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Abstract-This paper discusses an ontology based language 

modeling text mining approach to the annotation of protein 
community. Communities appear to play an important role in the 
functional properties of complex networks. Being able to annotate 
the identified the community structure in a biological network can 
help us to understand better the structure and dynamics of 
biological systems. Traditional method such as Gene Ontology 
(GO) provides information about the functionality of gene 
products, but they are not enough to annotate community as for 
only limited number of proteins in the database, limited protein 
properties available for annotation and the inability to annotate a 
group of gene products as a whole. Thus, we present an ontology 
based mixture language model approach to annotate protein 
community. Compared to traditional method, we have the 
following three advantages. First, biomedical literature mining 
brings much richer information than existed gene databases. 
Second, the mixture language model can help “purify” the 
document by eliminating some background noise. Third, using 
domain ontology, we extract biological concept and concept pairs 
from abstracts. Biological concept is more meaningful than word 
or multi-word phrases. Moreover, using concept pairs can deliver 
much more information and serve as evidence of annotation 
results. We test our approach on four communities SAGA-SRB, 
CCR-NOT, RFC and ARP2/3, detected from dataset of 
interactions for Saccharomyces cerevisae from the General 
Repository for Interaction Datasets (GRID). Annotation results 
provide a very coherent indication of functionality of each 
community.  

I. INTRODUCTION 

Proteins are important players in executing the genetic 
program. When carrying out a particular biological function, or 
serving as molecular building blocks for a particular cellular 
structure, proteins rarely act alone. Rather, biological 
complexity is encapsulated in the structure and dynamics of the 
combinatorial interactions among proteins (as well as other 
biological molecules) at different levels, ranging from 
biochemical pathways to ecological phenomena [1]. Therefore, 
one of the key challenges in this post genomic era is to 
understand these complex molecular interactions that confer 
the structure and dynamics of a living cell. 

Community structure is an important property common to 
many networks. Although there is no formal definition for the 
community structure in a network, it often loosely refers to the 
gathering of vertices into groups such that the connections 
within groups are denser than between groups [2]. The study of 
community structure in a network is not new. It is closely 
related to the graph partitioning in graph theory and computer 
science and the hierarchical clustering in sociology [3]. Recent 

years have witnessed an intensive activity in this field partly 
due to the dramatic increase in the scale of networks being 
studied.  Many algorithms [4-12] for finding communities in 
networks have been proposed. They can be roughly classified 
into two categories, divisive and agglomerative. The divisive 
approach takes the route of recursive removal of vertices (or 
edges) until the network is separated into its components or 
communities, whereas the agglomerative approach starts with 
isolated individual vertices and joins together small 
communities.  

In the context of biological networks, communities might 
represent structural or functional groupings, and can be 
synonymous with molecular modules, biochemical pathways, 
gene clusters, or protein complex. Because communities are 
believed to play a central role in the functional properties of 
complex networks [3], the ability to detect and annotate 
communities in networks could have practical applications. 
Especially growing community from a given seed makes it 
much more practical value for biologists when they have 
knowledge of a certain protein and wish to discover and study 
its community. Thus, we detect and annotate community 
grown from a given seed protein for this purpose. In this paper, 
our algorithm verified through MIPS, has been proved to be an 
efficient approach to detect “good” community. 

Being able to annotate the identified the community structure 
in a biological network can help us to understand better the 
structure and dynamics of biological systems. Community 
annotation, i.e. the evaluation and annotation of identified 
communities, is especially critical in the study of biological 
networks, because not only it’s important to understand the 
biological networks but also the identified communities must 
be biological relevant for them to be useful.  

The task of annotating a protein community is in essence to 
summarize the functionality concepts shared by most of 
community members. The ideal situation is that we know 
functionality of every protein in a community and then extract 
protein property information common to the community. 
However, it’s a very challenging task, especially when to 
realize it automatically, as it’s dependent on many factors such 
as the property information available for each protein, the 
technique of information extraction and summarization, and 
the quality of detected community. Although conventional 
methods such as using GO [15], MIPS[16] functional and 
complex catalogue may help identify functionality of group 
members, they have many limitations. Existed databases such 
as GO only contain information of limited number of proteins. 



Although they are growing through intensive manual work 
based on published experiment results, it’s hard to catch up 
with not only the high-through put experiments but also the 
outgrowing number of published experiment results. Besides, 
many of functional explanations might not have been verified. 
There are many proteins whose information can not be found 
in these databases but may exist in published literature. 
Moreover, it’s controlled vocabulary and only allows 
annotating genes and their products with only a limited set of 
attributes [15]. Thus, biologists often need to find information 
about genes whose function is not described in the genome 
databases [30]. 

