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Abstract

The accurate performance evaluation of differential amplitude and phase-shift keying (DAPSK) with

post-detection equal gain combining (EGC) over generalized fading channels is of great theoretical interest

and practical importance. In this paper, by using a decision variable-based moment generating function (DV-

MGF) approach, exact error probability results for DAPSK over generalized Rician and Nakagami fading

channels are derived, taking into account the effects of all the system and fading channel parameters. Several

maximum-likelihood (ML) based detectors that do not require channel state information (CSI) are proposed

for generalized Rician fading channels, and an exact bit error probability (BEP) union bound for the ML

detection is derived. Assuming CSI a performance upper bound for DAPSK with EGC is also presented.

Simulation and numerical results show when both detectors have no CSI, the conventional DAPSK detector

may perform closely to (though worse than) the ML detector. However, the EGC receiver with CSI performs

substantially better than the ML detector without CSI, and very closely to the coherent APSK detector.

Index Terms

Differential amplitude and phase-shift keying, Rician and Nakagami fading channels, maximum likelihood

detection, fading correlation, decision variable, union bound, post-detection diversity

I. INTRODUCTION

Differential amplitude and phase-shift keying (DAPSK) is an efficient modulation scheme that can be

implemented in wireless communication systems without requiring channel state information (CSI) at the

receiver side. For DAPSK modulation considered in this paper, the signal points lie on a few concentric
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rings, with N amplitude levels and M phases [1], [2], and thus we use the notation DAPSK (N,M), which

may also be called N -DASK/M -DPSK [3], or star quadrature amplitude modulation (star-QAM) [4], [3],

[5], [6]. In this scheme, both signal phases and amplitudes are modulated and differentially encoded. Due

to its robustness to false phase locking and fading [4], and better error performance than DPSK [5], [6],

DAPSK has attracted a lot of research interest in the last few years [4], [7], [8], [1], [2], [5], [6], [9], [3], [10],

[11]. In [9], [12], DAPSK (2, 8) [which is called 16-star QAM] with post-detection equal gain combining

(EGC) over a Rayleigh fading channel with independent and identically distributed (i.i.d.) branches was

studied. In [7], [8], some schemes for DAPSK combined with multi-carrier transmission were considered

and the performances were evaluated by simulations for non-fading and frequency-selective Rayleigh fading

channels. In [5], [6], the performance of DAPSK (2,8) over frequency-selective Rician fading channels with

EGC assuming independent branches was analyzed.

However, the exact error probability of DAPSK with EGC over more realistic Rician fading channels

(e.g. with correlated diversity branches due to the limitation of the receiver size) has not been investigated.

Furthermore, to the authors’ knowledge, an analytical result for the performance of DAPSK (N,M) with

EGC over Nakagami channels is not available in the literature, despite the versatility and usefulness of the

Nakagami fading model in wireless communications [13].

In this paper, we derive the exact performance result for DAPSK (N,M) with EGC over generalized Rician

and Nakagami fading channels. We express the amplitude and phase decision variables (DVs) as quadratic

forms, and derive the relevant moment generating function (MGF) expressions. By using the inverse Laplace

transform (ILT) of the MGFs, the distributions of signal amplitude and phase are then expressed as single

and double finite summations of some elementary functions, respectively. The new result is general and takes

into account arbitrary diversity order, correlated signal branches with non-identical statistics, correlated noise,

and non-zero Doppler fading bandwidth (e.g. fast fading).

In [1] several maximum-likelihood (ML) detectors based on two-symbol observations for Rayleigh fading

channels with i.i.d branches were derived, and the results showed that the performance of the conventional

DAPSK detector with EGC is very close to that of the ML detector. This motivates us to study this problem for

generalized Rician fading channels. In this paper, several exact and approximate ML detectors for correlated

and independent Rician fading diversity channels are proposed, and a new and exact bit error probability

(BEP) union bound is derived.

With multiple symbol detection, or equivalently, after a less noisy reference signal is obtained, performance

of DAPSK can be improved significantly [10], [11]. Therefore, it is of interest to obtain the performance

of DAPSK when a perfect reference signal is available, that is, with CSI. Consequently, new performance

results for DAPSK with CSI and EGC over general Rician and Nakagami fading channels are derived.

Numerical and simulation results show that a properly designed conventional DAPSK detector (i.e. with an

optimized ring ratio and proper decision boundaries) may achieve a BEP performance close to that of the
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ML detector in general Rician channels. Also, the performance of DAPSK with CSI is significantly better

than that without CSI.

The remainder of this paper is organized as follows. The signal model is introduced in Section II. Exact

error probability formulas for amplitude and phase detection are presented in Sections III and IV, respectively.

Several ML detectors for DAPSK signals over general Rician channels are proposed and a BEP union bound

is derived in Section V. Further, the performance of DAPSK with CSI is derived in Section VI. We present

some simulation and numerical results for DAPSK in Section VII. Finally, some conclusions are provided

in Section VIII. Throughout this paper, we use superscripts ∗, T, H, −1 to represent the scalar conjugate,

vector (or matrix) transpose, conjugate transpose, and matrix inversion, respectively. Re(x) denotes the real

part of the complex variable x, and det(A) is the determinant of matrix A.

II. SIGNAL MODEL

We denote the signals received in the ith symbol interval over all L diversity branches by the L-vector

x(i) = c(i)d(i) + n(i), (1)

where d(i) is the differentially amplitude-and-phase encoded symbol. For DAPSK (N,M), there are N

different amplitudes and M different phase angles. d(i) =
√

γβa(i)ejθ(i), where a(i) ∈ {0, 1, . . . , N −
1} takes on N possible values, and β (β > 1) is the ring ratio. The scaling factor γ is chosen to be

γ = [N(1 − β2)]/(1 − β2N ), so that the symbol energy is normalized to unity. a(i) = a(i − 1) + ∆a(i)

mod N , where ∆a(i) = a(i)− a(i− 1) takes on 2N − 1 possible values {−N +1, . . . , 0, . . . , N − 1}. The

amplitude information is given by ∆a(i) mod N , which takes on N possible values {0, 1, . . . , N−1}. θ(i) ∈
{2πm/M,m = 0, 1, . . . ,M − 1} is a DPSK modulated signal phase, and j =

√
−1. b(i) = d(i)/d(i− 1) =

β∆a(i)ej∆θ(i) is the data symbol carrying the amplitude and phase information, where ∆θ(i) = θ(i)−θ(i−1)

is the information phase. c(i) = [c1(i), . . . , cL(i)]> is the L × 1-size channel-coefficient vector. The noise

vector n(i) = [n1(i), . . . , nL(i)]>, is a circularly symmetric zero-mean complex Gaussian process, with the

average power E[|nk(i)|2] = σ2
k for k = 1, . . . , L, where E[·] denotes expectation. We define the L × L

noise correlation matrix as Rn(k) = E{n(i)nH(i−k)}, which takes into account the effect of both temporal

and spatial noise correlation [14].

