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Abstract

A very important class of queries in GIS applications is the class of K-nearest neighbor queries. Most of the
current studies on the K-nearest neighbor queries utilize spatial index structures and hence are based on the
Euclidean distances between the points. In real-world road networks, however, the shortest distance between two
points depends on the actual path connecting the points and cannot be computed accurately using one of the
Minkowski metrics. Thus, the Euclidean distance may not properly approximate the real distance. In this paper,
we apply an embedding technique to transform a road network to a high dimensional space in order to utilize
computationally simple Minkowski metrics for distance measurement. Subsequently, we extend our approach to
dynamically transform new points into the embedding space. Finally, we propose an efficient technique that can
find the actual shortest path between two points in the original road network using only the embedding space. Our
empirical experiments indicate that the Chessboard distance metric (L, ) in the embedding space preserves the
ordering of the distances between a point and its neighbors more precisely as compared to the Euclidean distance
in the original road network.
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1. Introduction

The K-nearest neighbor (KNN) queries are frequently issued in multidimensional spaces.
These queries ask for the K closest points to a query point with respect to some distance
function. The complexity of the selected distance function has direct impact on the
complexity of these queries. These distance functions are often computationally complex
because of either the nature of the function and/or the large number of dimensions. A road
network is a special case of 2-D spaces where the objects are points that are inter-
connected by roads and the dimensions specify the geographical coordinates (i.e., latitude
and longitude) of the points. An example KNN query for such networks is to find the K
closest gas stations to a specific location. Evaluating KNN queries for such networks is
computationally expensive because the distance is a function of the network paths
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connecting the points (e.g., shortest path between two points). Now consider an
application where the query point ¢g is moving (e.g., it is a car). In this case, the distance
function D from ¢ to the points of interest is to be computed very often and in real-time.
This renders the computation of complex distance functions impractical for real-time
KNN queries for moving objects.

The majority of the current research on different aspects of KNN queries are based on
utilizing different spatial index structures such as R-Tree or Quad-Tree. The use of index
structures for distance measurements implicitly implies the use of Euclidean distance
between the points. The first contribution of this paper is that it demonstrates that the
Euclidean metric is not a good distance approximation for road networks. Our experiments
with real-world data show approximately 40% false hits when Euclidean metric is used
and 100% recall is achieved. The experiments also show that even for lower percentages of
recall, in which Euclidean metric provides a perfect 100% precision, the results are highly
out of order.

Therefore, we propose a new approach for KNN queries in road networks that can
address both static and moving query points. Our approach, termed road network
embedding (RNE), is based on transforming a road network into a higher dimensional
space in which simpler distance functions can be utilized. In addition, we show that the
Chessboard distance metric in RNE provides a proper approximation of the actual
distances between the points. One drawback of RNE is that the embedding technique
requires an off-line pre-computation of the shortest paths between all the points in the
network. However, we show that for a high percentage of the points, the Chessboard
distance can be computed using only a subset of the dimensions. Hence, we introduce the
notion of truncated RNE, where the shortest paths from only a small percentage of the
points are computed off-line. Our experiments verify that while truncated RNE provides
an acceptable accuracy, it extensively reduces the space and computation complexity of
RNE.

Our proposed RNE approach is aimed for the KNN queries when the query points are
static. For moving query points, RNE must re-compute the embedding of all the original
points whenever the object moves (i.e., a new point is added to the original space). To
address this problem, we propose an extension to RNE, termed D-RNE, to dynamically
embed moving or new query points. Moreover, while RNE can find the nearest neighbor, it
cannot determine the actual path between that neighbor and the query point. Hence, we
propose a greedy-heuristic algorithm, termed SP-RNE, to find the actual path between the
points using only their transformations in RNE.

The remainder of this paper is organized as follows. In Section 2, we review the current
research on KNN problem. Section 3 discusses the problem of KNN in road networks and
briefly describes a naive solution based on pre-computation of all the distances off-line.
Section 4 provides a background on the embedding techniques. We describe our approach
for KNN queries by embedding the road networks into higher dimensional spaces, and
compare it with the naive pre-computation approach in Section 5. In Section 6, we propose
two techniques for dynamic embedding of moving objects and finding the shortest path
using the embedding space. We discuss our experimental results and future work in
Sections 7 and 8, respectively.
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2. Related work

Recently, many new techniques have been proposed for the KNN and range queries in two
and multi-dimensional spaces that can be adapted to road networks. They can be
categorized into two groups. The first group partitions the space by utilizing different
spatial or conventional index structures such as R-Tree [5] and its variants [2]. The second
group, graph-based, are based on pre-computation of the nearest neighbors, and then use of
index structures and/or Voronoi diagrams [6].

