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Abstract

We describe a general technique for estimating the in-
tractable quantities that occur in a wide variety of large-
scale probabilistic models. The technique transforms
intractable sums into integrals which are subsequently
approximated via saddle point methods. When applied
to sigmoid and noisy-OR networks, the technique yields
a generic mean-field approximation as well as a sec-
ond order Gaussian approximation that accounts for the
pairwise correlations between random variables in the
network. In two example models, we observe that our
lowest order approximation is identical to expressions
obtained using Plefka’s approach for deriving the TAP
equations.

1 Introduction

It is well known that large-scale probabilistic modeling
involves the computation of expected values or posterior
probabilities which are generally intractable for suffi-
ciently large systems due to the occurrence of terms that
involve summations over all configurations of the rele-
vant random variables. In this paper we describe the
use of a generalized mean-field theory for intractable
probabilistic models. The mathematical formalism was
originally derived in [1]. In this approach, expectations
over binary random variables are represented as inte-
grals over real continuous variables. The integral repre-
sentation is desirable because it lends itself to approx-
imation via saddle point methods. When applied to
probabilistic models, the method yields a precise second
order approximation as well as a mean-field approxima-
tion. We show how these techniques both complement
and extend variational methods. Mean-field methods
[2] have recently become very popular for approximate
inference and learning in Bayesian belief networks [3].
Upper [4] and lower [5] bounds on the marginal prob-
ability of the observed data can be obtained by vari-
ational methods. In these methods, one approximates
the true joint probability function with a tractable one
that can be optimized with respect to adjustable pa-
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rameters. We found that in our numerical experiments
our mean-field approximation is nearly identical to the
variational upper bound [4]. Although we have not
proven that our mean-field approximation is indeed an
upper bound, it appears that in some circumstances this
may be true. Higher order techniques from statistical
physics that account for correlations between spins have
recently been applied to probabilistic data models. Ple-
fka’s [6] method for obtaining the TAP equations [7] has
been extended to the Bayesian belief network frame-
work [8]. As observed in [8], saddle-point methods are
an alternative way of obtaining their lowest order ap-
proximation. Indeed, our mean-field approximation is
identical to their lowest order approximation.

2 Preliminaries

To begin, consider an unspecified probabilistic model
whose state vector consists of n binary random vari-
ables, s = (s1, · · · , sn). Without loss of generality we
can write the joint distribution of these state variables in
a Boltzmann-like form P (s) = exp (−βE(s)) where the
energy-like term, E(s), has a form defined by the partic-
ular model in question. We need only assume that E(s)
is bounded from below over the unit hypercube [0, 1]n

and that it has finite first and second order derivatives.
The inverse temperature β is useful for subsequent the-
oretical analysis, but for actual inference calculations it
is set equal to 1.

Assume the set of binary variables (spins) is par-
titioned into a set V , of nV instantiated (or visible)
variables and a set H , of nH uninstantiated (or hidden)
variables. The requisite computational task is to com-
pute the expected value of an arbitrary function f(s)
over all configurations of the variables in a subset H

(2.1) E {f (s) |V } ≡
∑

{si|si∈H }

f (s) exp (−βE (s)) .

This form appears generically in calculations with prob-
abilistic models. For example, if f(s) is unity and V

is the empty set, then E {f(s)|V } is just the partition
function of the system. On the other hand, if f(s) is
unity and the values in V are determined by some data,
then E {f(s)|V } is the likelihood of the data, P (V ). Fi-
nally, if f(s) = sµsν , then E {f(s)|V } is just the average
correlation between the two spins sµ and sν .



To proceed further, we simplify the notation by
defining a permutation Ωs = s′ that sorts the compo-
nents of the state vector s, such that the hidden vari-
ables come first, i.e. have indices {1, · · · , nH}. This
transformation induces corresponding transformations
over all other quantities in the model, e.g. if g(·)
is an arbitrary function of the state vector s, then
Ω: g(s) → g′(s′). In the transformed coordinate system,
summations of arbitrary functions over configurations of
hidden units take the form

(2.2)
∑

{si|si∈H }

g (s) →

1
∑

s′

1
=0

...

1
∑

s′

nH
=0

g′ (s′) .

In effect, we define a transformed probabilistic model
with nH variables, and whose model parameters depend
on the values of the visible units in the original model.
With these definitions and conventions, our generic
calculational task reduces to evaluation of

(2.3)

Z ≡ E {f (s) |V }

=
1

∑

s′

1
=0

...

1
∑

s′

nH
=0

exp (−βE′ (s′) + log (f ′(s′))) .

We henceforth denote generic sums of the form (2.3) by
the symbol Z.