A. Rician Fading Channels

We define the L × L channel spatio-temporal covariance matrix between the L branches as Σ(n) =

E{(c(i)−µc)(c(i−n)−µc)
H}, where µc = E[c(i)] = [µc,1, . . . , µc,L]> is the line-of-sight (LOS) component

of (̧i). At the lth diversity branch, the signal power is defined as γl = |cl(i)|2, and the power of the diffuse

component is γ̃l = |cl(i) − µc,l|2. The average of γ̃l is given by ¯̃γl = E{|cl(i) − µc,l|2} = [Σ(0)]l,l, where
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[Σ]l,l denotes the (l, l)th diagonal element of the square matrix Σ. The average signal power at the lth

branch is then given by γ̄l = ¯̃γl + |µc,l|2 = (1 + Kl)¯̃γl, where Kl = |µc,l|2/¯̃γl is the Rician factor.

For the L-fold diversity we define the signal power vector for all the branches as γ = [γ1, γ2, . . . , γL]>,

and the diversity output power as γtot =
∑L

l=1 γl. For correlated branches, the MGF for γtot is given by

Φγtot(s) = E

[

exp

(

L
∑

l=1

γls

)]

= exp(µH
c[IL/s −Σ(0)]−1

µc)/det(IL − sΣ(0)),

where IL is the L × L identity matrix. For independent branches, Φγtot(s) simplifies to [15]

Φγtot(s) =

L
∏

l=1

1 + Kl

1 + Kl − sγ̄l
exp

(

sKlγ̄l

1 + Kl − sγ̄l

)

.

B. Nakagami Fading Channels

For Nakagami channels, the instantaneous signal power at the lth branch, γl = |cl(i)|2, follows the gamma

distribution with the probability density function (pdf) defined by [16] fγl
(γl) = 1

Γ(ml)

(

ml

γ̄l

)ml

γml−1
l e

−
mlγl

γ̄l ,

where Γ(m) =
∫∞
0 e−ttm−1dt is the Gamma function, γ̄l = E[|cl(i)|2] is the average signal power at the

lth branch, and ml ≥ 0.5 is the fading parameter. For L-fold diversity with independent diversity branches,

the MGF for γtot is

Φγtot(s) =

L
∏

l=1

(1 − sγ̄l/ml)
−ml . (2)

For the correlated fading case, assuming that the fading figure m is identical for the different branches, we

get the MGF of the total signal power as [17]

Φγtot(s) = det(IL − sM/m)−m, (3)

where M is the fading covariance matrix, which can be computed from the power covariance matrix Rγ =

E[γγ
T ] − E[γ]E[γ]T (e.g. see [18]).

C. Conventional Differential Detection with EGC Diversity

For conventional differential detection, the reference signal is given by the received signal in the previous

symbol interval x(i − 1), and thus the complex decision variable (DV) for the signal phase is given by [9],

[19]

Dp = xH(i − 1)x(i) =

L
∑

l=1

x∗
l (i − 1)xl(i). (4)

The phase decision for symbol b(i) = d(i)/d(i − 1) is given by1 ∆θ̂(i) = 2πm̂/M , where m̂ =

argmaxm Re{Dpe
−j2πm/M}, or equivalently, m̂ = argminm |∆θp − 2πm/M |, where ∆θp is the phase of

1The m used here should be distinguished from the Nakagami m parameter.
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Dp before the hard decision.

For amplitude detection the amplitude comparison at the lth branch is based on the ratio Rl =

|xl(i)|/|xl(i − 1)|. Ideally, Rl takes on 2N − 1 possible values, β−N+1, . . . , βN−1, cf. Figure 1. Let the

decision boundaries be given by {Bn} for n = −N + 1, . . . , 0, 1, . . . , N , where B−N+1 = 0 and BN = ∞,

and Bn−1 < βn−1 < Bn < βn holds. When Bn < Rl < Bn+1, the corresponding decision rule is that

∆â(i) = n if n ≥ 0, and ∆â(i) = n + N if n < 0. When we combine the multi-channel received signal by

post-detection EGC, the DV is defined as [9]

Da = [xH(i)x(i)]/[xH(i − 1)x(i − 1)] =

∑L
l=1 |xl(i)|2

∑L
l=1 |xl(i − 1)|2

. (5)

Since post-detection EGC for the amplitude detection corresponds to square-law combining, we replace the

original decision boundaries by {[Bn]2}N
n=−N+1.

The average BEP for DAPSK (N,M) is given by [1], [5]

P̄b =
1

log2(NM)
[log2(N)P̄a,b + log2(M)P̄p,b], (6)

where P̄a,b and P̄p,b are the average BEPs for the amplitude and phase detection, respectively. Assuming

that the error probabilities of the phase and amplitude detection are independent, the average symbol error

probability (SEP) is given by

P̄s = 1 − (1 − P̄a,s)(1 − P̄p,s) = P̄a,s + P̄p,s − P̄a,sP̄p,s, (7)

where P̄a,s and P̄p,s are the average SEPs for the amplitude and phase detection, respectively.

III. PERFORMANCE OF AMPLITUDE DETECTION

We derive new results for the exact error probability of DAPSK (N,M) for arbitrary Rician and Nakagami

fading channels. The average amplitude SEP and BEP equal

P̄a,s = 1/N2
N−1
∑

n1=0

N−1
∑

n2=0

Pa,s(n1, n2) and P̄a,b = 1/N2
N−1
∑

n1=0

N−1
∑

n2=0

Pa,b(n1, n2),

where Pa,s(n1, n2) and Pa,b(n1, n2) are, respectively, the conditional SEP and BEP of amplitude detection

assuming signals with amplitudes
√

γβn1 and
√

γβn2 are transmitted in the (i−1)th and ith symbol intervals,

respectively. Let ∆n = n2 − n1, and due to the cyclic differential amplitude encoding, we obtain

Pa,s(n1, n2) =















1 − Pr(B2
∆n < Da < B2

∆n+1) ∆n = 0

1 − Pr(B2
∆n < Da < B2

∆n+1) − Pr(B2
∆n−N < Da < B2

∆n−N+1) ∆n > 0

1 − Pr(B2
∆n < Da < B2

∆n+1) − Pr(B2
∆n+N < Da < B2

∆n+N+1) ∆n < 0

(8)

where Pr(A) denotes the probability that event A occurs. For the BEP calculation Pa,b(n1, n2) = 1/ log2(N)
∑N−1

