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In pattern recognition, morphology, and cellular system design one is interested
in objects routinely represented by a polygonP. Distance properties among the
vertices ofP are one of the fundamental descriptors useful in shape analysis and
clustering. In order to capture perceptually relevant features ofP one associates a
variety of proximity graphs with the polygonP. Typically such a proximity graph
G(P) has the same vertices asP: two vertices ofP are adjacent inG(P) if they
satisfy an application-specific predicate.

Our main contribution is to propose time-optimal algorithms for constructing
the Euclidian minimum spanning tree, the all-nearest neighbor graph, the relative
neighborhood graph, and the symmetric farthest neighbor graph of ann-vertex
unimodal polygon. All our algorithms run on meshes enhanced with row and
column buses. We begin by establishing a�(log n) time lower bound for the
task of computing the Euclidian minimum spanning tree of ann-vertex unimodal
polygon. This lower bound holds for both the CREW-PRAM and for meshes with
multiple broadcasting, regardless of the number of processors available.

Next, we show that this time lower bound is tight by exhibiting an algorithm for
the Euclidian minimum spanning tree problem running in2(log n) time on a mesh
with multiple broadcasting of sizen× n. We also show that the all-nearest neighbor
graph, the relative neighborhood graph, and the symmetric farthest neighbor graph
of an n-vertex unimodal polygon can be computed inO(1) time on a mesh with
multiple broadcasting of sizen × n. © 1998 Academic Press
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1. INTRODUCTION

Amongst the massively parallel architectures, the mesh has emerged as one of the
platforms of choice for solving problems in image processing, computer vision, pattern
recognition, handoff management, cellular system design, robotics, and computational
morphology, with the number of application domains that benefit from this simple and
intuitive architecture growing by the day. Its regular and intuitive topology makes the
mesh eminently suitable for VLSI implementation, with several models built over the
years. Examples include the ILLIAC IV, the STARAN, the MPP, and the MasPar, among
many others [4, 5, 11, 32]. Yet, the mesh is not for everyone: its large computational
diameter makes the mesh architecture less attractive in contexts where the computation
involves data items spread over processing elements far apart.

To address this shortcoming, the mesh has been enhanced by the addition of various
types of bus systems [3, 12, 13, 20, 24, 25, 32]. Early solutions involving the addition of
one or moreglobal busesshared by all the processors in the mesh, have been implemented
on a number of massively parallel machines [4, 12, 18, 32]. Yet another popular way
of enhancing the mesh architecture involves endowing every row with its own bus. The
resulting architecture is referred to asmesh with row busesand has received a good deal
of attention in the literature. Recently, a more powerful architecture has been obtained
by adding one bus to every row and to every column in the mesh, as illustrated in Fig. 1.
In [20] an abstraction of such a system is referred to asmesh with multiple broadcasting.
The mesh with multiple broadcasting has been implemented in VLSI and is commercially
available in the DAP family of multicomputers [21, 31, 34]. In turn, due to its commercial
availability, the mesh with multiple broadcasting has attracted a great deal of attention.
Applications ranging from image processing [21, 31, 34], to visibility and robotics [9,
30], to digital geometry and pattern recognition [7, 9, 20, 23, 30], to optimization [14],
to other basic problems [3, 6, 8, 13] have been reported on this platform and some of its
variants [23].

In essence, a mesh with multiple broadcasting of size
√

n×√n, hereafter also referred
to as a mesh if no confusion is possible, consists ofn identical SIMD processors posi-
tioned on a square array, with the processors in the first column also serving as I/O ports.

FIG. 1. A mesh with multiple broadcasting of size 4× 4.
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The processor located in rowi and columnj , (1≤ i, j ≤ n), is referred to asP(i , j ).
As customary, we assume that processors know their coordinates within the mesh and
have aconstantnumber of registers of sizeO(log n). In unit time, each processor per-
forms an arithmetic or boolean operation, communicates with one of its neighbors using
a local connection, broadcasts a value on a bus or reads a value from a specified bus.
Each of these operations involves handling at mostO(log n) bits of information. For
practical reasons, only one processor is allowed to broadcast on a given bus at any one
time. By contrast, all the processors on the bus can simultaneously read the value being
broadcast. In accord with other researchers [3, 20, 25, 31], we assume that communica-
tions along buses takeO(1) time. Although inexact, recent experiments with the DAP,
the PPA, and the YUPPIE multiprocessor array systems seem to indicate that this is a
reasonable working hypothesis [21, 31, 34].

A PRAM [19] consists of synchronous processors, all having unit-time access to a
shared memory. At each step, every processor performs the same instruction, with a
number of processors masked out. In the CREW-PRAM, a memory location can be
simultaneously accessed in reading but not in writing. A mesh with multiple broadcasting
can be perceived as a restricted version of the CREW-PRAM: the buses are nothing
more thanoblivious concurrent read, exclusive write registers with the access restricted
to certain sets of processors. Indeed, a square mesh with multiple broadcasting usingp2

processors can be viewed as a CREW-PRAM withp2 processors where groups ofp of
these have concurrent read access to a register whose value is available for one time unit,
after which it is lost. Given that the mesh with multiple broadcasting is, in this sense,
weakerthan the CREW-PRAM, it is very often quite a challenge to design algorithms
in this model that match the performance of their CREW-PRAM counterparts. Typically,
for the same running time, the mesh with multiple broadcasting uses more processors.
This phenomenon will appear in our algorithms.