As examples of the first group, Roussopoulos et al. [9] propose branch-and-bound R-
tree traversal algorithm to find the nearest neighbor objects to a point, and then generalize
it to find the KNN. The main drawback of their algorithm is the depth-first traversal of the
index tree that incurs unnecessary disk accesses. Hjaltason and Samet [7] propose a
general incremental nearest neighbor algorithm that uses a priority queue on the index tree
to reduce disk accesses. Their algorithm is adapted to R-Tree and is suitable for distance
browsing queries but does not provide a substantial improvement in performance over the
current R-Tree based KNN algorithms. Tao et al. [11] propose query processing methods
that use R-Tree as the underlying data structure to address nearest neighbors for a query
point that is moving on a straight line segment. Song and Roussopoulos [10] propose
utilizing the information contained in the result sets of the previous sampled positions to
answer the new queries for KNN. By caching the results of the previous queries, their
algorithm provides a more efficient approach when the query points are moving. Their
algorithm also provides a better start point for traversing the R-Tree index as compared to
the pure static branch-and-bound algorithms. Ferhatosmanoglu et al. [4], introduce the
notion of constraint nearest neighbor queries, that are the NN queries with range
constraints. They propose an I/O optimized algorithm that is based on integration of the
constraints with the tree traversal NN technique discussed in Hjaltason and Samet [7]. The
use of index structures (e.g., R-Tree, Quad-Tree) for distance measurement implicitly
implies use of Euclidean distance between the objects. This may not necessarily be a good
approximation of the actual distance between objects in a road network where the distance
between two points depends on the actual path connecting the points and cannot be
computed accurately using one of the Minkowski metrics.

Yu et al. [12] propose partitioning the data in a high-dimensional space and selecting a
reference point for each partition. The data in each partition are transformed into a single
dimensional space based on their similarity with respect to a reference point, and KNN
queries are performed using 1-D range search on a BT-Tree index. The effectiveness of
this approach depends on how the data are partitioned. Berchtold et al. [1] propose
algorithm for similarity search in multimedia databases with large set of high-dimensional
points. They suggest precomputing the result of any nearest-neighbor search, that
corresponds to a computation of the Voronoi cell of each data point and storing the
Voronoi cells into an index structure. The nearest neighbor query is then equivalent to
finding the Voronoi diagram that contains the query point. Even though the Voronoi
diagram techniques are efficient for first nearest neighbor queries, their extension for the
KNN queries requires a priori knowledge of the value of K. The main drawback of the
techniques based on pre-computation of the shortest paths is that they lack efficient
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support for KNN queries when the distances corresponding to some of the data points
varies.

The proposed approach in this paper can be categorized in the second group and is based
on transforming the road networks into a higher dimensional space. The transformation
requires a pre-computation of the distances from all or a group of points to all other points.

3. Problem definition

Consider a set of n multidimensional objects S = (0;,0,,...,0,) and a function D that
specifies the distance between the objects. The KNN problem with respect to a query
point, ¢, is to find a set S’ =S of K objects with smallest distances to ¢, that is for any object
0o'eS and 0eS—S,D(0,q) < D(0o,q). The distance function D usually requires
expensive operations. For example, in a biological database that contain information
about protein molecules, a distance function performs complicated quadratic-time
structural comparisons to find the similar molecules.

In the context of road networks and moving objects, the original space contains 2-D
objects: intersections (original nodes) connected by some streets. The query points in such
spaces are usually moving objects (e.g., cars) traveling through the streets from a source to
a destination and the KNN problem is defined as finding the closest points of interest (e.g.,
hospitals, gas stations) to the moving objects. Some of the challenges in such scenarios
are:

e The distance function D between two original nodes in the road networks is usually
specified as the length of the path between the nodes with some minimum weight (e.g.,
time to travel along the path). These weights result in complex algorithms for
computation of distance functions (e.g., Dijkstra algorithm to find the minimum
weighted path in a network with complexity O(e + nlogn), where e and n are number
of edges and nodes in the network respectively).

e When the query point ¢ is a moving object, the distance function D from ¢ to the
points of interest is to be computed very often and in real-time. This renders the
computation of complex distance functions impractical for real-time KNN queries for
moving objects.