Therefore, a tool to automatically extract functional 
information for a community from biomedical literature 
becomes very necessary. However, to accomplish the task, two 
problems should be solved: how to represent a document; how 
to mine topical terms from documents. There are many 
approaches that have been developed to overcome the 
difficulties. Most existed works relies on statistical based 
methods and heuristics to summarize a gene or group of genes 
using key terms or sentences. Hu [31] uses information gained 
based method to extract key phrases from PubMed abstracts 
and then apply mutual reinforcement principle to generate key 
phrases and sentences for the given gene cluster. The problem 
with the method is that pure information gain based approach 
to extract phrases from biomedical literature appears to be 
weak to solve synonym and polysemy problems in biomedical 
concepts. Popescu and colleagues [32] addresses the problem 
of constructing a functional summarization of groups of gene 
products that are found by clustering a database of such 
products annotated by GO. The method builds the “most 
representative term” for each group of gene products using a 
fuzzy similarity measure to find highest frequency in the 
description of the gene products. However, the work is purely 
dependent on GO database, thus it has no use for proteins not 
presenting in the database. MedMesh summarizer [33] treats 
each gene related documents as a category and utilizes 
statistical methods to extract topical terms from Mesh terms 
across the collection of groups of genes. The problem of this 
approach is that it relies on MeSH terms that may not enough 
to serve the function annotation for given cluster and is based 
on only heuristic of combination of different statistical 
methods. There are also works generating summary for a target 
gene. Ling and colleagues [30] tries to  summarize a gene 
through first retrieving relevant articles and then extracting the 
most informative sentences from the retrieved articles to 
generate a structured gene summary. They develop a special 
tokenizer for gene products extraction. Sentences (that contain 
certain genes) are scored according to their category relevance 
score, document relevance score and location score. The 
limitations with the work are its dependence on the high-
quality data in FlyBase and too many heuristic methods.  

 For most of existed works, less attention has been paid to 
terms extraction, which is very essential for biomedical 
literature mining. Biomedical named entity recognition is a 
very challenging task.  For example, it’s very difficult to 
recognize gene names from biomedical literature as for the 

following reasons: newly defined genes, long descriptive gene 
names, synonyms, and lexical variations. Traditional machine 
learning method can be easily over fitted. To handle this 
problem, the best way is to utilize domain knowledge to help 
extract biomedical named entity. Thus, how to adapt domain 
ontology to existed information extraction method and 
summarization technique would be very beneficial.  

Hence, we initially query PubMed using proteins and their 
aliases of a community, then apply a dictionary based concept 
extraction module MaxMatcher trained from Universal 
Medical Language System (UMLS) [34] to extract biomedical 
concepts from abstracts for a community, and then develop a 
mixture language model text mining method to automatically 
extract key concepts or concept pairs from multi-document 
collections to form a sensible biological explanation to the 
identified communities. MaxMatcher is designed for extracting 
biomedical concepts instead of multi-word phrases or 
individual words, because concept is more representative and 
powerful than multi-word phrases or individual words. For 
example, C0020538 is a concept about the symptom of 
hypertension in UMLS; it represents a set of synonymous 
terms including high blood pressure, hypertension, and 
hypertensive disease. In comparison with individual words, a 
concept is more meaningful; in comparison with multi-word 
phrases, a concept well solves polysemy and synonymy 
problems.  

Mixture language model [35, 36, 37] has been well studied 
and applied in information retrieval which is proved to be a 
solid method for giving consistently higher precision and 
recall. It can automatically interpolate between the model that 
generates topical concepts and the background model that 
generate concepts common to the whole collection, which 
helps to remove background noise for summarization process. 

Compared to other methods, the advantages of our approach 
many folds: first, domain ontology trained MaxMatcher can 
target biomedical concepts more precisely; second, the mixture 
language model with ontology support is more suitable for 
biomedical domain than methods based on unigram models; 
third, biomedical concept is more meaning full than word and 
multi-word phrase and using concept pairs can deliver much 
more information and serve as evidence of annotation results; 
fourth, to annotate the community as a whole would provide 
chances for understanding the biological meaning of some 
proteins within the community whose functions are still 
unknown because proteins usually share functions with those 
proteins which interact with them mostly; last, our approach of 
annotating protein community using textual data (PubMed) can 
serve as an extension to traditional method of annotating a 
single protein such as GO. 

II. DETECTION OF THE COMMUNITY FROM A SEED 
PROTEIN 

In this section, we briefly introduce our protein community 
detection algorithm, referred to as CommBuilder, which is a 
graph-based detection algorithm, previously developed by our 
research group [13, 14].  

Due to the complexity and modularity of biological 
networks, it is more feasible computationally to study a 



community containing one or a few proteins of interest. A 
protein-protein interaction network is modeled as a simple 
graph. Each vertex of the graph represents a protein and each 
edge represents an interaction between the two proteins 
connected by it. An undirected graph, G = (V, E), is comprised 
of two sets, vertices V and edges E. An edge e is defined as a 
pair of vertices (u, v) denoting the direct connection between 
vertices u and v. The graphs we use in this paper are 
undirected, unweighted, and simple -meaning no self-loops or 
parallel edges. 

