was provided
for either partner. (C) CASP6 de novo structure prediction Target 0281
[hypothetical protein from Thermus thermophilus Hb8, PDB ID 1whz (69);
backbone RMSD 0 1.59 Å]. (D) TOP7 (RMSD 0 1.2 Å) (42). (A) and (B) are
adapted from figure 1 of (70). Blue: models; red and orange: x-ray structures.
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ities will be necessary for problems with large

numbers of degrees of freedom, such as pre-

diction of the structures of large proteins.

To conclude, we list a series of challenges

that will spur the next phase of method de-

velopment. (i) High-resolution refinement of

models built by comparative modeling. It is

well established that the accuracy of com-

parative models built by copying a template

structure identified using sequence comparison

methods decreases steadily with increasing

sequence divergence between the sequence

being modeled and the protein template owing

to structural divergence during protein evo-

lution (58, 59). Recent CASP tests have shown

that the best comparative models are cur-

rently built by experts such as Ginalski (60)

who are able to achieve near-perfect align-

ments of the sequences to proteins of known

structure, a critical precondition for further

modeling, and go further to improve models

using an assortment of protein modeling tools

such as MODELLER (61), PSIBLAST (62),

ROSETTA (7), PSIPRED (63), SQWRL (64),

and VERIFY3D (65) together with visual struc-

tural inspection. The challenge is to automat-

ically produce even more accurate structures

by high-resolution refinement; the loss of hu-

man intuition will have to be compensated by

generating starting models for refinement by

large-scale sampling of alternative alignments

on the basis of alternative homologous struc-

ture templates. The methods described in this

review are directly applicable to this problem,

and it is also a good test of widely used mo-

lecular dynamics simulations methods because

the starting template can be within 3 Å of the

correct structure. (ii) Consistent prediction of

the structures of small proteins at atomic-level

resolution. (iii) Protein docking with back-

bone flexibility. This is a formidable chal-

lenge because both rigid body and internal

backbone degrees of freedom need to be

searched. (iv) Prediction and design of the

specificity of protein–nucleic acid interac-

tions. (v) Design of new enzymes catalyzing

reactions not catalyzed by naturally occurring

enzymes. (vi) Prediction of the structures of

multidomain and multisubunit protein com-

plexes. We look forward to progress in all of

these areas.
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