There are three different ways to address these challenges:

1. One approach is to approximate the complex distance function D with a simpler
distance function D’ in the same original space. For example, the shortest path
between two intersections in a road network can be approximated by their Euclidean
distance. The advantage of this approach is that the well studied spatial index
structures that are based on the Euclidean distance can be utilized to address regular
and constraint KNN queries. The disadvantage, however, is that the Euclidean
distance does not properly approximate the actual distance function in the road
networks.
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2. Another naive approach is the pre-computation of all shortest distance pairs during an
off-line process. Consider a road network S with n intersections and e roads. In this
approach, we pre-compute the shortest distances between all intersections of S and
store the distances into a database. Hence, this approach addresses the challenge of
real-time KNN queries by retrieving the distance between two points from the
database rather than computing it real-time. The space complexity of this approach is
O(n*) while the computation complexity is O(n(e + nlogn)).

3. We propose a third approach as to introduce a new multi-dimensional space with
simple distance functions D's (e.g., Minkowski distance metrics) that can either
precisely approximate the distances between the original nodes (i.e.,
D'(0',p") = D(o,p)), or at least preserve the ordering of the distances between the
original nodes (i.e., D(p,0) < D(p,q) = D'(p',0") < D'(p',q)).

In Section 5, we discuss our proposed approach to transform the road network into an
embedding space. We compare the pros and cons of approaches 2 and 3 in Section 5.2.

4. Background on embedding

In this section, we provide an overview of the space embedding techniques. Let (S, D) be a
finite metric space where S is a finite set of n objects and D : S * S—>R™ is a distance metric
over S. The embedding, or transformation, of a finite metric space (S,D) into a vector
space (R¥,D') is a mapping E : § — R* where k is the dimensionality of the vector space
and D’ is one of Minkowski L,, metrics in Rk:

k 1/p
Ly(x,y) = lz |Xi—yi|”] ; (1)

i=1

in which x; and y; are the ith coordinates of two points x,y in space respectively, and p is
the order of the Minkowski metric. The first order of the Minkowski metric, L;, is known
as Manhattan distance, the second order L, as Euclidian distance, and the infinite order
L., = max; |x; — y;| as Chessboard distance. The objective of embedding is to have a fast
and computationally simple D’ function such that D(x,y) = D'(E(x),E(y)). In other
words, the distance between two objects in the original metric space should be close
enough to the distance between their corresponding embedded points in the embedding
space. The quality of an embedding technique E is measured by distortion and stress.
Distortion specifies the maximum difference between distance functions D and D’ and is
equal to ¢; X ¢y(cq, ¢y > 1) when it is guaranteed that for an embedding technique E:

D(x,y)
€1

< D'(E(x),E(y)) < D(x,y) * s, (2)
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for all pairs of objects x, y € S. Stress represents the overall deviation in the distance and is
defined as:

Zoyes(D'(E(X), E(Y)) — D(xvy))z‘
Zx,yeSD(X’y)z

Stress =

(3)

The optimum D’ function generates zero stress, equivalent to no distortion (i.e.,
¢y = ¢, = 1). An embedding technique E is contractive when D'(E(x),E(y)) < D(x,y)
and proximity preserved when for all x, y and z in the original space, D(x,y) < D(x,z) can
be concluded from D' (E(x), E(y)) < D'(E(x),E(z)).

The embedding techniques are classified based on the properties of the original space
that they utilize [3]. Two main classes of embedding techniques are feature and distance
classes. For high dimensional original spaces that contain objects with N (N > 1)
attributes (i.e., N dimensional vector space) with one of the L,,s as their distance function,
feature class techniques are used for dimension reduction to generate embedding spaces
with N’ < N dimensions. When the distance function D between the objects in the original
space is not one of the L, metrics (e.g., similarity between protein molecules stored in a
database that requires complicated structural comparison or quadratic time sequence
matching techniques), distance class techniques that only utilize D(x, y) are used.

In Section 5, we describe how we transform a road network to an embedding space
using Lipschitz embedding technique.

5. Road network embedding (RNE)

A road network can be modeled as a weighted graph G = (V,E). Let |[V| = n be the
number of nodes in G (i.e., road intersections), |E| = m be the number of edges in G (i.e.,
roads), and W(e) be the weight of an edge e € E (e.g., length of a road). The distance d(u, v)
from node u to v is defined as the length of the minimum weighted path from u to v. We
assume that for arbitrary nodes u, v and w, G is undirected: d(u,v) = d(v,u), and W(e) is
defined such that the triangular inequality holds: d(u,v) < d(u,w) + d(w,v). Therefore,
the set of nodes in G with the distance function d generates a metric space (V,d). In this
space, d is symmetric, non-negative and obeys triangular inequality.

