
Application Scenarios in Streaming-Oriented
Embedded System Design

Stefan Valentin Gheorghita, Twan Basten and Henk Corporaal
EE Department, ES Group, Eindhoven University of Technology, The Netherlands

{s.v.gheorghita,a.a.basten,h.corporaal}@tue.nl

Abstract— In the past decade real-time embedded systems
became more and more complex and pervasive. From the user
perspective, these systems have stringent requirements regarding
size, performance and energy consumption, and due to business
competition, their time-to-market is a crucial factor. Therefore,
much work has been done in developing design methodologies
for embedded systems to cope with these tight requirements. In
this paper, we introduce the concept of application scenarios that
group operation modes of an application that are similar from the
resource usage perspective, and we describe how to incorporate
them in the overall real-time embedded system design process. A
case study shows the use of application scenarios for low energy
design, under both soft and hard real-time constraints.

I. INTRODUCTION

Embedded systems usually consist of processors that exe-
cute domain-specific programs. Much of their functionality is
implemented in software, which is running on one or multiple
generic processors, leaving only the high performance func-
tions implemented in hardware. Typical examples include TV
sets, cellular phones, MP3 players and printers. Most of these
systems are running multimedia and/or telecom applications,
like video and audio decoders. These applications are usually
implemented as a main loop, called the loop of interest,
that is executed over and over again, reading, processing and
writing out individual stream objects (see figure 1). A stream
object might be a bit belonging to a compressed bitstream
representing a coded video clip, a macro-block, a video frame,
or an audio sample. Usually, these applications have to deliver
a given throughput (number of objects per second), which
imposes a time constraint on each loop iteration.

The read part of the loop of interest takes a stream object
from the input stream and separates it into a header and
the object’s data. The processing part consists of several
kernels. For each stream object some of these kernels are
used, depending on the object type. The write part sends the
processed data to output devices, like a screen or speakers, and
saves the internal state of the application for further use (e.g. in
a video decoder, the previous decoded frame may be necessary
for decoding the current frame). The actions executed in a loop
iteration form an internal operation mode of the application.

In this work, we introduce ways of detecting and exploiting
a characteristic of the application that has not been fully used
in embedded system design previously, namely the different
internal operation modes, each with their own typical resource
consumption. Operation modes that are closely related to each
other from a resource consumption perspective are clustered
in so-called application scenarios, distinguishing operation
modes that are really different. If these scenarios are con-
sidered in different steps of the embedded system design, a

This work was supported by the Dutch Science Foundation, NWO, project
FAME, number 612.064.101.

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Read

object

Write

object

 header

internal state

data

Input bitstream:

header data …

stream object Processing path for

one type of object

header data

Fig. 1. Typical streaming application processing a stream object.

faster or lower energy implementation (e.g. by using different
source code optimizations per scenario), or a better estimation
of required resources (e.g. the number of computation cycles
or bandwidth) may be derived. These intermediate results lead
to a smaller, cheaper and more energy efficient system that can
deliver the required performance.

The paper is organized as follows. Section II presents
the role of application scenarios in an embedded system
design flow, illustrating the difference between them and the
well known use-case scenarios, and it provides examples of
scenario exploitation found in the literature. A classification
of application scenarios is given in section III. A case study
showing how we reduced the energy consumption of a single
task system under both hard and soft real-time constraints is
presented in section IV. Some conclusions are discussed in
the last section.

II. SCENARIOS IN DESIGN

A. Use-case vs. Application Scenarios
Scenario-based design has been in use for a long time in

different areas [1], [2], like human-computer interaction or
object oriented software engineering. In these cases, scenarios
concretely describe, in an early phase of the development
process, the use of a future system. Moreover, they appear
like narrative descriptions of envisioned usage episodes, or
like unified modeling language (UML) use-case diagrams that
enumerate, from a functional and timing point of view, all
possible user actions and system reactions that are required
to meet a proposed system functionality. These scenarios are
called use-case scenarios, and characterize the system from
the user perspective. In the embedded systems area, they were
used in both hardware [3], [4] and software design [5].

In this work, we concentrate on a different kind of scenarios,
so-called application scenarios, that characterize the system
from the resource usage perspective.
Definition: An application scenario is a detectable set of op-
eration modes of an application that are sufficiently similar in
a multi-dimensional resource-based cost space (e.g. execution
cycles, memory usage, source code).