For a subgraph and a vertex i belonging to GGG ⊂′ ′ , we 
define the in-community degree for vertex i, , to be the 
number of edges connecting vertex i to other vertices 
belonging to G  and the out-community degree, 

( )GK in
i ′

′ ( )GK out
i ′ , to 

be the number of edges connecting vertex i to other vertices 
that are in G but do not belong to . CommBuilder adopted 
the quantitative definitions of community defined by Radicchi 
and colleagues [22]. In this definition, a subgraph 

′ G

G′  is a 
community in a strong sense if for each vertex i in G′ , its in-
community degree is greater than out-community degree. More 
formally,  is a community in a strong sense if G′
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In a weak sense if the sum of all d rees within G
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than e sum of all degrees from G′  to thth e rest he graph, 
i.e., G′
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CommBuilder accepts a seed protein s, and then gets its 
neighbors, finds the core of the community to build, and finally 
expands the core to obtain the eventual community. The two 
major components of CommBuilder are FindCore and 
ExpandCore. In fact, FindCore performs a naïve search for 
maximum clique from the neighborhood of the seed protein by 
recursively removing vertices with the lowest in-community 
degree until all vert

> ∈ ⊂ ) 

ices in the core set have the same in-
co

tails of algorithm, 
pl

appro n of 
a given protein com

ach using mixture language models for the annotatio
munity.     

III. PROTEIN COMMUNITY ANNOTATION THROUGH 
BIOMEDICAL LITERATURE MINING 

Annotation of a protein community using ontology (e.g., 
GO) or biomedical literature is in essence a technique of 
summarization of properties of community group members. 
The ideal situation is that we check the functionality of each 
protein in the community through GO or MIPS and then 
extract functional concepts common to most group members to 
serve as the annotation of the community. However, this is 
barely practical because of the limitation of these databases. 
Let’s take GO as an example. The GO project has developed 
three structured, controlled vocabularies (ontologies) that 
describe gene products in terms of their associated biological 
processes, cellular components and molecular functions in a 
species-independent manner. However, GO allows us to 
annotate genes and their products with only a limited set of 
attribute [15]. For example, GO does not allow us to describe 
genes in terms of which cells or tissues they're expressed in, 
which developmental stages they're expressed at, or their 
involvement in disease, while these information may be 
available in the according biomedical literature and can be 
really important to biological scientists. Moreover, GO uses a 
controlled vocabulary which may not be enough to describe the 
properties of proteins. The worst of all is that there are many 
proteins that have not been annotated because manually 
annotating proteins can hardly catch up with the outgrowing 
gene products related biomedical literature. It can be very 
normal that there are several proteins in a community that have 
no

(2

t been annotated in the database but appeared in the 
literature. These proteins may affect the annotation of whole 
group.  

It should be noted that there may be some proteins in a 
community that are not indexed in both literature and gene 
databases (GO). Although our summarization approach can 
provide guidance to predict functionality of those unknown 
proteins, if most of community members are not indexed by 
literature, it will be beyond our approach, because our focus is 
how to apply summarization technique to annotate a group of 
proteins using according biomedical literature. However, it can 
be

mmunity degree.  
The algorithm performs a breadth first expansion in the core 

expanding step. It first builds a candidate set containing the 
core and all vertices adjacent to each vertex in the core. It then 
adds to the core a vertex that either meets the quantitative 
definition of community in a strong sense or the fraction of in-
community degree over a relaxed affinity threshold f of the 
size of the core. The affinity threshold is 1 when the candidate 
vertex connects to each of vertices in the core set. This 
threshold provides flexibility when expanding the core, 
because it is too strict requiring every expanding vertex to be a 
strong sense community member. For de

 our future work to annotate a community by integrating 
functional prediction information using other resources or 
methods for those unknown proteins.  

While using literature to annotate a community has a lot of 
advantages over existed gene databases, it also brings 
background noise. For a document or a document set, terms of 
interest are those topical and informative terms. For those 
terms that are very common according to the whole collection 
or database are of not interested. One simple example of 
background noise is stop word. Even though counting on some 
statistical methods such as tf*idf, z-score, the combination of 
mean, stand deviation information and so on may help remove 
so

ease refer to our previous works [13, 14]. 
Once we identify a protein community from the interaction 

network, we compare the community membership with the 
MIPS catalogues to evaluate the identified community, with 
details deferred to the Experimental Results section. In the 
following section, we propose a biomedical literature mining 

me of background noise, but it’s not a generative model and 
involves a lot heuristics. Therefore, we introduce a generative 
mixture language model to solve this problem. 