∆n̂=−N+1 wa(∆n̂,∆n) Pr(B2
∆n̂−1 < Da < B2

∆n̂), where wa(∆n̂,∆n) is a weighting factor (Hamming
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distance) depending on the amplitude symbol-bit mapping scheme. When the phases and amplitudes are

independently Gray-coded, for N = 2 and 4, wa(∆n̂,∆n) is a function of ∆ˆ̂n = (∆n̂−∆n) mod N . For

N = 2, wa(∆n̂,∆n) =







0 ∆ˆ̂n = 0

1 ∆ˆ̂n = 1
. For N = 4, wa(∆n̂,∆n) is listed in Table I2. Also, for high

SNR we can show that Pa,b(n1, n2) ' 1
log

2
N Pa,s(n1, n2) for n1, n2 ∈ {0, 1, . . . , N − 1}.

Since Pr(B2
∆n < Da < B2

∆n+1) = Pr(Da < B2
∆n+1) − Pr(Da < B2

∆n), we only have to evaluate a

probability of the form Pr(Da < B2
∆n), and all the other terms can be computed in the same manner.

Obviously, Pr(Da < B2
∆n) = Pr(−B2

∆n

∑L
l=1 |xl(i − 1)|2 +

∑L
l=1 |xl(i)|2 < 0), which can be expressed

as the probability that a quadratic form is smaller than zero. Specifically, Pr(Da < B2
∆n) = Pr(D̃a < 0),

where D̃a = vHQv < 0, v = [x>(i − 1),x>(i)]>, and

Q =





−B2
∆nIL 0L×L

0L×L IL



 ,

where 0L×L denotes the L × L zero matrix. We first derive the MGF for the DV D̃a for Rician and

Nakagami fading channels, and then present a Gauss-Chebyshev quadrature (GCQ) formula [20] to compute

Pr(D̃a < 0).

A. Rician Fading Channels

As in (1), let d(i− 1) =
√

γβn1ej2m1π/M and d(i) =
√

γβn2ej2m2π/M denote the signals in the (i− 1)th

and ith symbol intervals, respectively. Also we let b(i) = d(i)/d(i − 1) = β∆a(i)ej∆θ(i) = β∆nej2∆mπ/M

denote the ratio of the signals in two adjacent symbol intervals, where ∆n = n2 −n1 and ∆m = m2 −m1.

Conditioned on n1, n2,∆n, and ∆m, the covariance matrix and the mean of v, are respectively given by

Pv =





Σ(0)γβ2n1 + Rn(0) ΣH(1)γβ2n1+∆ne−j2∆mπ/M + RH
n(1)

Σ(1)γβ2n1+∆nej2∆mπ/M + Rn(1) Σ(0)γβ2n2 + Rn(0)



 (9)

µv = [µ>
c

√
γβn1 ,µ>

c

√
γβn1+∆nej2∆mπ/M ]>ej2m1π/M . (10)

Employing a result for the distribution of a non-central Gaussian quadratic form [21], [22], the MGF for

D̃a is given by

ΦD̃a
(s) =

exp(µH
v[Q

−1s−1 −Pv]
−1

µv)

det(I2L − sPvQ)
, (11)

where the factor of ej2m1π/M in (10) no longer exists indicating its irrelevance to the BEP evaluation. When

Rn(1) = 0L×L, i.e., temporally white noise, ΦD̃a
(s) is identical for different ∆θ(i), and thus without loss

of generality we can assume ∆θ(i) = 0 (that is ∆m = 0).

2Note that for N > 4, wa(∆n̂, ∆n) is in general a function of both ∆n̂ and ∆n.



7

B. Nakagami Fading Channels

We derive the MGF for D̃a over correlated Nakagami fading channels. We assume a slow Nakagami

fading channel, namely c(i) = c(i− 1) = c. We also assume spatially and temporally white noise, and thus

without loss of generality we assume ∆θ(i) = 0 below.

For convenience, we rewrite D̃a =
∑L

l=1 D̃a,l, where D̃a,l = vH
l qvl is the amplitude DV at the lth

branch, vl = [cl
√

γβn1 + nl(i − 1), cl
√

γβn2 + nl(i)]
>, and q =





−B2
∆n 0

0 1



. Let zl = cle, where

e = [
√

γβn1 ,
√

γβn2 ]>. Conditioned on zl, vl has a Gaussian distribution with mean zl and co-variance

Pn,l, where Pn,l is the correlation matrix for the noise vector [nl(i − 1), nl(i)]
>, given by

Pn,l =





σ2
l ρ∗n,lσ

2
l

ρn,lσ
2
l σ2

l



 .

Here, σ2
l and ρn,l = E(nl(i)n

∗
l (i − 1))/σ2

l represent, respectively, the noise power and the noise temporal

correlation coefficient at the lth branch, for l = 1, . . . , L. The conditional MGF for D̃a,l at the lth branch

is obtained as Φl(s|cl) = E[exp[svH
l qvl]] = exp

(

s|cl|2gl

)

/det(I2 − sqPn,l), where gl = e>[(sq)−1 −
Pn,l]

−1e.

Conditioned on c, vH
l qvl (for l = 1, . . . , L) are mutually independent variables, and therefore

Φ(s|c) =
L
∏

l=1

Φl(s|cl) =
exp

(

s
∑L

l=1 |cl|2gl

)

∏L
l=1 det(I2 − sqPn,l)

. (12)

Next, we shall average Φ(s|c) over the distribution of c [23], [18]. By using (3), the average MGF for the

amplitude DV D̃a over correlated Nakagami channels is given by

ΦD̃a
(s) =

det(IL − sdiag[g1, . . . , gL]M/m)−m

∏L
l=1 det(I2 − sqPn,l)

, (13)

where diag[g1, . . . , gL] is a diagonal matrix that is formed by setting elements g1, . . . , gL on its main diagonal.

Similarly, by using (2), the MGF for D̃a over Nakagami channels with independent but non-identically

distributed (i.n.d.) branches can be obtained as

ΦD̃a
(s) =

∏L
l=1(1 − sglγ̄l/ml)

−ml

∏L
l=1 det(I2 − sqPn,l)

. (14)

C. Cumulative Distribution Function (CDF) of the Amplitude DV

Once the MGF expressions for D̃a over general Rician and Nakagami fading channels are derived, the

cdf Pr(D̃a < 0) can be evaluated by the inverse Laplace integral,

Pr(D̃a < 0) =
1

2π
Re
(
∫ c+j∞

c−j∞

ΦD̃a
(−s)

js
ds

)

, (15)
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where c is a small real constant in the convergence region. Let s = s0 + jω and ω = s0 tan(φ/2), where

s0 is the saddle point of ΦD̃a
(−s)
s , which can be computed recursively by Newton’s method [24]. Equation

(15) can be evaluated by a GCQ formula [20],

Pr(D̃a < 0) =
1

2N̂

N̂
∑

n=1

Φ̂

(

(2n − 1)

2N̂
π

)

+ R̂N̂ , (16)

where Φ̂(θ) = ΦD̃a
(−s0 − js0 tan(θ/2))(1 − j tan(θ/2)), and R̂N̂ is a residual term which vanishes for

N̂ → ∞. Finally, we note that the amplitude error probability result proposed in this section, when specialized

to the DAPSK (2,8) and the independent Rayleigh fading case, is equivalent to those given in [9], [12].