The cost space is defined over the dimensions of interest
for a specific problem. For example, we might be interested

Product

Idea

1 2 3

Application Code

1 2 3

Final

System

Manual Definition

Semi-automatic Extraction

Use-case

scenarios

Application

Scenarios

Design

Design

(a) Full design flow

Operation Mode

Identification &

Characterization

Operation Mode

Clustering
Application

Graph

Operation

modes
Application

Scenarios

2. Scenario

Predictor / Detector

Derivation

1. Scenario Discovery

Application

Scenarios +

Predictor

3. Scenario

Exploitation
Final

System

(b) Application scenario usage methodology

Fig. 2. A scenario based design flow for embedded systems.

in operation modes that share the same source code, or that
execute in the same number of CPU cycles. To be exploited,
these modes must be detectable in the application, preferably
as soon as the application starts to execute in one of them. As
the definition is very general, it is commonly tailored to the
specific design problem at hand (e.g. the application behavior
for a specific type of input data [6]).

Figure 2(a) depicts a design flow using scenarios. It starts
from a product idea, for which the stakeholders define the
future utilization as use-case scenarios. They are used in
a user-centric development process to design an embedded
system that includes both software and hardware components.
In order to optimize the design of the system, we suggest to
augment this trajectory with application scenarios (the bottom
gray box in figure 2(a)). Once the application is coded, its
scenarios related to resources utilization are extracted in a
semi-automatic way, and they are considered for the decisions
made during the following phases of the system design. The
sets of use-case scenarios and application scenarios are not
necessarily disjoint. One or more use-case scenarios may be
merged in one application scenario, a use-case scenario may be
split into several application scenarios, or several application
scenarios may intersect several use-case scenarios.
Example: We want to design a portable MP3 player as a USB
stick. At first sight, there are two main use-case scenarios: (i)
the player is connected to the computer and music files are
transferred between them, and (ii) the player is used to listen
music. These scenarios can be divided in more detailed use-
case scenarios, like, for the second one, song selection, play
or fast forward scenarios. Let us consider the play scenario.
From the software point of view, this use-case can be split
in two different application scenarios: (i) mono mode and (ii)
stereo mode. If these scenarios are used during the design,
the system battery lifetime may be increased, as in case of
playing in mono mode a lower computation power is needed,
thus a lower supply voltage may be used to meet the timing
constraints of the decoding.

B. Application Scenario Usage Methodology

The methodology to introduce application scenarios into
the current embedded system design trajectory consists of
three steps depicted in figure 2(b): (1) discovery, (2) predic-
tor/detector derivation and (3) exploitation.

1: Scenario discovery starts from the original application
and identifies its different operation modes. Their resource

usage (in the cost space of interest) is characterized, and the
modes with similar needs are clustered in an application sce-
nario. The methods used for scenario discovery can be divided
in three categories: (i) analytical, (ii) profiling and (iii) hybrid.
Independent of the method, the set of the identified application
scenarios must cover all possible application operation modes.

In an analytical method, the application structure is stat-
ically analyzed to identify similar operation modes. This
method is restrictive, as it can not automatically collect
information about how the application is really used and
how it behaves at runtime (e.g. which is the most frequently
used scenario at runtime). The real runtime behavior of the
application can be captured using a profiling method, but in
this case it is more difficult to derive scenario predictors than
it is in the analytical case, and in general not all scenarios may
be discovered as not all possible distinct operation modes may
be covered by profiling. To overcome this problem, an extra
scenario, called the backup scenario, must be considered. It
is selected at runtime when the application is running in an
operation mode that did not appear during profiling. A hybrid
method combines the advantages of the previous two methods
and it is the most powerful way to discover scenarios.

Especially for profiling and hybrid methods, an explosion
in the number of operation modes may appear during their
identification. In this case, decisions must be made using
partial information, applying mode identification and cluster-
ing simultaneously. There is a trade-off between how many
different scenarios and modes may be handled during the
discovery process (from which the process speed and memory
usage are derived) and the resulting quality. Discovery and
clustering may be performed in a bottom-up approach, but
also in a top-down refinement based approach.

2: Runtime scenario detector and/or predictor derivation is
the step of finding a way to determine in which scenario the
application runs at a certain moment in time. The current
scenario of an application can be either detected, based on
already known information (e.g. variable values), or it can be
predicted, with a certain confidence. Detection can be seen as
prediction with 100% confidence.