We propose to utilize Linial, London and Robinovich (LLR) [8] embedding technique
on road networks. LLR embedding technique is a contractive specialization of Lipschitz
embedding, in which an object in the original space is mapped to a point in a k-D vector
space. Consider space (S, D) in which D(x,y) is a distance function between the objects x
and y in S. Distance D is extended as follows: let S; be a subset of S and
D(x,S;) = min, s {D(x,y)}, that is, D(x, S;) is the distance from x to its closest neighbor
inS;.LetR = {S,,S,,...,S;} be asetof subsets of S. Lipschitz embedding with respect to
R is then defined as: E(x) = [D(x,S,),D(x,S,),...,D(x,S;)], which is a k-D point in a
vector space with each axis corresponding to a reference set in R. LLR embedding defines
R as a set of O(log’n) subsets of S: R={S,,,... Stsr2Sp1s---,Sp,} Where
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k = O(logn) and f = O(logn). Thus the original space is embedded into a O(log® n)
dimensional space. Each subset S;; is defined as a random subset of S with size 2!, This
means that the first x reference sets have two objects, the second x reference sets have
four, etc., until the last x reference sets that have approximately n/2 objects. The
embedding E(x) defined above for LLR has a distortion of O(logn) (i.e., ¢; =1 and
¢, = O(logn)). By using LLR technique, metric space (V,d) which represents the road
network is embedded into (%*,d’) in which k = O(log” n) and ' distance function is one
of the L, distance metrics over R as defined in equation 1. Hence each node v in the
original network is mapped to the point E(v) in O(log® n) dimensional embedding space:

E(V) = (ESH (V)v s 7ESI_~ (V)a ce 7ES,“ (V)v ce aES/;v,\ (V))a (4)

in which E (v) =d,S;)).

5.1. RNE: Making LLR practical

Although LLR is a good start for transformation of road networks, it needs some tweaking
to convert it to a practical approach.

e To reduce the computation complexity of RNE, we introduce the notion of truncated
embedding space as an embedding space where only the distance between the original
nodes and the first few reference sets are computed and considered as the attributes of
the embedded points. The intuition is as follows. As discussed in Section 5, the value
of the (i,/)th attribute of the embedded point E(x) is defined as the minimum distance
between the original node x and the (i,/)th reference set in R. We define A and B as
sets of subsets of S:

A:(Sl,la'“asl,lcv"' N )7 (5)

7P

B =(Syqs-esSysr-esSpiseesSp)s (6)

in which 1 <p < fand 1 < p’ < f. The sets A and B contain the first and last few
reference sets of R. Since the number of nodes in the reference sets of A are far less than
the number of nodes in the reference sets of B (e.g., sets with p = 1 contain 2 nodes
while the sets with p’ = f§ contain n/2 nodes), the distances between original nodes x
and y to the sets in A are probably greater than the distances to the sets in B. Hence, the
values of |E;;(x) — E;;(y)| that correspond to the reference sets in A are probably
greater than the values corresponding to the sets in B. This means that the first attributes
of the embedded points, and hence the first reference sets of R, are more effective than
the last attributes when the Chessboard metric is used. The results of our experiments
confirm this intuition.
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o The Chessboard metric can precisely approximate the actual distance between some
nodes (i.e., d = d). Consider the contrathive property of the LLR approach that
implies when (V,d) is embedded into (R1°¢"" L_):

d'(E(x),E(y)) = max;; |d(x,S;;) = d(y, ;)| < d(x,y). (7)

This means that when the Chessboard metric is used for distance measurement, d’ is
always less than or equal to d. The equality of d’ and d holds in the following two
cases:

1. When for some i,,S;;€R,x€S,; and x is the nearest node to y in S;;. Therefore
d(y,S;;) = d(y,x) and d(x,S;;) = 0. Hence |d(x,S;;) — d(y,S;;)| = d(x,y).

2. When for some i, j, S,»J- €R, the shortest path from x to its nearest node in S,»J-, say z,
passes through y. In this case z is also the nearest node to y in S;;. Therefore

d(x’ Si.j) - d(yvsi,j) = d<x7 Z) - d(y’ Z) = d(x7y)‘

For the original nodes that are close to each other, the Chessboard metric provides a
better approximation for the actual distance (d'~d). The intuition is as follows.
Consider two original nodes x, y that are very close to each other. Also suppose that the
Chessboard distance between x and y is computed using reference set S, ;€ S which as
stated above, is probably one of the first few reference sets of § with only a few nodes.
These assumptions imply that: (a) one node, z, in S; ; is probably the closest node to both
xand y, and (b) z is far from x and y. These resemble a triangle Axzy where the 1zy angle
is close to 0° and |d(x,z) — d(y,z)| ~d(x,y).