However, our result is applicable to more general fading channels, and to DAPSK (N,M) with different

N ’s and M ’s.

IV. PERFORMANCE OF PHASE DETECTION

The phase detection error probability can be determined by the joint distribution of the real part DR and

imaginary part DI of the DV Dp at the receiver output given by (4), as shown by

DR =
1

2
(Dp + D∗

p) = vHQRv and DI = −1

2
j(Dp − D∗

p) = vHQIv,

where QR =





0L×L 0.5IL

0.5IL 0L×L



, QI =





0L×L −0.5jIL

0.5jIL 0L×L



, and v = [x>(i − 1),x>(i)]>. The phase of

Dp is denoted by ∆θp, and we define its cdf as F (θ) = Pr(−π/2 < ∆θp ≤ θ). Note that since v is a

function of the transmitted signal amplitudes
√

γβn1 and
√

γβn2 , and so are DR and DI . For convenience,

we define

xR = DR = vHQRv and xI(θ) = DI − tan(θ)DR = vH[QI − tan(θ)QR]v,

which allows us to express the phase cdf as [25]

F (θ) =







Pr(xR > 0, xI(θ) ≤ 0) θ ∈ [−π/2, π/2)

Pr(xR > 0) + Pr(xR < 0, xI(θ) > 0) θ ∈ [π/2, 3π/2)
. (17)

To evaluate F (θ), we define the joint MGF for xR and xI(θ) as

Φ(s1, s2) = E[exp(s1xR + s2xI(θ))] = E[exp(vHQ(s1, s2)v)], (18)

where Q(s1, s2) = s1QR + s2[QI − tan(θ)QR]. For Rician fading channels, the joint MGF is thus

Φ(s1, s2) =
exp(µH

vF(s1, s2)µv)

det(I2L −Q(s1, s2)Pv)
, (19)

where F(s1, s2) = ([Q(s1, s2)]
−1 −Pv)

−1, and Pv and µv are given by (9) and (10), respectively.
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For Nakagami fading channels, with the assumption that ∆θ(i) = ej2∆mπ, the complex variable

vHQ(s1, s2)v can be rewritten as vHQ(s1, s2)v =
∑L

l=1 vH
l q(s1, s2)vl, where vl = [cl

√
γβn1ej2m1π +

nl(i − 1), cl
√

γβn2ej2(m1+∆m)π + nl(i)]
>, and q(s1, s2) = 0.5

[

0 s1 − s2[j + tan(θ)]

s1 + s2[j − tan(θ)] 0

]

.

Assuming spatially uncorrelated noise and using a procedure similar to that for obtaining the MGF for

the amplitude detection, we can derive the joint MGF expression for the phase detection DVs in correlated

Nakagami channels as3

Φ(s1, s2) =
det(IL − diag[g1(s1, s2), . . . , gL(s1, s2)]M/m)−m

∏L
l=1 det(I2 − q(s1, s2)Pn,l)

, (20)

where gl(s1, s2) = e>[[q(s1, s2)]
−1 − Pn,l]

−1e, and e = [
√

γβn1 ,
√

γβn2ej2∆mπ]>. Similarly, by using (2),

the joint MGF for i.n.d Nakagami diversity channels can be obtained as

ΦD̃p
(s) =

∏L
l=1(1 − gl(s1, s2)γ̄l/ml)

−ml

∏L
l=1 det(I2 − sq(s1, s2)Pn,l)

. (21)

Next, the joint cdf for Pr(xR, xI(θ)) can be evaluated by a GCQ formula as

Pr(xR > 0, xI(θ) > 0) =
1

8N1 N2

N1
∑

n1=1

N2
∑

n2=1

[

Φ̃

(

(2n1 − 1)π

2N1
,
(2n2 − 1)π

2N2

)

+Φ̃

(

(2n1 − 1)π

2N1
,−(2n2 − 1)π

2N2

)]

+ R̃N1,N2
, (22)

where Φ̃(θ1, θ2) = Φ[c1 + jc1 tan(θ1/2), c2 + jc2 tan(θ2/2)][1 − j tan(θ1/2)][1 − j tan(θ2/2)], R̃N1,N2
is

a remainder term which vanishes as N1 and N2 increase, and c1 and c2 are the saddle points of Φ(s1, s2)

with respect to s1 and s2, respectively. The numerical search for c1 and c2 can be implemented by the 2-D

Newton’s method as discussed in [25].

Then the correct symbol decision probability can be expressed in terms of F (θ) given in (17), as shown by

P c
s,M (αm|n1, n2) = F (αm+π/M |n1, n2)−F (αm−π/M |n1, n2), where αm = 2π∆m/M is the transmitted

information phase. Thus, the conditional SEP is given by Ps,M(αm|n1, n2) = 1−P c
s,M(αm|n1, n2), and the

average SEP for phase detection is equal to

P̄s,M =
1

MN2

M
∑

m=1

N
∑

n1=1

N
∑

n2=1

Ps,M (αm|n1, n2). (23)

The exact BEP expression for phase detection applicable to arbitrary bit-mapping schemes is

P̄b,M =
(MN)−2

log2 M

∑

∆m̂ 6=∆m

∑

n1,n2

wp(∆m,∆m̂)[F (2π(∆ ˆ̂m + 0.5)/M) − F (2π(∆ ˆ̂m − 0.5)/M)], (24)

where ∆ ˆ̂m = (∆m̂ − ∆m) mod M , and wp(∆m,∆m̂) is the weighting factor determined by the phase

3When the noise in all the branches is also temporally uncorrelated, the MGF is identical for different ∆θ(i), thus we can assume
∆m = 0 without loss of generality. However, for the temporally correlated noise, we have to average the result over all {∆m}.
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bit-mapping scheme. For example, for Gray-coded M -phase signalling with M = 8 and 16, wp(∆m,∆m̂)

can be obtained using the results in [26], [15], [25]. Assuming Gray-coding, by using (24) the exact BEP

expressions for M = 8 and 16 are, respectively, given by [15], [25]

P̄b,8 = 2/3(1 − [F (3π/8) − F (−π/8)]), (25)

P̄b,16 =
1

2

[

F

(

17

16
π

)

− F

(

1

16
π

)

+ F

(

15

16
π

)

+ F

(

13

16
π

)

− F

(

9

16
π

)

− F

(

3

16
π

)]

, (26)

where, again, the dependence of F (θ) on n1 and n2 has been suppressed for the sake of brevity. Certainly,

(25) and (26) have to be averaged over n1 and n2. After having derived the performance of the DAPSK EGC

receiver without CSI, we consider some maximum-likelihood (ML) detection schemes for Rician channels

(without CSI) based on two-symbol observations, which provide a performance upper bound for non-coherent

detection of DAPSK.