Different ways of implementing predictors may be con-
sidered, like static vs. runtime adaptive or centralized vs.
distributed. Independent of the predictor implementation, the
following information may be used: (i) runtime application
internal information like variable values and executed code
(i.e. a basic block that appears only in one scenario); (ii) statis-

tical information obtained by profiling or from the application
designer (e.g. how often a scenario may appear at runtime);
(iii) a probabilistic scenario transition model, like a Markov
chain; and (iv) a history of active scenarios in the current
execution. Predictors may be of two types:
• Reactive: Only information already computed by the

application is used.
• Proactive: A part of the application control-flow that fol-

lows the predictor is duplicated/extracted in the predictor
source code. This allows early decision making. There
is a trade-off between the amount of code duplicated
and how early in the execution the current application
scenario can be predicted. Usually, the earlier the better,
but the prediction overhead must be limited.

3: Scenario exploitation is the step that uses scenarios to
optimize a design. As this step strongly depends on what the
designer wants to achieve, we present an overview of several
papers that use application scenarios (although in general they
do not give an explicit definition and/or identify the concept).

In [7], the authors concentrate on saving energy for a single
task application. For each manually identified scenario they
select the most energy efficient architecture configuration that
can be used to meet the timing constraints. The architecture
has a single processor with reconfigurable components (e.g.
number and type of function units), and its supply voltage
can be changed. It is not clear how scenarios are predicted
at runtime. In [8], a reactive predictor is used to select the
lowest supply voltage for which the timing constraints are
met. An extension [9] considers two simultaneous resources
for scenario characterization. It looks for the most energy ef-
ficient configuration for encoding video on a mobile platform,
exploring the trade-off between computation and compression
efficiency.

To reduce the number of memory accesses, in [10], the
authors selectively duplicate parts of application source code,
enabling global loop transformations across data dependent
conditions. They have a systematic way of detecting operation
modes based on profiling and of clustering them in scenarios
based on a trade-off between the number of memory accesses
and the code size increase. The final application implementa-
tion, including scenarios and the predictor, is done manually.

In context of multi-task applications, the scenario concept
was first used in [11] to capture the data-dependent dynamic
behavior inside a thread, to better schedule a multi-thread
application on a heterogenous multi-processor architecture, al-
lowing the change of voltage level for each individual proces-
sor. The use of application scenarios for reducing the energy
consumed by a multi-task application mapped on a voltage
scaling aware processor is also investigated in [12]. Other work
in the multi-task context is [13]. The considered scenarios are
characterized by different communication requirements (e.g.
bandwidth, latency) and traffic patterns. The paper presents
a method to map application communication to a network
on chip architecture, satisfying the design constraints of each
individual scenario.

Most of the mentioned papers (except [10]) emphasize
scenario exploitation and do not go into detail on discovery
and prediction. Our work focuses on these last two problems.

III. APPLICATION SCENARIO CLASSIFICATION

The different classes of embedded systems (e.g. hard vs. soft
real-time) and the problem that must be solved lead to multiple

possible criteria that can be used for scenario classification.
Considering how scenario switches are driven at runtime,

two main scenario categories can be considered: data flow
driven and event driven. Data flow driven scenarios char-
acterize different actions executed in an application that are
selected at runtime based on the input data characteristics
(e.g. the type of streaming object). Usually each scenario
has its own implementation within the application source
code. Event driven scenarios are selected at runtime based
on events external to the application, such as user requests
or system status changes (e.g. battery level). They typically
characterize different quality levels for the same functionality,
which may be implemented as different algorithms or different
quality parameters in the same algorithm. They are also called
quality scenarios. The two types of scenarios may form a
hierarchy. For different quality levels, a data flow driven
scenario corresponding to the same application source code,
may require different amounts of resources.

The runtime switches that appear between scenarios are
differentiated by the tolerable amount of side-effects. Usually,
in case of data flow driven scenarios side-effects are not
acceptable, whereas in case of event driven scenarios different
potential side-effects may be acceptable.
Example: A switch between quality scenarios in a TV set
may appear as an image format change (e.g. from 4:3 to
16:9). A side-effect of image flickering generated during
system reconfiguration is acceptable. But when the application
switches from a data driven scenario to another one, no side-
effects that visibly affect the image of the channel being
watched are acceptable.