3 Integral Representation

The key to exploiting field theory techniques is to trans-
form the summations in discrete models into equivalent
integral representations in field theories. In particular
we apply the transformation

(3.4)

1
∑

s′

1
=0

· · ·

1
∑

s′

nH
=0

exp (−βE′ (s′) + log (f ′(s′)))

=
1

(2π)
nH

∫

D{x}D{x̂} exp
(

−βF̃ ′ (x, x̂)
)

where
(3.5)

F̃ ′ (x, x̂) ≡ E′ (x)− β−1 log (f ′(x))− β−1Σ (x, x̂)

and

(3.6) Σ (x, x̂) =
∑

µ
[ixµx̂µ + ln(1 + exp(−ix̂µ))] .

To obtain this transformation, observe that any function
g(s), satisfies the identity

∑1
s=0 g(s) =

∫∞

−∞ g(x){δ(x)+
δ(x − 1)}dx, where δ(·) is the Dirac-δ function. Sub-
stituting this identity into (2.3) and using the Fourier

representation of the Dirac-δ function [9], allows us to
explicitly perform the summation over spins, thereby
recovering transformation (3.4) where

∫

D{x}D{x̂} ≡
{
∏

µ

∫∞

−∞
dxµ}{

∏

ν

∫∞

−∞
dx̂ν}. In the resulting represen-

tation for Z, no trace remains of the original spin vari-
ables, each of which has been replaced by a conjugate-
pair of continuous real fields (xµ, x̂µ). These fields are
coordinates in a continuous phase-space <nH × <nH .

Observe that if βE′ (x)+log (f ′ (x)) is a positive definite
quadratic function of x, the RHS of (3.4) can be inte-
grated exactly with respect to x, in which case the gen-
eralized transformation reduces to the textbook Gaus-
sian transformation where x̂ is the usual auxillary real
field.

To proceed further, we appeal to the saddle-point
method which is an asymptotic approximation method
which becomes exact in the β → ∞ limit. Although
a detailed discussion of this approximation is beyond
the scope of this manuscript, the interested reader may
read more details in Erdélyi [10]. The intuition behind
the method is based on the observation that by a suit-
able choice of the integration path, the values of the
integrand which are far from the stationary point of
the integrand make arbitrarily small contributions to
the integral as β becomes arbitrarily large. In other
words, the integral is insensitive to the shape of the
tails. This motivates the saddle point approximation
wherein F̃ ′ (x, x̂) is replaced by a second-order Taylor
series expansion about the stationary point. The exact
and approximate integrands only deviate away from the
stationary point where the contribution to the integral
is small. As we shall see below, this leads to two ap-
proximations: a zeroth and a second order approxima-
tion. The simplest saddle point approximation method
assumes that F̃ ′ (x, x̂) has a unique stationary point in
phase-space. In general this assumption is false, but it
is useful to derive the approximation under this assump-
tion and then to revisit the assumption later. Finally, it
is worthwhile to point out that there exists a dichotomy
in the literature concerning the term ”saddle point ap-
proximation.” The statistics community uses the term
to refer to second order approximations [11], whereas
the physics community usually uses the term to refer to
zeroth order approximations [2]. We adopt the physics
terminology and use the terms ”mean-field” and ”Gaus-
sian” approximations to refer to the zeroth and second
order approximations respectively.

To carry out the saddle point calculation, one must
first find the saddle point. This requires that we solve
the two stationarity conditions ∇xµ

F̃ ′ = ∇x̂µ
F̃ ′ =

0. These 2nH conditions can be reduced to just nH

conditions by eliminating x̂ which leads to

(3.7) ∇xµ
F ′ (x) = 0



where F ′ has the form

(3.8) F ′ (x) ≡ E′ (x)− β−1 ln (f ′ (x))− β−1S (x)

and S(x) ≡ −
∑

µ xµ log(xµ)−
∑

µ(1− xµ) log(1 − xµ)
is the familiar binary entropy. Note that S(x) is only
defined over the unit hypercube and that within the unit
hypercube, F ′(x) is bounded from below. Moreover, the
contribution to F ′(x) due to S(x) causes the gradient
∇xµ

F ′(x) to diverge to +∞ at the boundaries of the
unit hypercube. In short, the saddle point is found by
performing gradient descent on F ′(x), starting from an
interior point of the unit hypercube. Note that since
S(x) confines the gradient descent algorithm to the
interior of the nH -dimensional hypercube, it plays the
role of a barrier function. Essentially, we find the saddle
point by employing an interior point method [12] with
an entropic, rather than a logarithmic barrier function.
We note that with f ′(x) ≡ 1, the expression (3.8) is
identical to the expression appearing in the lowest order
approximation of Bhattacharyya and Keerthi [8].