Note that in the computation of the Chessboard distance, different S, ;s are evaluated.
The combination of x, y and each §; ; resembles a different triangle, but the one that has
the minimum value for angle xzy, and hence leads to the maximum value for &', is
picked by the Chessboard metric. Also note that for the points that are far from each
other, the closest points from each § ijlox and y are probably different, and hence, the
distances from x and y to those points are independent from each other.

e LLR is not proximity preserved and cannot be used directly for nearest neighbor
search. However, our experiments with real-world road network show that in practice,
the distortion introduced by LLR is usually, smaller than the worst case O(logn).
Hence, when the small values of distortion are tolerable, LLR with Chessboard metric
L, for RNE can be used as a selective filter in a filter/refine search strategy.

5.2. Analysis

In this section, we compare RNE with the naive pre-computation approach discussed in
Section 3 in terms of precision, storage requirement, computation complexity and
functionality.
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5.2.1. Precision. As discussed in Section 3, the naive approach is based on pre-
computing the shortest path between all pairs of the original nodes. Hence this approach
provides a 100% precision when the distance between two original nodes are requested. In
contrast, RNE provides an approximation of the actual distance which in the worst case is
distorted by a factor of O(log ). Our experiments, however, show that for real world road
networks, distortion is usually far less than the worst case and hence RNE also provides
acceptable precision in practice.

5.2.2. Storage requirement. The space complexity of the pre-computation approach is
O(n?) since the shortest path between all pairs of n original nodes generate a symmetric
matrix with n* elements, equivalent to n>/2 tuples in a database. In contrast, each node in
RNE is mapped to only one point (i.e., n tuples in the database) with log® n dimensions,
requiring space complexity of O(n log2 n). The space complexity for truncated RNE is

5.2.3. Computation complexity. RNE uses the original distance function d (e.g.,
shortest traveling time in a road network) to compute the transformations of the original
nodes. This means that RNE is even more computationally complex than the pre-
computation approach. However, truncated RNE that only requires the shortest path
computation to a fraction of subsets of R, and hence to a fraction (O(+/n)) of the original
nodes, provides a better computation complexity: O(n?/n) as compared to O(n?) for the
pre-computation approach (when the Dijkstra’s algorithm is used).

5.2.4. Functionality. RNE is complementary to the current research on different
aspects of the KNN problem and embedding techniques. For example, caching techniques
for querying KNN of moving objects that are based on Euclidean distance and R-Tree
index structure can be adapted to be used in the embedding space by using Chessboard
distance and X-Tree [2] index structure. In contrast, the pre-computation approach only
keeps the distances between all pairs of the original nodes and hence no index structure
can be utilized to explore the geometry feature of the nodes.

6. RNE extensions

The RNE approach discussed in Section 5 is not aimed to address the points that
dynamically change location and hence their distances to other points varies (e.g., moving
query points or new points of interest), nor can it identify the actual path between the
points. In this section, we propose two extensions to RNE in order to: (a) dynamically
embed moving objects, and (b) find the actual path between two points in the original
space using their transformations in the embedding space.

6.1 Dynamic RNE (D-RNE)

In the road network embedding approach discussed so far, we assumed that the query
points and the points of interest are subsets of the original points (i.e., intersections) and
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are embedded off-line. This is not a realistic assumption since the query points are often
moving objects and the location of the points of interest are usually between intersections
and may not even be predetermined. With the current embedding techniques, insertion of a
new set of points into the original space leads to the recomputation of the transformations
of all original points in the initial original space. This renders these techniques impractical
for the problem of finding KNN in a road network when the query points and the points of
interest have dynamic locations. Hence an online embedding technique is required to
embed these points as their locations change.

We propose an extension to the transformation technique discussed in Section 5 to
embed the query points real-time. Our technique utilizes two features:

1. The query points and points of interest in a road network are always on the paths
between the original nodes, meaning that insertion of these points into the original
space does not introduce new edges into the original graph and does not change the
distances between the original nodes.

2. The probability of using those subsets of S that have fewer number of nodes is higher
with the Chessboard metric L, as the distance measure (as discussed in Section 5.1).