Language modeling is a technique initially used for speech 
recognition.  Ponte and Croft introduced language modeling 
approach to text retrieval in [35]. The relative simplicity and 
effectiveness of the language modeling approach, together with 
the fact that it leverages statistical methods that have been 
developed in speech recognition and other areas, make it an 
attractive framework for not only text retrieval but also theme 
detection across collections by Zhai [37]. By interpolating with 
a collection model, each unigram document model can reduce 
the effect of the background noise. The mixture language 
model (i.e.,the mixture of the unigram document model and the 
co

n 
36]. In this way, we can detect 

llection model) has demonstrated its effectiveness in 
information retrieval [36] and shown the potential on multi-
document summarization [37].  

However, unigram language model without domain ontology 
support has limitation in biomedical domain. For example, as 
for protein functionality, with unigram language model, it’s 
very difficult to differentiate functionality concepts from other 
concepts. In this paper, we fit UMLS domain ontology i
Zhai’s mixture language model [
most common functionality concepts shared by each 
community, while filtering out most of non-related concepts. 

A. The Mixture Language Model 
A mixture language model proposed in [36] is used to 

generate topical concepts for each protein community. Suppose 
we have built a collection of document denoted as  for a 
given community (see Section 3.2 for details). We then assume 
each c by the 

D

oncept in the collection D is generated either 
community theme model cθ  or the background model bθ . That 
is, where α is a coefficient accounting for the background noise 

)3(                     )|()|()1()|( bc wpwpDwp θαθα +−=   
Under this simple mixture model, the log-likelihood of 

The p

follo
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rotein community theme model can be estimated using 
the Expectation Maximization (EM) algorithm with the 

wing update formulas: 
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where ),( Dwc  is the frequency count of concept w in D. The 
choice of the background model will affect the estimation of 
the community theme model. The concepts generated by the 
background model are often those frequently occurring in the 
background collection. Therefore, if we choose the collection 
D itself as the background collection, many topical concepts of 
the protein community will be falsely treated as background 
concepts and excluded from the community theme model. To 
overcome this limitation, we randomly download ten 
percentages of Medline abstracts published in 2005 as the 

 

el as likeliho imate, we obtain the background modod est
follows: 

(7)                                                              
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w
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where ),( Cwc  is the frequency count of concept w in C . 

B. Document Retrieval and Concept Extraction 
We manually collected the alias of each protein in the 
community a

),( Cwc  

nd submit it together with the protein name (see 
ta

 and achieves good extraction recall. The basic idea of 
th

oted 
as s1 er of 
conce wji 

cept, 

ble 1) to the PubMed search engine. In this way, we collected 
Medline abstracts for each protein community. Here we treat 
documents for each protein community as a separate 
collection.   

The dictionary-based approach is frequently used to extract 
protein function concepts from biomedical literatures. Its major 
advantage over the feature-based approach is that it not only 
recognizes concept names, but also identifies unique concept 
identities, which is very  helpful to solve synonym and 
polysemy problems and thus to improve summarization 
accuracy. However, the dictionary-based approach is critiqued 
by its low extraction recall due to the variation of biological 
concept names. As a result, we develop MaxMatcher [39], a 
dictionary-based biological concept extraction system, which 
well handles the term variations using approximate dictionary 
lookup,

is approach is to capture the significant words instead of all 
words to a particular concept. MaxMatcher uses UMLS as the 
dictionary and extracts biological concepts of 135 semantic 
types. 

 In particular, we propose a relative significance score 
measure. Suppose a concept (c) has n concept names den

,…, sn, respectively. Let N(w) denotes the numb
pts whose variant names contain word w, and let 

denotes the i-th word in the j-th variant name of the con
the significance of w to the concept is defined as follows: 

⎪
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We use UMLS Metathesaurus 2005AA version [34] as the 
dictionary to train the significance score of each word to 
biological concepts containing that word. For details, please 
refer to our previous work [39] [41]. 

Definition 1 A concept (w) is a unique meaning in a domain. 
It represents a set of synonymous terms in the domain. For 
example, C0020538 is a concept about the disease of 
hypertension in UMLS Metathesaurus; it also represents a set 
of synonymous terms including high blood pressure, 
hypertension, and hypertensive disease. Therefore, con

sed term extraction helps to relieve the synonym and 
polysemy problems in biomedical literature, where a term (e.g., 
a gene or a protein) might have many synonyms while also 
representing different concepts in different context [41].  

In order to validate the results of concept-based annotation, 
we also represent documents as a set of concept pairs and run a 
concept-pair language model to find out topical concept pairs 

background collection referred to as C. Using the maximum



for each protein community. Because of the limit of the 
precision of the state-of-the-art retrieval approaches, a good 
part of the retrieved documents may not be relevant to the 
identified protein community. Thus, the top-ranked topical 
concepts in the community theme model may be the functional 
descriptions of proteins outside the given community. For this 
re

i j i j 
co

s: (1) they appear in the same 
cl es are 

 

ason, if we do find certain topical concept has a strong 
relationship with proteins in the given community in natural 
language statement, we will be more confident on the 
annotation result. 