As design methods for single and multi-task systems con-
centrate on different aspects, scenarios can also be classified
in (i) intra-task scenarios, which appear within a sequential
part of an application (i.e. a task); and (ii) inter-task scenarios,
which represent operation modes of a multi-task application.
This classification can also be seen as a hierarchy. Usually, the
scenario in which a multi-task application is running is derived
from the scenarios in which each application task is currently
running. Data flow driven intra- and inter-task scenarios are
conceptually the same from the resource usage and runtime
switching perspectives, but they have a different impact on
the intra- and inter-task parts of the design flow, and their
exploitation is in general different.

Finally, scenario usage differs for soft and hard real-time
systems. Not all the methods presented above for each step of
the methodology can be applied. For example, for hard real-
time systems, scenario discovery can only use static analysis,
and only detectors may be used to identify the current scenario
at runtime, whereas for soft real-time systems predictors and
statistical information from profilers may be used.

IV. OUR TRAJECTORY FOR LOW ENERGY DESIGN

This section presents our semi-automatic trajectory of dis-
covery, predicting and exploiting application scenarios to
reduce the energy consumed by a single task application
on a dynamic voltage scaling (DVS) aware processor. The
trajectory is adapted for both hard and soft real-time con-
straints. It starts from an application written in C, as C is the
most used language to write embedded systems software, and
generates the final energy-aware implementation also in C. The
numerical results presented bellow, are obtained for an MP3
decoder running on a processor similar to an ARM7TDMI [14]

Reference

implementation

Reduced

WCEC

Scenarios +

Coarse

grain DVS

1.64

Scenarios +

Fine-grain DVS
Fine-grain DVS

.5.21.170

16% 36%

Fig. 3. Normalized energy for different MP3 hard real-time implementations

for which the frequency and the supply voltage can be set
continuously within the operating range. A frequency change
introduces a transition overhead of 70µs during which the
processor stops running. References to papers that detail the
methodology and the results are included.

A. Hard Real-Time

Our trajectory may generate different energy saving imple-
mentations, from a purely static one to an implementation that
uses a fine grain DVS-aware scheduler. A comparison of their
energy reduction is shown in figure 3 and discussed below.

In [15], we describe a method for the automatic discovery of
scenarios that incorporate correlations between different parts
of an application. These correlations differentiate between the
source code parts that never and the ones that may execute
together in the same iteration of the loop of interest. To
avoid an explosion in the number of detected scenarios, the
correlations are extracted using only information about the
automatically detected application parameters with a large
impact on the execution time.

For the MP3 decoder, using the detected scenarios, the
estimated worst case number of execution cycles (WCEC) for
the entire application, which is the maximum between the ones
obtained for each scenario, was reduced with 16%. As for hard
real-time systems no deadlines may be missed, the processor
must be able to execute at least the WCEC per decoding
time period for an audio sample. Thus, reducing the estimated
WCEC with 15.9%, a processor with a 15.9% lower frequency
is good enough. This saves 36% in energy consumption.

By exploiting the different WCEC for each scenario, the
energy can be further reduced. Our trajectory may generate
a proactive predictor that acts like a DVS-aware coarse-grain
scheduler and selects once per loop iteration the supply voltage
level. In the MP3 case, the average energy reduction is up to
50% from the original energy, depending on the input stream.

Our trajectory can also introduce scenarios in a fine-grain
scheduler which changes the processor frequency multiple
times during an iteration of the loop of interest. In [6], we
showed that the combination of scenarios with a state-of-the-
art fine-grain DVS-aware scheduler for hard real-time systems
reduces the average energy with 16% compared to using only
the DVS-aware scheduler. Fine-grain DVS gives better results
than coarse-grain DVS if the frequency switching time is
small enough. For larger switching times, fine-grain DVS is
infeasible or coarse-grain DVS outperforms it.

B. Soft Real-Time

As for soft real-time systems a certain deadline miss ratio is
acceptable, information collected by profiling the application
can be used for scenario discovery and prediction. In [16], we
describe a method and a tool that can automatically detect the
most important application parameters and use them to define
and dynamically predict scenarios. Using the generated code,

the average over-estimation in the cycle budget required by
the MP3 decoder to decode stereo songs is decreased with
46%, reducing the average reserved cycle budget for an audio
sample from 3.9 • 106 to 3.5 • 106 cycles. The cost paid is
1.74% missed deadlines, but this can be reduced to 0% if
an output buffer with the size of one audio sample is used.
By using a proactive predictor that acts like a DVS-aware
coarse-grain scheduler, the average energy reduction is 15%
compared to the original soft real-time implementation. Up to
35% reduction is obtained if mono songs are also considered.