Consider figure 1 where the query point Q is on the path between the directly connected
original nodes P; and P;. From feature 1, we can conclude that if the query point Q was
initially in the original space, the distance between Q and S, the (a, b)th dimension of
E(Q), would be calculated as:

ESH_,, (Q) = D(Q7 Sa,h) = 1’1’111’1(D(Q7P1) + D(Pi7 Sa,b)’D(Qij) + D(Pj7 Sa,b))' (8)

Insertion of Q after the original nodes are embedded may change some of the subsets of
S, With a probability of 2¢/n. This probability is negligible for the road networks with
large number of original nodes (n > 1) and the subsets S, , with a very few nodes (a % 1).
This means that inclusion of Q into the original space would not have changed the subsets

Reference set S,

D(P;, 8. D(Pj, Su)

D(Q, P)

D(Q, P)

F; Q P;

Figure I. Dynamic embedding of moving query point Q with D-RNE.
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of S that have a few nodes, but may have changed the subsets that contain large number of
nodes (i.e., @ > 1), which in turn may lead to changes in the values of (a, b)th dimensions
of the embedded points. But feature 2 indicates that these dimensions are not effective
when the Chessboard metric is used for distance measurements. We conclude that despite
possible changes in the embedding of the original nodes when a new node is inserted into
the original space, the Chessboard distances between the embedded points still remain the
same. Hence we generalize equation 8 to calculate all dimensions of E(Q). The results of
our experiments confirm that even more than one point can be dynamically and precisely
embedded using our technique.

6.2. Shortest path in RNE (SP-RNE)

While the embedding techniques are intended to approximate the actual complex distance
functions with simpler functions, they are not aimed to find the shortest path between the
nodes in a road network. In this section, we propose a greedy-heuristic algorithm to find
the shortest path between two points in the original space using only the distances between
their transformations in the embedding space. Consider the query point Q and point of
interest / in figure 2 and suppose that Q is only connected to points P, P,,...,P;. The
intuition of our algorithm is that for a perfect embedding function FE that
D(x,y) = D'(E(x),E(y)) for all x,yeS, if the shortest path from Q to I passes through
points py,p,,...,p;, then the shortest path from E(Q) to E(I) passes through
E(p,),E(p,),-..,E(p;) and vice versa. We assume that for an embedding function with
distortion, the probability that the shortest path from E(Q) to E(I) does not pass through
E(p,),E(p,),...,E(p;) is proportional to the distortion: the higher the distortion, the
higher the possibility that the shortest path from E(Q) to E(I) goes through different points

Q.

DRI . D, :)

. D@P) B

Figure 2. Shortest path estimation with SP-RNE.
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FindPath ( Node @, Node I) {
Path= {0}
While(Q#1) {
Q= FindNextNode(Q, I, Path)
Path=Path v {Q} }
Path=Path U {1}
Return Path }

FindNextNode( Node Q, Node I, Nodes Already Visited) |
Find P;, F;e Neighbors(Q) such that:
For (All P;, P; e Neighbors(Q)
and P; & Already Visited)
D'(E(Q), E(P))+D'(E(P), E(l)) <
D(E(Q), E(P))+D'(E(P), E(I))
Return P; }

Figure 3. Algorithm for shortest path computation in RNE.

than the shortest path from Q to /. Our proposed algorithm for finding the shortest path
from Q to [ is shown in figure 3.

The algorithm tries to find the global optimum solution by searching through the local
optimums. In the first step, a point P; among all directly connected neighbors of the query
point Q is found such that the length of the path from the transformations of Q to P; to / is
minimum among all P;s. This point is selected as the next point in the shortest path from Q
to /, and is then considered as the next query point. The algorithm continues on the next
query points until it reaches a point that is directly connected to . In order to avoid cycles,
in each step of the algorithm we disregard the neighbors that are already selected as part of
the shortest path.

The complexity of the algorithm is related to the length of the diameter of the network:
the longest path between any two points in the network when W(e) = 1 for all e. The
upper-bound of the complexity is O(n), when the shortest path from Q to [ contains all
other points in the network (e.g., when Q and [ are two ends of a line with other points in
between). In a real world road network that nodes have a degree of 4 or less, the
complexity of the algorithm is far less. For example, the average complexity of the
algorithm for a Manhattan network is O(y/n).

7. Performance evaluation

We conducted several experiments to: (1) compare the precision of different Minkowski
metrics for distance measurement in the embedding space discussed in Section 4, (2) study
the impact of K and density of the points of interest on the performance of the RNE
approach, and (3) study the accuracy of D-RNE approach and SP-RNE technique
discussed in Section 6.