Definition 2 A concept pair (t) is defined with two order-
free components as in t(w , w ), where w and w are two 

ncepts related to each other syntactically and semantically. 
The implementation of the syntactic and semantic relationships 
between two concepts is determined by specific applications 
[40]. 

A pair of two concepts will be extracted if they meet the 
following three requirement

ause of an English sentence; and (2) their semantic typ
compatible according to the domain ontology. For example,
two proteins could be semantically compatible in UMLS (e.g., 
protein-protein interaction). 

Example: A recent epidemiological study (C0002783, 
research activity) revealed that obesity (C0028754, disease) is 
an independent risk factor for periodontal disease (C0031090, 
disease).  

Concept Index: C0002783, C0028754, C0031090  
Topic Signature Index: (C0028754, C0031090)  
In the above example, the underlined phrases are extracted 

concept names followed by the corresponding concept ID and 
semantic type. Obesity and a 
concept pair w he udy has no 
re

e detected community; if the detected community 
n will not make 

8 interactions. Four communities are identified from the 
interaction network by our  program using one protein 
as seed. The members of eac unity are listed in table 1. 

 
se
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periodontal disease is treated as 
hile t concept epidemiological st

lationships with other concepts because it is in a separate 
clause. 

IV. EXPERIMENT RESULTS  

In this section, we evaluated both the protein community 
detection algorithm (i.e. CommBuilder) and the community 
annotation approach. Although the detection algorithm is not 
the focus of this paper, we still evaluate its results for the two 
following reasons. First, the annotation result depends on the 
quality of th
itself is not coherent, the resulting annotatio
sense. Second, to understand the functional properties of the 
detected community will help us judge the quality of the 
annotation. 

A. Document Retrieval and Concept Extraction 
We downloaded a dataset of interactions for Saccharomyces 

cerevisae from the General Repository for Interaction Datasets 
(GRID) [17]. The GRID database contains all published large-
scale interaction datasets as well as available curated 
interactions such as those deposited in BIND [18] and MIPS 
[16]. The yeast dataset we downloaded has 4,907 proteins and 
17,59

detection
h comm

The seed protein is selected randomly from the “core” protein
t.  

TABLE I 
DETTHE FOUR PROTEIN CO MUNITIES ECTED BY OMMBUIL ER. THE A

,
LIAS 

FOR EAC ROTEIN IS ANUALLY 
E A

LLECTED O
F

LINE. AS R SPACE
ONL LIST TH S NAME O ROTEIN. 

SAG SRB CCR4 OT RFC ARP2/ARP
ADA2* SRB5†  CCR4*† UBR1 POL12† SKT5† 
CSE2† SRB6† † POL12† NOT3* MAP2 MNN2 
GCN5* SRB7† PKC1 MOB1* RFC5*† CHS3† 
HFI1* SRB8 CDC39*† PRI1† MRC1† ARC40*† 
MED11† † SSN2 COP1† YAK1 RAD24† RVS161
MED2† SSN3 DHH1* CBF1 POL32† ARP2*† 
MED4† TAF1 CDC36*†   CAF17* RFC2*† RVS167†
MED6† TAF10*  TFP1† PRI2† RAD27† SAP155†
MED7† TAF11  CCT6† STM1 CSM3† SLT2† 
MED8† TAF12* RVB1 CSI1 CTF18† ARC15*† 
NGG1* TAF13 YAP6 POL1† POL1† BCK1† 
PGD1† TAF2 ARH1 CAF40† TOF1† ARP3* 
ROX3† TAF3 SRB4 POP2*† † RFC3*† ARC19*
SGF29* † w TAF5* MOT2*† HRT1 RFC4* YLR111
SPT15 TAF6* SEC27† STI1 ELG1† ARC18* 
SPT20* TAF7 †  MPT5 STD1 RFC1* END3†
SPT3* TAF8 GCN1† TFC7† CTF4† SLA2† 
SPT7* TAF9* PIL1 RET3  CLA4† 
SRB2† TRA1* DBF2* RVB2†  ARC35* 
SRB4†  CAF130† NOT5*†  BRO1 

For the SAGA/SRB community: Proteins that belong to 
SAGA complex listed in MIPS complex catalogue database are 
indicated by (*) and those belonging to SRB complex are 
indicated by (†). For CCR4-NOT, Proteins belonging to 
CCR4-NOT complex listed in MIPS are indicated by (*) and 
proteins considered to be involved in transcription and 
DNA/chromatin structure maintenance are indicate by (†). For 
The RFC community. proteins belonging to RFC complex 
listed in MIPS are indicated by (*) and proteins listed in the 
functional category of DNA recombination and DNA repair or 
cell cycle checkpoints by MIPS are indicated by (†). For The 
ARP2/ARP3 community. Proteins belonging to ARP2/3 
complex listed in MIPS are indicated by (*) and proteins listed 
in the functional category of budding, cell polarity, and 
filament formation by MIPS are indicated by (†). 