Armed with the saddle point, we expand F̃ ′(x, x̂)
to second order, and substitute the result into the RHS
of (3.4) thereby obtaining
(3.9)

Z(2) ≡ Z(0)·
1

(2π)
nH

∫

D{x}D{x̂} exp
(

−βF̃
′(2) (x, x̂)

)

,

where

(3.10) Z(0) ≡ exp (−βF ′(xo)) .

Z(0) is the zeroth order approximation for the desired
sum, while Z(2) is the second order approximation for
the desired sum. Z(2) is easily calculated because the
integral is Gaussian and can be integrated explicitly.
The resulting closed form expression for Z(2) is

(3.11) Z(2) =
exp (−βF ′ (xo))

√

det
(

I + H(xx)H(x̂x̂)
)

where the submatrices H(xx) and H(x̂x̂) are respectively,
the configuration-space and Fourier-space projections of
the curvature matrix, β∇2F̂ ′(x, x̂), i.e.

(3.12) ∇2F̃ ′
∣

∣

∣

x=xo,x̂=x̂o
= β−1

(

H(xx) −iI

−iI H(x̂x̂)

)

.

Our mean-field algorithm (FT-0) involves a numer-
ical minimization in an nH dimensional space while the
variational methods involve minimizations in 2nH di-
mensional spaces. The saddle-point approximation al-
gorithm (FT-2) requires no additional minimization be-
yond the FT-0 algorithm but does require an additional
O

(

n3
H

)

determinant evaluation. Despite the increased
computational cost, in our numerical experiments the
second-order saddle-point method proved to be a more
precise approximation.

4 Revisiting Convexity

The discussion up to this point assumed a convex F ′(x).
For β = 0 it is easily demonstrated that F ′(x) is
convex. For nonzero β however, the convexity of F ′(x)
depends on the details of the particular probabilistic
model. Clearly, one can construct a model with convex
F ′(x). In general, however, the question naturally
arises: how large can we make β and still have a
convex optimization? Although no general answer is
possible, for any particular model it is possible to
establish an upper bound on the inverse temperature
below which we can guarantee convexity. In particular,
since we perform inference with β = 1, we can guarantee
convexity if the upper bound exceeds 1. A necessary
and sufficient condition for strict convexity is for the
eigenvalues of ∇2F ′(x) to be positive. For this purpose
it is useful to localize the eigenvalues of ∇2F ′(x) via
the Gershgorin circle theorem [13]. In the absence
of guaranteed convexity, one can appeal to heuristic
methods. For example, deterministic annealing is a
heuristic method, wherein one first solves for the unique
minimum at β < β∗ and then tracks this minimum
as one gradually increases β until the value β = 1 is
reached. Deterministic annealing has a successful record
on a broad spectrum of related practical problems, e.g.
Boltzmann machines [14], elastic nets [15] and travelling
salesman problems [16].

5 Examples

To demonstrate the utility of our methods we applied
them to the task of inference with sigmoid belief net-
works [17] and noisy-OR networks [18]. The required
sum in this case is the likelihood of the data, which
is simply the marginal of the joint distribution taken
over the configurations of the hidden units, P (V ) =
∑

H P (H, V ). The energy function in the original spin
variables takes the form

(5.13)

E(s) = −

N
∑

i

(si log G(wi) + (1− si) log(1−G(wi)))

where wi =
∑

j∈π(si)
Jijsj + hi and G is the activa-

tion function which depend on the specific probabilistic
model. For sigmoid and noisy-OR networks, the activa-
tion function is given by σ(x) = (1 + exp(−x))−1 and
ρ(x) = 1− exp(−x) respectively.

5.1 Sigmoid Network Technical details for the sig-
moid network may be found in [19]. Here we simply
summarize numerical results for the case of the sigmoid
three layer (2× 4× 6) network used by Saul et al. [5] to
illustrate the variational lower bound algorithm and the



sigmoid bipartite (8× 8) network to illustrate the vari-
ational upper bound derived by Jaakkola and Jordan
[4].

We define the relative approximation error to be

(5.14) ε =
ln

(

P (λ)(V )
)

− ln (P (V ))

|ln (P (V ))|

where P (λ)(V ) is the likelihood of the data computed
for one realization of a sigmoid belief network with
the λ-th approximation algorithm. The distribution
of relative approximation errors, over an ensemble of
sigmoid belief networks, is P (λ)(ε) and is estimated
numerically. Statistics were accumulated over 10000
realizations of J and h. The elements of these were
sampled from a uniform distributed between −1 and
1. Of these 10000 realizations, all were convex, i.e.
there were no realizations that violated the convexity
criterion. We calculated the likelihood of the event
that all the units in the bottom layer were instantiated
to zero. For this event we compute four quantities:
1) the exact, 2) the variational lower-bound, 3) the
saddle point mean-field approximation, and 4) the field-
theory saddle-point approximation. The variational
upper bound is not defined for this network.