For our experiments, we used a real data set for Kuwait obtained from NavTech
Company. The data covers a rectangular area with corner points latitude and longitude
(47.51,29.06) and (48.44,29.60) and contains 117,000 road segments, that constitute a
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graph with approximately 50,000 nodes. Different features in that area were also used as
points of interest with different densities (density of the points of interest is defined as the
number of points of interest over the number of original nodes). For example, parks,
educational institutes, restaurants and signs represented different sets of points of interest
with density = 0.5%, 1.5%, 2.5% and 10% respectively. In our experiments, we randomly
selected 5% of the original nodes as the query points, performed the KNN query for each
point using different approaches/distance metrics, measured the results by precision-recall
and longest common subsequence metrics as compared to the correct result, and reported
the average numbers. The precision-recall was used to measure the accuracy while the
longest common subsequence was used to measure how precisely each approach/metric
preserves the ordering in the result sets.

In our first set of experiments, we investigated how precisely different metrics for
distance (i.e., Chessboard, Euclidean and Manhattan) in the embedding space approximate
the real distance in the original space, by finding the KNN of the query points when the
density of the points of interest varies. Figure 4 depicts the precision of these metrics when
K =5 and 100% recall is achieved (i.e., when all the correct nearest neighbors are found).
Our experiments for other values of K show similar trends. As shown in the figure,
precision of the Chessboard metric in the embedding space increases up to 98% as the
density grows. In contrast, Euclidean metric in the original space behaves independent
from the density and provides an almost constant precision of 60% to 70%. This means
that when the Euclidean distance is used in the original space to find the KNN of a query
point, 40% of the result set are false hits. The figure suggests a threshold value for the
density of the points of interest, 0.5% for our data set, that can be used in a query optimizer
to utilize either the Euclidean metric in the original space or the Chessboard metric in the
embedding space for distance measurement. The figure also shows that the Chessboard
metric always outperforms Manhattan and Euclidean metrics in the embedding space.
Hence, from now on, we focus on comparison between the Chessboard metric in the
embedding space and the Euclidean metric in the original space.

% os /
1~
2
&
2 0.6
e - -
204
=
2
3
£o02 7
0 . . . . . .
020%  0.40% 1% 2% 5% 10% 15%

Density of points of interest

== Embedding space~Chesshoard distance == Original space-Euclidean distance

-o~ Embedding space-Euclidean distance == Embedding space-Manhattan distance

Figure 4. Precision comparison of different distance metrics with K = 5.
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Figure 5. Precision-recall with K = 5.

Figure 5 depicts the precision-recall graph of the Chessboard metric in the embedding
space and the Euclidean metric in the original space. As shown in figure 5(a), Chessboard
metric provides a better performance as the density of the points of interest increases. This
is because the higher the density of the points of interest, the higher the possibility of the
first K of those points being closer to the query point, and hence less distortion (as
discussed in Section 5.1). In contrast, figure 5(b) shows that the performance of the
Euclidean metric in the original space slightly degrades as the density increases. The
intuition here is that when the points of interest are sparse, the neighbors are far enough
from the query point that even the Euclidean metric can preserve the ordering of the
distances. Comparison between figure 5(a) and 5(b) also shows that the Euclidean distance
in the original space provides a better precision as compared to the Chessboard metric in
the embedding space only when the points of interest are very sparse.

Figure 6(a) depicts how different approaches preserve order in the result set when K = 5
(results for other values of K have similar trends). The Y axis in the figure is the length of
the longest subset of the result set that has the same order as the actual result set. As shown
in the figure, the Chessboard metric in the embedding space always outperforms other
metrics/approaches and provides better ordering in the result set as the density of the
points of interest increases. In contrast, the ordering in only 40% to 60% of the results are
preserved when the Euclidean metric in the original space is used. This means that even for
lower percentage values of recall in which Euclidean metric provides a 100% precision
(figure 5(b)), the results are highly out of order. Since in certain applications, the mis-
ordering of some points in the result set (i.e., the neighbors with close distances from the
query point) may be tolerable, a relaxed measure can be used to compute the longest
common subsequence in the result sets. Figure 6(b) shows the results when we relaxed the
longest common subsequence measure by 10% (i.e., we neglected the mis-orderings
between the neighbors that have less than 10% difference in their distances from the query
point). As shown in the figure, this small relaxation of our measure leads to much better
order preservation in the result set of both Chessboard metric in the embedding space and
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Figure 6. Comparison of order preservation by different approaches with K = 5.

Euclidean metric in the original space. This means that the mis-orders introduced by both
metrics are mostly for the points that have very close values for their distances with the
query point.