As for better evaluate our annotation result, we would like to 
discuss the properties of each community using MIPS in detail. 

The first community is identified using TAF6 as seed. TAF6 
is a component of the SAGA complex which is a 
multifunctional co-activator that regulates transcription by 
RNA polymerase II [23]. The SAGA complex is listed in 
MIPS complex catalogue as a known cellular complex 
consisting of 16 proteins. As shown in Table I, the community 
identified by our algorithm contains 39 members, including 14 
of the 16 SAGA complex proteins listed in MIPS (indicated by 
an asterisk in the Alias column). The community also contains 
14 of 21 proteins listed in MIPS as Kornberg’s mediator (SRB) 
complex. The rest of the proteins in the community are either 
TATA-binding proteins or transcription factor IID (TFIID) 
subunits or SRB related. TFIID is a complex involved in 
initiation of RNA polymerase II transcription. SAGA and 
TFIID are structurally and functionally correlated, make 
overlapping contributions to the expression of RNA 



polymerase II transcribed genes [23]. SRB complex is a 
mediator that conveys regulatory signals from DNA-binding 
transcription factors to RNA polymerase II [24]. In addition, 
27

transcription 
ac

ture maintenance [26]. 
N

 in this community 
be

ation (43.01.03.05), 

t (20.09.14), one in 
va

 cytoskeleton (42.04). 

n to serve 
as the functional annotat he correspondin rotein 
comm pairs are 
selecte protein community (see table III).  

TABLE I
Y AND ITS DOWNLOADED DOCUMENT SETS 

ocument 

 of the top 50 potential co-complex proteins (9 of the top 
10), not including the seed proteins, predicted by our module 
are in the identified community.  

However, the most striking commonality among proteins 
within this community is revealed by the MIPS functional 
category each of these proteins belongs to. With only one 
exception (YCL010c), they all belong to functional category 
11.02.03 (mRNA synthesis). More specifically, most of them 
are either in the category of 11.02.03.01 (general 

tivities) or 11.02.03.04 (transcriptional control). Therefore, 
we may annotate the first identified community with the MIPS 
functional category 11.02.03 (mRNA synthesis).   

The second community is discovered using NOT3 as seed. 
NOT3 is a known component protein of the CCR4-NOT 
complex which is a global regulator of gene expression and 
involved in such functions as transcription regulation and DNA 
damage responses. MIPS complex catalogue lists 5 proteins for 
NOT complex and 13 proteins (including the 5 NOT complex 
proteins) for CCR4 complex. The NOT community identified 
is composed of 40 members. All 5 NOT complex proteins 
listed in MIPS and 11 of the 13 CCR4 complex proteins are 
members of the community. POL1, POL2, PRI1, and PRI2 are 
members of the DNA polymerase alpha (I) – primase complex, 
as listed in MIPS. RVB1, PIL1, UBR1, and STI1 have been 
grouped together with CCR4, CDC39, CDC36, and POP2 by 
systematic analysis [25]. The community also contains 20 out 
of 26 proteins of a complex that probably is involved in 
transcription and DNA/chromatin struc

ot surprisingly, most of the proteins in this community are in 
the MIPS category of 10.01 (DNA processing), 10.03 (cell 
cycle), and/or 11.02 (RNA synthesis).  

The third community is identified by using RFC2 as the seed 
(Table I). RFC2 is a component of the RFC (replication factor 
C) complex, the “clamp loader”, which plays an essential role 
in DNA replication and DNA repair. The community identified 
by our algorithm has 17 members. All five proteins of RFC 
complex listed in MIPS complex catalogue database are 
members of this community, as shown in Table 1. This 
community also includes the top 8 ranked proteins predicted by 
our module. All but one (YBL091c) protein

longs to the MIPS functional category of 10.01 (DNA 
processing), with majority of the proteins in the category of 
10.01.03 (DNA synthesis and replication).  

We use ARP3 as seed to identify the last community (figure 
2). ARP2/ARP3 complex acts as multi-functional organizer of 
actin filaments. The assembly and maintenance of many actin-
based cellular structures likely depend on functioning 
ARP2/ARP3 complex [27]. The identified community contains 
all 7 proteins of the ARP2/ARP3 complex listed in MIPS 
(Table I). Not including the seed (ARP3), these proteins 
represent the top 6 ranked proteins predicted by our module. 
Out of the 20 proteins in this community, one is in the MIPS 
functionally unclassified category (99), 14 in the category of 
budding, cell polarity and filament form

one in cytoskeleton-dependent transpor
cuolar transport (20.09.13), and 15 in the category of cell 

wall (42.01) and/or

B. Evaluation of the Annotation Approach 
The annotation of a community is through the following text 

mining procedure. 
1) Relevant documents are retrieved from PubMed for each 

protein community. See the details of the retrieval in Section 
3.2   

2)  For each community, we use MaxMatcher to extract 
biological concepts and concept pairs from retrieved abstracts 
and then index concepts and concept pairs separately.  