V. MAXIMUM LIKELIHOOD DETECTION FOR RICIAN CHANNELS

A. Generalized Rician Fading Channels

We derive the maximum-likelihood (ML) detector for DAPSK signals over general Rician fading channels.

The task is to find the ML estimate of b(i) based on the observation of vector v = [x>(i−1),x>(i)]>, where

x(i) is defined in (1). The log-likelihood function for v over general Rician fading channels is given by

ln fv(v) = −(v − µv)
HP−1

v (v − µv) − ln[det(πLPv)], (27)

where Pv and µv are given by (9) and (10), respectively. The ML estimate for b(i) is given by

b̂(i) = argmin
b(i)

{ min
d(i−1)

{J1(d(i − 1), b(i))}}, (28)

where J1(d(i − 1), b(i)) is the decision metric given by

J1(d(i − 1), b(i)) = (v − µv)
HP−1

v (v − µv) + ln[det(Pv)]. (29)

We refer to the detector based on (28) as the ideal ML detector. The optimization in (28) requires the

calculation of matrix product and the inversion of the 2L× 2L matrix Pv , and thus entails a complexity of

O(L3). Further, (28) requires minimization with respect to both d(i− 1) and b(i), and thus it entails a total

complexity of O(N 2M2L3).

B. Independent Rician Channels

In the case of independent diversity branches and white noise, Σ(0) and Σ(1) are both diagonal matrices,

and also Rn(0) = σ2
nIL, and Rn(1) = 0L×L. The decision metric J1(d(i − 1), b(i)) can be simplified
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considerably. The joint pdf of v conditioned on d(i − 1) and b(i) can be expressed as

fv(v|d(i − 1), b(i)) =

L
∏

l=1

fxl(i)[xl(i)|xl(i − 1), d(i − 1), b(i)]fxl(i−1)[xl(i − 1)|d(i − 1)], (30)

where we used the fact that fxl(i)[xl(i − 1)|d(i − 1), b(i)] = fxl(i−1)[xl(i − 1)|d(i − 1)]. Also in (30),

fxl(i)[xl(i)|xl(i − 1), d(i − 1), b(i)] =
1

πω2,l
exp

(

−|xl(i) − ω1,l|2
ω2,l

)

, (31)

fxl(i−1)[xl(i − 1)|d(i − 1)] =
1

πω3,l
exp

(

−|xl(i − 1) − µc,ld(i − 1)|2
ω3,l

)

. (32)

In (31) and (32), for the lth branch the parameters ω1,l, ω2,l, and ω3,l are, respectively, given by

ω1,l = µc,ld(i) +
ρt,lγf,l|d(i − 1)|2b(i)[xl(i − 1) − µc,ld(i − 1)]

(1 + γf,l|d(i − 1)|2) ,

ω2,l = σ2
n

[

1 + γf,l(1 + |b(i)|2)|d(i − 1)|2 + (1 − ρ2
t,l)|γf,l|2|d(i − 1)|4|b(i)|2

1 + γf,l|d(i − 1)|2

]

,

ω3,l = [1 + γf,l|d(i − 1)|2]σ2
n,

where ρt,l = E[(cl(i)−µc,l)(cl(i− 1)−µc,l)
∗]/[Σ(0)]l,l is the temporal fading correlation coefficient at the

lth branch. Also, γf,l = [Σ(0)]l,l/σ
2
n is the average SNR for the diffuse fading component.

Thus, we can get a new decision metric as

J2(d(i − 1), b(i)) =

L
∑

l=1

[ |xl(i) − ω1,l|2
ω2,l

+
|xl(i − 1) − µc,ld(i − 1)|2

ω3,l
+ ln(ω2,lω3,l)

]

. (33)

The ML estimate for b(i) can be obtained by using an operation similar to that used in (28) by replacing

J1(d(i − 1), b(i)) with J2(d(i − 1), b(i)). We refer to the ML detector based on J2(d(i − 1), b(i)) as the

simplified ML (SML) detector in this paper. The equivalence of the ML and the SML detectors in independent

Rician fading channels is verified by our simulations. However, the SML detector still involves a multi-

dimensional minimization with a complexity of O(N 2M2L). We note that for Rayleigh fading channels,

(i.e. µc = 0L×1), the decision metric J2(d(i − 1), b(i)) reduces to that presented in [1], if we re-define the

noise power to σ2
n = 1. For Rayleigh fading channels, the phase of d(i− 1) is not required for the decision

metric, and the minimization of J2(d(i − 1), b(i)) involves a complexity of O(NM 2L).

C. Asymptotic ML detector

To further simplify the decision metrics for independent Rician fading channels, as in [1], we assume

high SNR (γf,l � 1) and small Doppler bandwidth (ρt,l ' 1). Thus, we get

ω1,l ' µc,lb(i)d(i − 1) + b(i)[xl(i − 1) − µc,ld(i − 1)] = b(i)xl(i − 1), (34)

ω2,1 ' σ2
n

(

1 + |b(i)|2
)

. (35)
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Also, in (33) the second term |xl(i−1)−µc,ld(i−1)|2

ω3,l
is a function of d(i− 1), but is independent of b(i). Since

only b(i) is the desired data symbol, the second term in (33) can be dropped.

With these approximations, the metric in (33) is simplified to

J3(b(i)) =
L
∑

l=1

[ |xl(i) − b(i)xl(i − 1)|2
σ2

n (1 + |b(i)|2) + ln
(

1 + |b(i)|2
)

]

. (36)

Obviously, J3(b(i)) is independent of d(i − 1). Let us re-write J3(b(i)) as J3(∆n,∆m), where b(i) =

β∆ne2j∆mπ/M , then the phase and amplitude decisions are given by

{∆n̂,∆m̂} = argmin
∆n,∆m

{J3(∆n,∆m)}. (37)

We call the resulting detector the asymptotic ML (AML) detector. We note that in (36) only the knowledge

of the ring ratio β and the average noise power σ2
n is required.4 The implementation of (37) involves a

complexity of O(NML). Actually (37) can be further simplified, because the phase decision for ∆m in

(37) is independent of the amplitude decision, and can be expressed as 5

∆m̂ = argmax
m

Re{Dpe
−j2πm/M}, (38)

where Dp is given by (4). Obviously the phase decision for the AML detector is equivalent to that of the

conventional EGC receiver. This result demonstrates that the product EGC detector for phase decision is

asymptotically optimum (for high SNR and slow fading) in independent Rician fading channels. Next, the

amplitude decision is given by ∆n̂ = argmin∆n{J3(∆n,∆m̂)}, where ∆m̂ is the decision output of (38).