V. CONCLUSIONS

In this paper, we introduced the concept of application
scenarios, which group operation modes that are similar from
the resource usage perspective. Moreover, we presented their
role in an embedded system design flow, illustrating the
difference with the well known use-case scenarios.

Our scenario-based design trajectory for reducing the energy
consumption under both hard and soft real-time constraints
was presented. We showed that applying it on a benchmark,
under different scheduling constraints, the energy consumption
may be reduced with 16% to 50% compared to the state-
of-the-art methods. To reduce energy, our trajectory exploits
the difference in the computation cycles between different
scenarios. It can be easily adapted to consider another resource
(e.g. the number of memory accesses or memory size) for
scenario discovery and clustering.

REFERENCES

[1] J. M. Carroll, Ed., Scenario-based design: envisioning work and tech-
nology in system development. John Wiley & Sons Inc, 1995.

[2] M. B. Rosson and J. M. Carroll, “Scenario-based design,” in The Human-
Computer Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications. LEA, 2002, ch. 53, pp. 1032–1050.

[3] M. T. Ionita, “Scenario-based system architecting: A systematic ap-
proach to developing future-proof system architectures,” Ph.D. disser-
tation, Technische Universiteit Eindhoven, Netherlands, May 2005.

[4] J. M. Paul, “Scenario-oriented design for single chip heterogeneous
multiprocessors,” in Proc. of the 19th IEEE Int. Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 10, 2005, p. 227b.

[5] B. P. Douglass, Real Time UML: Advances in the UML for Real-Time
Systems. Addison Wesley Publishing Company, 2004.

[6] S. V. Gheorghita, T. Basten, and H. Corporaal, “Intra-task scenario-aware
voltage scheduling,” in Proc. of Int. Conf. Compilers, Architecture and
Synthesis for Embedded Systems (CASES). ACM, 2005, pp. 177–184.

[7] R. Sasanka, C. J. Hughes, and S. V. Adve, “Joint local and global hard-
ware adaptations for energy,” ACM SIGARCH Computer Architecture
News, vol. 30, no. 5, pp. 144–155, 2002.

[8] M. Pedram et al., “Frame-based dynamic voltage and frequency scaling
for a MPEG decoder,” in Proc. of the IEEE/ACM Int. Conf. on Computer-
Aided Design (ICCAD), USA, 2002, pp. 732–737.

[9] D. G. Sachs, S. V. Adve, and D. L. Jones, “Cross-layer adaptive video
coding to reduce energy on general-purpose processors,” in Proc. of
IEEE Int. Conf. on Image Processing, 2003, pp. 109–112.

[10] M. Palkovic et al., “Global memory optimisation for embedded systems
allowed by code duplication,” in Proc. of SCOPES, 2005.

[11] Peng Yang et al., Multi-Processor Systems on Chip. Morgan Kauf-
mann, 2003, ch. Cost-efficient mapping of dynamic concurrent tasks in
embedded real-time multimedia systems.

[12] S. Lee, S. Yoo, and K. Choi, “An intra-task dynamic voltage scaling
method for SoC design with hierarchical FSM and synchronous dataflow
model,” in Proc. of the Int. Symp. on Low Power Electronics and Design.
ACM, 2002, pp. 84–87.

[13] S. Murali et al., “A methodology for mapping multiple use-cases onto
networks on chips,” in Proc. of DATE. IEEE, 2006.

[14] http://www.arm.com/products/CPUs/ARM7TDMI.html.
[15] S. V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal, “Automatic

scenario detection for improved WCET estimation,” in Proc. of the 42nd
Design Automation Conf. (DAC). ACM, 2005, pp. 101–104.

[16] S. V. Gheorghita, T. Basten, and H. Corporaal, “Profiling driven sce-
nario detection and prediction for multimedia applications,” in Proc.
of the IEEE Int. Conf. on Embedded Computer Systems: Architectures,
MOdeling, and Simulation (IC-SAMOS), Greece, 2006, pp. 63–70.