3) The mixture language model algorithm is then applied to 
extract topical concepts and topical concept pairs of a protein 
community. We find setting background coefficient to 0.9 
makes the best biomedical sense for protein community 
annotation. And this is reasonable because most terms are 
generated according the whole PubMed database collection;  

4) UMLs semantic types (including Biologic Function, 
Physiologic Function, Cell Function, Molecular Function, 
Genetic Function, Pathologic Function, Cell or Molecular 
Dysfunction, Chemical Viewed Functionally, Functional 
Concept) are used to filter out those non functionality concepts. 
In UMLs ontology, each term has a unique concept ID and 
each concept ID has one or several semantic types. Based on 
this, concepts or pairs without functionality semantic types are 
filtered out in the last step; In particular, for concept pair, we 
require one is functionality concept, the other is gene or protein 
name( with semantic type as “Amino Acid, Peptide, or 
Protein” or “Gene or Genome”). This helps target protein’s 
functionality.  

5) Finally, the top k concepts or concept pairs ranked based 
on the mixture language model probability are chose

ion for t g p
actice, top 15 conce pt unity. In pr pts and conce

d for each 
I 

COMMUNIT
Community # of d
SAGA/SRB 4064 
CCR4-NOT 5885 
RFC 2313 
ARP2/ARP3 827 

 
We obtained lists of top 25 functional concepts and concept 

pairs for each of the identified communities (Table III). These 
concepts and pairs provide a very coherent indication of 
functionality of each community. For example, the top 
concepts and pairs for the SAGA-SRB community are 
predominantly related to transcription initiation (activation); 
the top concepts and pairs for the RFC community are mainly 
about cell cycle and DNA damage. One main disadvantage of 
summarization is that it’s hard to evaluate result. However, our 
concept pair based annotation not only performs well as 
functional annotation, but also serves as evidence to verify 
concept based annotation result. For example, for community 
ARP2/ARP3, the concept pair based annotation successfully 
targets the functionality of ARP2 protein (the functional 



information of SLT2 and SLA2 are also extracted), such as 
regulation of actin polymerization, actin nucleation, and actin 
monomer binding, which is very consist with the community 
function (see table I). These pair information can be very in 
some way helps verify our concept based experiment results. 
For example concepts such as regulation of actin, and actin 
nucleation are verified as functional annotation concepts by 
APR2 protein functional concept pairs in table 1. So, it can 
serve a reasonable evidence to evaluate the concept based 
annotation results, aut  

T  
TO SEPA E HAS BEEN 

C CTION PAIR, ONE IS 
FUNCTIONAL CONCEPT AN ONCEPTS AND CONCEPT 

D ACC
N

o aking the black box
summarization technique more transparent. 

 
TABLE III:  

THE ANNOTATION OF THE FOUR DETECTED PROTEIN COMMUNITY. WE USE “;” 
O SEPARATE CONCEPTS OR CONCEPT PAIRS. FOR CONCEPT PAIRS, WE USE “/”

EPTS. FOR CONCEPTS, THE SEMA

matically m

RATE TWO CONC
HECKED WHETHER IT’S FUN

NTIC TYP
ALITY CONCEPT. FOR CONCEPT 

D THE OTHER IS PROTEIN. C
ORDING TO THE GENERATIVPAIRS ARE RANKE E PROBABILITY OF THE 

ITY THEME MODEL   
Top 15 topic

COMMU
Top 15 topical concepts al concept pairs 

SAGA/SRB Community 
Transcription; 
Transcription Activation;  

n;  

ation 
plex;  

ir;  

eat Expansion;  
histone acetylation;  
N-terminal binding;  
 

TATA-

ation;  

otide 

  

protein protein interactio
Repeat;  

 of translformation
preinitiation com
transcription initiation;  

 Transactivation; 
mutant;  
cell assembly;  

epaNucleotide Excision R
DNA binding;  
ell expansion;  c

DNA Rep

TATA-Binding Protein/Transcription 
Activation;  
TATA-Binding Protein/transcription 
initiation;  

of TATA-Binding Protein/formation 
translation preinitiation complex; 
Binding Protein/DNA binding;  

ivTATA-Binding Protein/Transact
RNA Polymerase B/transcription 
initiation;  
CAG-2/DNA Repeat Expansion;  
TFIID/formation of translation 
preinitiation complex; XPB/Nucle
Excision Repair;  
RNA Polymerase B/formation of 
translation preinitiation complex; 
Transcription Activation/TFIID;  
Gene Expression/TATA-Binding 
Protein;  

vation/Taf protein;Transcription Acti
formation of translation preinitiation 
complex/TFIIB; Transcription 
Activation/hGCN5 gene product;  