For the bipartite network, statistics were accumu-
lated over 2494 realizations of J and h. Approximately,
21% of these satisfied the Gershgorin convexity crite-
rion. The weights are sampled from a Gaussian distri-
bution with zero mean and standard deviation 1. For
this network, we calculate the variational upper bound
for bipartite networks [4] in addition to the four quan-
tities above. A comparison of the average error of the
four algorithms is displayed in Table 1.

Table 1 Sigmoid network

Algorithm Expected % error Expected % error
(8× 8) (2× 4× 6)

VLB -3.2% -1.58%
VUB 15.2% n/a
FT-0 15.1% 4.0%
FT-2 .18% 0.033%

Table 1: Average error for four approximation algo-
rithms: variational lower and upper bounds (VLB and
VUB respectively) and field theory zeroth and second
order algorithms (FT-0 and FT-2 respectively).

5.2 Noisy-OR Network In a noisy-OR belief net-
work, variable dependencies are modeled as binary val-
ued noisy OR logic gates. The matrix element qij is the
probability that an active parent node sj will activate

the node si. The conditional probability is given by

(5.15)

P (si|π(si)) =



1− exp



−

n
∑

j∈π(si)

Jijsj + hi









si

·



exp



−

n
∑

j∈π(si)

Jijsj + hi









1−si

where Jij = − log(1 − qij) , π(si) denotes the set of
parents of the variable si , and hi defines the prior
distribution over top layer hidden nodes. Substituting
expression (5.15) into the joint distribution P (s) ≡
∏N

i P (si|π(si)) and rearranging, we obtain the energy
function (5.13) in the simple form

(5.16)

E(s) =

N
∑

i

(wi(s)− si log (exp(wi(s)− 1))) .

To compute the likelihood of the data P (V ), we con-
struct the integral representation (3.4) and solve the
stationarity conditions ∇xµ

F̃ ′(x) = 0 where

(5.17)

F̃ ′(x) =
∑

µ∈H

(wµ(x) − xµ log(exp(wµ(x)− 1))

+
∑

j∈V

(wj(x) − vj log(exp(wj(x) − 1))− β−1S(x)

and vj is an visible node.
To test the performance of the algorithms when

applied to noisy-OR networks, we employed a strategy
similar to the one used in the sigmoid case. For
both topologies, statistics were accumulated from 10000
realizations of J, sampled uniformly from the interval
[.4, .8] . We calculated the worst case marginal, i.e when
all evidence nodes are set to 1. In the bipartite case, we
found no samples that violated the convexity criterion.
However, in the three-layer network less than 1% of the
samples were found to be convex. The results indicate
that the approximation performs reasonably well even
when we do not have a convex minimization problem.

6 Discussion

To conclude, we described how to use integral represen-
tations in large scale probabilisitic models to approxi-
mate intractable summations. The mathematical tech-
niques described here are quite general and we expect
the approach described in this paper to be useful in



Table 2 Noisy-OR network

Algorithm Expected % error Expected % error
(8× 8) (2× 4× 6)

VUB 17.3% n/a
FT-0 17.3% 18.2%
FT-2 2.18% 3.15%

Table 2: Average error for three approximation algo-
rithms: variational upper bound (VUB) and field the-
ory zeroth and second order algorithms (FT-0 and FT-2
respectively).

a very broad range of application domains, (e.g. neu-
ral modeling, computational biology, computational fi-
nance, computer-aided diagnosis and decision support)
where complex large-scale probabilistic models are the
norm rather than the exception.

A direct comparison of our second-order saddle-
point approximation to the second-order methods of
Bhattacharyya and Keethi [8] is difficult to make since
they choose to approximate the unclamped partition
function as opposed to the marginal of the joint prob-
ability considered here. In addition, in our examples
we have chosen the visible nodes to correspond to the
worst case marginal where they have chosen to simu-
late the cases that maximize and minimize the value of
the partition function. Despite these differences, an in-
spection of the numerical results obtained in the two ap-
proaches, especially in the sigmoid case, shows that they
are of comparable precision. As mentioned above, one
can show analytically that the lowest order approxima-
tions are identical. Moreover, in the two-layer case the
numerical results from our lowest order approximation
coincide with the variational upper bound of Jaakkola
and Jordan [4].

In the case of sigmoid and noisy-OR belief networks,
we demonstrated a mean-field approximation and a
Gaussian approximation which, when combined with
the variational mean-field algorithm, form a suite of
three algorithms for approximate inference with general
sigmoid and noisy-OR belief networks.
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