The complexity of the resulting AML detector is O((N + M)L) for DAPSK (N,M).

D. BEP Union Bound

The BEP union upper bound is the weighted summation of the pair-wise error probability (PEP) associated

with the amplitude and phase detection. For clarity of the presentation, some symbols are defined below.

For the decision metric defined in (28), let b(i) = β∆nej2π∆m/M , d(i − 1) =
√

γβn1ej2πm1/M , and d(i) =
√

γβn1+∆nej2π(m1+∆m)/M , which correspond to the transmitted symbols. Also, in case a pair-wise error

event, we define b̂(i) = β∆n̂ej2π∆m̂/M , d̂(i−1) =
√

γβn̂1ej2πm̂1/M , and d̂(i) =
√

γβn̂1+∆n̂ej2π(m̂1+∆m̂)/M ,

which correspond to the symbol decisions (which may be erroneous) selected by the ML detector.

We note that in [1], a BEP union bound for the AML detector in an i.i.d Rayleigh fading channel was given,

but a bound for the ideal ML detector has not been derived. In [2], a union bound for disjoint amplitude and

phase detection of DAPSK with maximum ratio combining (MRC) and weighted MRC (WMRC) schemes

4We point out for the Rayleigh fading decision metric shown in (9) of [1] to be valid, the received signal must be re-scaled first
by a factor of 1/σn, so that the resulting noise variance is unity. Thus, the knowledge of the average noise power is also required
for implementation of (9) in [1].

5We note that this simplification has not been pointed out in [1] for DAPSK signal.
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was derived. These methods, however, are not applicable to the ideal ML detector in Rician fading channels.

For the ML detector given in (28) for generalized Rician fading, we propose to calculate the BEP union

bound as

Pu =
(NM)−2

log2(NM)

∑

d(i−1),b(i)

∑

d̂(i−1)

∑

b̂(i)

b̂(i)6=b(i)

[wp(∆m,∆m̂) + wa(∆n,∆n̂)]P2[b(i) → b̂(i)|d(i − 1), b(i)] (39)

where ∆n,∆n̂, ∆m, and ∆m̂ are the amplitude and phase changes determined by b(i) and b̂(i), and

wa(∆n,∆n̂) and wp(∆m,∆m̂) are the weighting factors discussed in Sections III and IV, respectively. In

(39), P2[b(i) → b̂(i)|d(i − 1), b(i)] is the PEP that conditioned on d(i − 1) the transmitted signal b(i) is

detected as b̂(i).

When the noise is white we can use the symmetry property of the signal phases and simplify the double

summation
∑

d(i−1),b(i), and (39) can be reduced to

Pu =
N−2

log2(NM)

∑

n1,∆n

∑

d̂(i−1)

∑

b̂(i)6=b(i)

[wp(∆m,∆m̂) + wa(∆n,∆n̂)]P2[b(i) → b̂(i)|d(i − 1), b(i)]. (40)

Next, we show how to evaluate the PEP P2[b(i) → b̂(i)|d(i−1), b(i)], which completes the evaluation of the

BEP union bound. It is obvious that P2[b(i) → b̂(i)|d(i−1), b(i)] = Pr{D(d(i−1), b(i), d̂(i−1), b̂(i)) < 0},

where D(d(i−1), b(i), d̂(i−1), b̂(i)) = J1(d̂(i−1), b̂(i))−J1(d(i−1), b(i)) is the DV, and we suppress the

argument of D below for conciseness. In the DV, J1(d(i−1), b(i)) = (v−µv)
HP−1

v (v−µv)+ln[det(Pv)] is

defined in (29), and J1(d̂(i−1), b̂(i)) = (v− µ̂v)
HP̂−1

v (v−µ̂v)+ln[det(P̂v)], where µ̂v =





µcd̂(i − 1)

µcd̂(i)



,

and P̂v =





Σ(0)γβ2n̂1 + Rn(0) ΣH(1)γβ2n̂1+∆n̂e−j2∆m̂π/M + RH
n(1)

Σ(1)γβ2n̂1+∆n̂ej2∆m̂π/M + Rn(1) Σ(0)γβ2n̂2 + Rn(0)



.

Using the fact that J1(d̂(i−1), b̂(i)) = [(v−µv)+(µv − µ̂v)]
HP̂−1

v [(v−µv)+(µv − µ̂v)]+ ln[det(P̂v)],

and after some manipulations, we can express the DV D as a quadratic form plus a constant term as D =

wHQ̃w + a, where a = ln[det(P̂v)] − ln[det(Pv)], w =





v − µv

µv − µ̂v



, and Q̃ =





P̂−1
v −P−1

v P̂−1
v

P̂−1
v P̂−1

v



.

To compute the PEP Pr(D < 0), we need to evaluate the MGF for D, which is

ΦD(s) =
exp(w̄H[Q̃−1s−1 −Pw]−1w̄ + sa)

det(I4L − sPwQ̃)
, (41)

where w̄ is the mean of w and is given by w̄ =





02L×1

µv − µ̂v



. Further, Pw is the covariance matrix of w

and Pw =





Pv 02L×2L

02L×2L 02L×2L



, where Pv is defined in (9). The PEP can be computed by using (15) and

(16) and replacing ΦD̃a
(s) with ΦD(s) given in (41).
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By using (41) and (39) [or (40)], the exact BEP union bound for the ML detector over generalized Rician

fading channels can be evaluated. We note that the PEP evaluation method proposed above is general and can

be used to evaluate the exact BEP union bound for many other detectors in generalized Rician fading, e.g.

the AML detector proposed in Section V-C, and the MRC and WMRC detectors proposed in [2]. However,

the derivation procedure is omitted here due to space limitations. For the union bound calculation in (39)

all combinations of d̂(i− 1) have to be taken into account, which is computationally quite expensive. If we

assume the knowledge of d(i− 1), which may be obtained by using decision feedback (e.g. see [10], [11]),

the computation in (28) can be reduced greatly by removing the minimization with respect to d(i−1). With

the knowledge of d(i − 1), the union bound in (39) is reduced to

Pu =
(NM)−2

log2(NM)

∑

d(i−1),b(i)

∑

b̂(i)6=b(i)

[wp(∆m,∆m̂) + wa(∆n,∆n̂)]P2[b(i) → b̂(i)|d(i − 1), b(i)], (42)

where in the PEP expression P2[b(i) → b̂(i)|d(i− 1), b(i)] we need to change J1(d̂(i− 1), b̂(i)) to J1(d(i−
1), b̂(i)) and modify µ̂v and P̂v accordingly.