CCR4-NOT Community 
Transcription;  
Transcription Activation;  
gene complementation;  
derepression;  
deadenylation-dependent 

factor 

 Site-Directed Mutageneses;  
Genetic Epistasis;  

sion Repair

A 
BF1 

an;  

, human;  

mRNA decay;  
rRNA transcription; Protein 
Splicing;  
S Phase;  
transcription initiation;  

n transcription initiatio
activity;  
formation of translation 
preinitiation complex; 
 chromosome loss;  
DNA synthesis; 
Chromosome Segregation; 

Nucleotide Exci ;  
Gene Expressio

upstream binding factor/rRN
transcription; Transactivation/C
protein, human;  
GCN4 protein, S 
cerevisiae/derepression;  
Gene Expression/CCR4 gene;  
Amino Acids/derepression;  
transcription initiation/Pol I;  
Transcription Factors, TFI/transcription 
initiation factor activity;  
Protein Splicing/TFP1 protein, S 
cerevisiae;  
Gene Expression/MTH1 protein, hum
Gene Expression/Hxt protein, mouse;  
Transcription Activation/CBF1 protein, 
human;  
transcription initiation/Transcription 
Factors, TFI;  

n/CBF1 protein, human;  
CCR4 gene/deadenylation-dependent 
mRNA decay;  
Gene Expression/COP1 protein

RFC Community 
Transcription;  

; 

ly;  

e;  

;  
ckpoint;  

PHF;  
Recombination;  
DNA synthesis;  
ribosomal RNA; Exostosis;  

1 kinase;  Cds1 kinase/DNA 

tein, S 

7 protein;  

ein;  

ne;  

;  
revisiae;  

immunoreactivity
 mutant;  
cell assemb
Cell Cycle;  
DNA Damag
S Phase;  
Mitoses
DNA damage che
replication;  
Repeat;  

S Phase/Cds
Damage;  
DNA Damage/rad24 protein;  
DNA Damage/MEC1 pro
cerevisiae;  
dynein/MAP2 gene;  
DNA Damage/Rad1
Exostosis/MAP2 gene;  
DNA Damage/rad9 prot
phosphokinase/MAP2 gene;  
EGF/MAP2 ge
DNA Damage/CHK2 protein, human;  
DNA Damage/CHK1;  
upstream binding factor/rRNA 
transcription
Cell Cycle/POL1 protein, S ce
Microtubule Proteins/dynein;  
replication factor A/DNA Repair;  

ARP2/ARP3 
mutant;  
defects;  
Endocytosis;  
DELETION;  
Localization;  
Growth;  
regulation of actin 
polymerization;  

l Integrity;  

cell assembly;  
Cytokineses;  
Organization; 
Disrupti ll gro

; 

tein, S cerevisiae/Increased 

/Increased 

visiae;  
; p38/SLT2 protein,  

isiae; CHS/CHS;  

Increased Cell Wal
Cell Cycle;  
gene complementation;  

on; ce wth;  Cytokineses/Cla4p
S cerev

regulation of actin 
polymerization/Arp2 protein, human; 
Endocytosis/nfo protein, E coli; SLT2 
protein, S cerevisiae/calcineurin
Endocytosis/Clathrin;  
SLT2 pro
Cell Wall Integrity;  Arp2 protein, 
human/actin nucleation; actin 
monomer binding/Arp2 protein, 
human;  
Mitoses/GIN4 protein, S cerevisiae;  
PKC1 protein, S cerevisiae
Cell Wall Integrity; ubiquitin/DOA4 
protein, S cere

protein kinase cascade/SLT2 protein, 
S cerevisiae;  

V. CONCLUSIONS   

In this paper, we present an ontology based language 
modeling text mining approach to the annotation of protein 
community, which provides a different perspective in 
evaluating and annotating the identified protein communities. 
The method is composed of four steps: retrieved documents 
from PubMed for each community as a separate collection; 
extract and index concept and concept pairs for each collection 
with UMLS support; use mixture language model to rank 
concepts and concept pairs for each collection, according to the 
probability that they belong to the common theme of the 
collection; choose top k ranked concepts and concept pairs 
respectively for each collection, which serve as functional 
annotation of the according protein community.  The algorithm 
can automatically extract the top high probability biomedical 
concepts and concept pairs that form an indicative common 
theme for an identified community.  

Compared to traditional method such as GO or MIPS, our 
approach has following advantages. First, biomedical literature 
mining brings much richer information than existed gene 
databases. Second, the mixture language model can help 
“purify” the document by eliminating some background noise. 
Third, using domain ontology UMLS, we extract biological 
concept and concept pairs from abstracts. Biological concept is 
more meaningful than word or multi-word phrases. Moreover, 
using concept pairs can deliver much more information, put 



m

nities.  In future, we will consider integrating 
domain knowle summary for a given 
community.  
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ore control on extracted contents and serve as evidence of 
annotation results.  

Experiment results demonstrate our approach’s usefulness 
and potential in helping elucidate the biological relevance of 
these commu
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