Our next set of experiments were aimed to investigate the impact of K on the
performance of the different metrics. Figure 7 shows the results of the experiments for
K =5, 10 and 20 when the density of the points of interest is 1%. As shown in the figure,
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Figure 7. Precision-recall when K varies.
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both Chessboard and Euclidean distance metrics perform better for smaller values of K and
the performance of both decrease as the percentage of the recall increases. The reason is
that the higher values of recall are achieved when the points of interest that are further
from the query point are found. Higher values of K also introduce points of interest that are
further from the query point. As we discussed in Section 5.1, the points of interest that are
far from the query point contribute to more distortion and hence less precision.

In our next set of experiments, we synthetically generated 3,500 new nodes (7% of the
original nodes) in the original space to investigate the performance of D-RNE. Note that
the inclusion of the new nodes does not change the distances between the original nodes.
The results showed that the difference between the precisions when the synthetic nodes are
embedded off-line and when they are dynamically embedded in real-time using D-RNE
approach is always less than 0.8%. In our next set of experiments, we studied nodes.
Figure 8 shows that the difference between the precisions when the synthetic nodes are
embedded off-line and when they are dynamically embedded online using D-RNE
approach is negligible. We also studied the accuracy of the SP-RNE technique. Our
experiments showed that in 72% of the cases, the path between two nodes calculated by
SP-RNE matches the actual shortest path between them, and for the other 28% is on
average 11% longer.

Our final set of experiments were aimed to study the space requirements of pre-
computation, RNE and truncated RNE approaches. Table 1 shows the observations. As
shown in the table, 256 dimensions are required for the RNE, while the Chessboard
distance is computed for over 95% and 90% of the embedded points using only the first 70
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Figure 8. Comparison of RNE and D-RNE.
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Table 1. Complexity comparison of pre-computation, RNE and truncated RNE.

Approach Dimensions Shortest Paths Computed For Number of Tuples Required Space
Pre-Computation 50,000 nodes 1.25 billion 30GB
RNE 256 50,000 nodes 50,000 103MB
T-RNE, 95% acc. 70 672 nodes 50,000 28 MB
T-RNE, 90% acc. 40 160 nodes 50,000 16 MB

and 40 dimensions, respectively. The table also illustrates that the shortest path
computation in truncated RNE approaches are performed for far less number of nodes
as compared to the regular RNE and pre-computation approaches: 672 and 160 nodes
versus 50,000 nodes. Finally, the number of tuples generated and the total disk space
required by the pre-computation approach is extensively larger than those of the RNE
approaches.

8. Conclusion and future work

In this paper, we focused on the class of KNN queries for moving objects in road networks.
We showed that in road networks the Euclidean distance measure does not properly
preserve the order of the actual shortest distances between a query point and its neighbor
points, and hence is not an appropriate distance measure for KNN queries. Alternatively,
we proposed to apply an embedding technique to a road network (RNE) in order to convert
its points to a higher-dimensional space. Subsequently, we showed the effectiveness of the
Chessboard metric as the distance measure for the embedded points. Our experiments with
real data sets demonstrated that the Chessboard metric always outperforms other
Minkowski metrics in the embedding space. We also proposed two extensions to RNE.
First, we discussed our D-RNE algorithm to dynamically embed new points (e.g., moving
query points and new points of interest) into the embedding space. Second, we presented
SP-RNE to find the shortest path between points in the original road network using their
transformations in the embedding space.

We performed several experiments with real-world data sets to evaluate our techniques.
The major results can be summarized as follow:

e When the density of the points of interest increases, the precision of the Chessboard
metric in the embedding space improves, while the precision of the Euclidean metric
in the original space degrades. This suggests a threshold value for the density of the
points of interest that can be used in a query optimizer to utilize either the Euclidean
metric in the original space or the Chessboard metric in the embedding space.

e The Chessboard metric in the embedding space always preserves the ordering in the
result sets better than the Euclidean metric in the original space. The result sets of the
Euclidean distance are highly out of order even for low values of recall when the
precision is 100%.
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o The truncated RNE technique provides a much better space and computation
complexity as compared to the pre-computation approach.

e The precisions of the proposed D-RNE and SP-RNE techniques provide satisfactory
approximations for RNE and shortest path computations, respectively.

We plan to extend this study in three ways. First, we would like to study the impact of
utilizing Voronoi diagrams for the original space on the precision of the embedding
approach with KNN queries. Voronoi diagrams can be used to prune some of the
possible false hits from the result set. Second, we plan to modify the current Euclidean-
based caching techniques for KNN queries to work for the Chessboard metric in the
embedding space. Finally, we are planning to formalize the trade-offs between the
Euclidean metric in the original space and the Chessboard metric in the embedding
space in order to utilize these trade-offs within a query optimizer for choosing one
approach over the other.
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