Our simulation results given later show that the ML detector performs better than the EGC receiver,

especially in Rician fading with a high K factor. However, the ML detector requires accurate knowledge

of the channel statistics, and is computationally very expensive to implement. It is thus interesting to know

how much the performance of the DAPSK EGC receiver can be improved if CSI is available. This topic is

studied next.

VI. PERFORMANCE OF DAPSK WITH CSI

We derive the error probability of the DAPSK EGC receiver assuming CSI, which gives a performance

upper bound for DAPSK with decision feedback (DF) channel estimation and detection [10], [11] 6. In

the ideal case, instead of x(i − 1), the reference signal is given by xref(i) = c(i)d̂(i − 1), and we assume

d̂(i − 1) = d(i − 1)7. For Rician fading channels, assuming ∆θ(i) = 0, (9) is replaced by

Pv =





Σ(0)γβ2n1 Σ(0)γβn1+n2

Σ(0)γβn1+n2 Σ(0)γβ2n2 + Rn(0)



 , (43)

and µv = [µ>
c
√

γβn1 ,µ>
c
√

γβn2 ]>. For Nakagami fading channels, the amplitude DV is D̃a =
∑L

l=1 vH
l qvl,

where vl = [cl
√

γβn1 , cl
√

γβn2 + nl(i)]
>, and q =





−B2
∆n 0

0 1



. For correlated diversity branches, the

6In [27], the performance for APSK (2,8) (named as 16-star QAM therein) with coherent detection is studied. Note that the data
decision in [27] is based on polygonal decision boundaries in the two-dimensional signal plane, and is different from the coherent
detection of DAPSK studied in this section.

7Note that the effect of error propagation of the decision feedback symbols can be studied by using a Markov-chain steady-state
analysis, as shown in [28]. However, that is beyond of the scope of this paper.
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MGFs for the amplitude and phase detection are, respectively,

ΦD̃a
(s) =

det(IL − sdiag[g1, . . . , gL]M/m)−m

∏L
l=1 det(I2 − sqP′

n,l)
(44)

and Φ(s1, s2) =
det(IL − diag[g1(s1, s2), . . . , gL(s1, s2)]M/m)−m

∏L
l=1 det(I2 − q(s1, s2)P′

n,l)
, (45)

where P′
n,l is the correlation matrix for the vector [0, nl(i)]

>, given by P′
n,l =





0 0

0 σ2
l



. The result for

the i.n.d branches can be obtained by replacing Pn,l with P′
n,l in (14) and (21), respectively. By substituting

the results above into (11), (13), (19), and (20), the coherent detection (CD) error probability PCD for the

DAPSK EGC receiver with CSI over general Rician and Nakagami fading channels can be evaluated.

VII. SIMULATION AND NUMERICAL RESULTS

Some performance results for the DAPSK EGC receiver with and without CSI, and the ML detector in

fading channels are presented in this section.

A. Rician Fading Channels

An equal correlation model is assumed for the Rician fading case, e.g., Σ(0) =







1 ρc ρc

ρc 1 ρc

ρc ρc 1






for

L = 3. When ρc = 0, we have an independent fading channel model. With the assumptions that the

fading rates in different diversity branches are identical (i.e. Bf,l = Bf , l = 1, . . . , L, where Bf,l is the

fading bandwidth at the lth branch), and that the spatial and temporal correlations can be separated, we set

Σ(1) = ρtΣ(0), where ρt is the temporal fading correlation coefficient. We assume Clark’s fading spectrum,

that is, ρt = J0(2πBfT ), where J0(x) is the zeroth order Bessel function of the first kind, T is a symbol

period. The Rician factor K is assumed to be identical for all branches, and the LOS component vector µc

is assumed to be co-phased, i.e. all the elements of µc have the identical phases. Nevertheless, it should be

noted (see [29]) that the performance loss due to the spatial fading correlation would be less severe if µc was

not co-phased. We also assume the noise is spatially and temporally white. As in [1], we set Bn = βn−0.5

for n = −N + 1, . . . , N − 1, and our extensive numerical computations (not shown here) suggest that this

boundary setting is also near optimum for DAPSK with EGC in a large range of different parameters for

Rician and Nakagami fading channels. First, we present some simulation results for DAPSK (2, 8) with

independent-branch dual-diversity (L = 2) over a Rician fading channel with BfT = 0.02 in Fig. 2 (for

K = 5 dB) and Fig. 3 (for K = 10 dB), respectively. For the ML detector we use (28) with J1(d(i−1), b(i))

or (33). To reduce the simulation complexity we assume d(i − 1) is known to the receiver (which may be

obtained by using decision feedback of previous output symbols), and the minimization is with respect to
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(w.r.t.) b(i) only. The simulation results in Figs. 2 and 3 confirm the accuracy of our analytical results for

the conventional EGC detector with and without CSI. Also, the BEP union bound [computed by using eq.

(42)] for the ML detector becomes tighter when the average SNR increases and when the Rician K-factor

becomes larger (e.g 10 dB). The SNR gap between the EGC detector and the ML detector (both without

CSI) tends to increase for a larger K factor. On the other hand, the BEP of the EGC receiver with coherent

detection (CD) is substantially lower than that of the ML detector, e.g. around 1.9 dB improvement around

a BEP level of 10−3 for K = 5 dB.

Next, we present numerical results for the BEP performance of the DAPSK EGC receiver with different

ring ratios (1.1 − 3.0) for independent and correlated Rician fading channels. DAPSK (2, 8) and DAPSK

(4, 16) are considered in Figs. 4 and 5, respectively. The results show that the optimum ring ratio (yielding

the lowest BEP) for DAPSK (2,8) lies within the range of (1.8,2.2), and that for DAPSK (4,16) lies within

(1.4, 1.6), i.e., DAPSK (4,16) requires a smaller ring ratio than that of DAPSK (2,8). This is because the

BEP of DAPSK is in general influenced more by the innermost ring than the outer rings. For a given ring

ratio the radius of the innermost ring decreases when the number of rings N becomes larger. Therefore, the

optimum ring ratio for DAPSK(4,16) should be smaller than that for DAPSK(2,8), to avoid the excessive loss

of SNR in the innermost ring. The results also show that the BEP performance of DAPSK (4,16) exhibits a

larger variation than that of DAPSK (2,8) when β changes, i.e., DAPSK (4,16) is more sensitive to β than

DAPSK (2,8). This observation can be explained by the fact that DAPSK (4,16) has four possible amplitude

levels, and given the same symbol energy, its signal space decision regions are much smaller than those of

DAPSK (2,8), and thus its performance is more sensitive to the ring ratio. When the average SNR increases,

the optimum ring ratio tends to increase slightly. Therefore, for the following we set β = 2 for DAPSK

(2,8) and β = 1.4 for DAPSK (4,16).

The BEPs of DAPSK with conventional detection and CD, and that of square-QAM with CD (all with

EGC) are presented in Fig. 6 for L = 3 independent diversity branches. As expected, DAPSK with higher

level modulation (4,16) results in a poorer performance than with (2, 8). The performance of DAPSK (2,8)

with CD is close to that of 16-QAM. However, DAPSK (4, 16) performs quite poorly even with perfect

CSI.

B. Nakagami Fading Channels

Let us consider an uniform linear antenna array (with L = 3) operating in a slow Nakagami fading channel

(where BfT = 0). In particular, we consider a correlated channel with normalized power covariance matrix

[18] Rγ =







1 0.795 0.605

0.795 1 0.795

0.605 0.795 1






, and an i.i.d. channel with Rγ = IL. In Figs. 7 and 8, an independent

Nakagami fading channel with m = 0.7 and L = 3 is assumed. We show the influence of the ring ratio β

on the phase, amplitude, and average BEPs of the DAPSK EGC receiver in Fig. 7 for an SNR of 24 dB.
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It is observed that for both DAPSK (2,8) and (4,16), the phase detection BEP decreases monotonically as

β increases within the interval [1.1, 3]. This phenomenon can be explained by the fact that as the ring ratio

β increases, for a fixed SNR the smallest signal amplitude (signal points in the innermost rings) decreases,

which dominates the phase BEP performance. However, the amplitude detection BEP has a more intricate

relationship with β. For DAPSK (2,8) the amplitude BEP decreases monotonically as β increases; but for

DAPSK (4,16), the amplitude BEP has a minimum around β = 1.6. In fact, as β increases, the amplitude

ratio decision regions increase which tends to improve the performance; but the smallest signal amplitude

decreases, which tends to degrade the performance. This tradeoff causes the phenomenon observed for

DAPSK (4, 16). Next, we study the optimum β for the DAPSK EGC receiver in Fig. 8. The result shows

that as the SNR increases, the BEP becomes more sensitive to β. Also, β = 1.8 (for DAPSK (2,8)) and

β = 1.3 (for DAPSK (4,16)) give optimum performance for m = 0.7. (For results not shown here, we also

observe that as m increases, the optimum β tends to increase, e.g. when m = 2.5, β = 2 seems to be

optimum for DAPSK (2,8).)

Finally, we study the effect of correlated branches on the SEPs of DAPSK (2,8), APSK (2,8) (studied

in [27]), and 16 square-QAM in a Nakagami channel with m = 2.5 in Fig. 9. The result shows that the

performance of DAPSK (2,8) with CD is only slightly worse than that of APSK (2,8) at small SNRs, and

is almost identical to that of the latter for high SNRs. Both of them suffer an SNR loss of about 1.5 dB

w.r.t. 16-QAM for both independent and correlated fading at high SNRs, and show an SNR improvement

of about 2.5 dB w.r.t. the conventional detection of DAPSK.

VIII. CONCLUSIONS

In this paper, exact error probability formulas for DAPSK (N,M) over generalized Rician and Nakagami

fading channels were derived, taking into account the effects of different system and fading channel

parameters. Results on the effects of the different ring ratios, decision boundaries, and channel parameters

on the performance of the DAPSK EGC receiver have been presented. In comparison, the DAPSK (2,8)

constellation is significantly more efficient than DAPSK (4, 16) in the BEP sense. The conventional DAPSK

EGC detector may perform closely to (though worse than) the ML detector when both detectors have no

CSI. However, the EGC detector with CD (i.e. CSI) gives substantially better performance than the ML

detector without CSI, and performs very closely to the coherent APSK detector.
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TABLE I
GRAY-CODE BIT MAPPING FOR AMPLITUDE RATIO DETECTION AND WEIGHT FACTORS wa(∆n, ∆̂n) FOR DAPSK (N, M) WITH

N = 4, WHERE ∆ˆ̂n = (∆n̂ − ∆n) mod N .

∆n -3 -2 -1 0 1 2 3
bit-mapping 01 11 10 00 01 11 10

∆ˆ̂n 0 1 2 3
wa(∆n,∆n̂) 0 1 2 1

βn

Βn

Βn+1

βn+1

Fig. 1. The ideal amplitude ratios {βn} (rings in solid lines) and the decision boundaries {Bn} (rings in dashed lines) for the
DAPSK (N, M) signal , for n = −N + 1, . . . , N − 1. B

−N+1 = 0 and BN−1 = ∞.
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Fig. 2. BEP versus the average combined SNR per bit (in dB) for DAPSK (2,8) in an independent Rician fading channel, with
L = 2, K = 5 dB, and BfT = 0.02.
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Fig. 3. BEP versus the average combined SNR per bit (in dB) for DAPSK (2,8) in an independent Rician fading channel, with
L = 2, K = 10 dB, and BfT = 0.02.
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Fig. 4. BEP versus the ring ratio for DAPSK (2,8) in independent and correlated (ρc = 0.5) Rician fading channels, with L = 3,
K = 5 dB, and BfT = 0.02.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ring ratio

B
it 

er
ro

r p
ro

ba
bi

lit
y

Solid  lines: independent branches

Dashed lines: correlated branches

SNR = 14 dB
SNR = 24 dB
SNR = 34 dB
DAPSK (4,16), K = 5 dB, L=3

Fig. 5. BEP versus the ring ratio for DAPSK (4,16) in independent and correlated (ρc = 0.5) Rician fading channels, with L = 3,
K = 5 dB, and BfT = 0.02.
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Fig. 6. BEP versus the average combined SNR per bit for DAPSK (2, 8) and (4, 16), and square-QAM in an independent Rician
fading channel, with L = 3, K = 5 dB, and BfT = 0.02.
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Fig. 7. Phase, amplitude, and average BEPs versus the ring ratio for DAPSK (2, 8) and (4, 16) in an independent Nakagami fading
channel, with L = 3 and m = 0.7.
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Fig. 8. BEP versus the ring ratio for DAPSK (2, 8) and (4, 16) in an independent Nakagami fading channel, with L = 3 and
m = 0.7.
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Fig. 9. SEP versus the average combined SNR per bit for DAPSK (2, 8), APSK (2,8) (all with β = 2), and 16-QAM in independent
and correlated Nakagami fading channels, respectively, with L = 3 and m = 2.5.