In pattern recognition and classification the shape of an object is routinely represented
by a polygon obtained from an image processing device [2, 17, 38]. A class of
fundamental features that contribute to a morphological description useful in shape
analysis are the (Euclidian) distance properties among vertices of the polygon. Nearest-
and furthest-neighbor computations are central to pattern recognition classification
techniques, image processing, computer graphics, and computational geometry [16,
17, 33, 37]. In image processing, for example, proximity is a simple and important
metric for potential similarities of objects in the image space. In pattern recognition,
the same concept appears in clustering and computing similarities between sets [17]. In
computational geometry, closeness is often a valuable tool in devising efficient algorithms
for a number of seemingly unrelated problems [33].

A classic problem in this domain involves computing for every point in a given setS,
a point that is closest to it: this problem is known as the all-nearest neighbor problem
and has been well studied in the literature [16, 17, 30, 33, 37]. A class of related
problems involves associating a certain graph with the setS. This graph is, of course,
application specific. For example, in pattern recognition one is interested in the Euclidian
minimum spanning tree (EMST) ofS, the all-nearest neighbor graph (ANNG), the relative
neighborhood graph (RNG) ofS, the symmetric farthest neighbor graph (SFNG) ofS,
the Gabriel graph (GG) ofS, and the Delaunay graph (DG) ofS, to name a few [16, 33,
35–38].
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The main contribution of this work is to provide time-optimal algorithms to construct
the EMST, the ANNG, the RNG, and the SFNG of ann-vertex unimodal polygon. We
begin by establishing a�(log n) time lower bound for the task of computing the EMST of
an n-vertex unimodal polygon. This time lower bound holds for both the CREW-PRAM
and for the mesh with multiple broadcasting, even if an infinite number of processors
are available. Next, we show that the bound is tight by exhibiting an EMST algorithm
running in2(log n) time on a mesh with multiple broadcasting of sizen× n. We also
show that the ANNG, the RNG, and the SFNG of ann-vertex unimodal polygon can be
computed inO(1) time on a mesh with multiple broadcasting of sizen× n.

The remainder of the work is organized as follows: Section 2 discusses basic
terminology and algorithms that are key ingredients of our subsequent sections; Section 3
presents our time lower bound arguments; Section 4 gives the details of the proposed time-
optimal algorithms for the ANNG, RNG, EMST, and SFNG problems; finally, Section 5
offers concluding remarks and poses a number of open questions.

2. BACKGROUND AND TERMINOLOGY

Specifying ann-vertex polygonP in the plane amounts to enumerating its vertices in
clockwiseorder asp1, p2, . . . , pn, (n ≥ 3), in such a way thatpi pi+1, (1≤ i ≤ n−1),
and pn p1 define the edges ofP. This representation is known asvertexrepresentation
of P. The vertex representation of a polygon can be easily converted into anedge
representation whereP is represented by a sequencee1, e2, . . . , en of edges, specified
in clockwise order, withei , (1≤ i ≤ n− 1), havingpi and pi+1 as its endpoints anden

having pn and p1 as its endpoints. A polygonP is termedconvexif all its diagonals lie
entirely within P.

For definiteness, we now discuss a number of important representational issues for the
objects we manipulate. Specifically, a polygonP is represented by a linked list stored in
some order in an arrayP[1 . . . n]. Occasionally, we shall find it convenient to perceive
the polygonP as a graph, also denoted byP, whose vertices are the vertices ofP and
whose edges are precisely the edges ofP. Since a number of different graphs will be
considered in this paper, it is appropriate to clarify how these graphs are specified. As
customary [19], a graphG will be specified by a linked list of edges i.e.,unordered
pairs of vertices, stored in some order in an arrayG. This representation facilitates a
number of cardinality queries about the graph as well as the assignment of processors to
the edges ofG.

It is customary to call a real functionf : {0, 1, . . . , n − 1} → R unimodalif there
exists an integeri , (0≤ i ≤ n− 1), such that the functionf is strictly increasing in the
interval [0, i ] and strictly decreasing in the interval [i, n− 1]. A vertex pi of a polygon
P is said to beunimodal if the Euclidian distance functiond(pi , pj ) from vertex pi

to vertex pj , i 6= j , of P is unimodal: in other words, the sequenced(pi , pi+1),
d(pi , pi+2), . . . , d(pi , pi−1) is unimodal. The polygonP itself is termed unimodal if
all its vertices are unimodal. For an illustration, we refer the reader to Fig. 2.

Traditionally, convexity has played a central role in analyzing relevant features of the
shape of a set of points [2, 17, 33]. Recently, Toussaint [37] pointed out that the notions
of convexity and unimodality are quite different: convex polygons need not be unimodal,
and unimodal polygons need not be convex. Furthermore, in [37] it is argued convincingly
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FIG. 2. A unimodal polygon.

that the key factor for obtaining very efficient algorithms for a large number of problems
in pattern recognition and morphology is not convexity, but rather unimodality. It is
not surprising, therefore, that unimodality and multimodality have received considerable
attention in the literature [1, 26–28, 36–38].

The Euclidian minimum spanning treeof a setS of points in the plane is a minimum
spanning tree of the complete graph whose vertices are the points inS and whose edges
are weighted by the Euclidian distance between the corresponding points. Theall-nearest
neighbor graphof a setS of points has the points inS as vertices. Verticesp andq are
joined by an edge in ANNG ifp (resp.,q) is the nearest neighbor ofq (resp., p) in S.
We note that the nearest neighbor relation is not symmetric. It is quite possible thatq is
the nearest neighbor ofp but not conversely.

The relative neighborhood graphof a setS of points in the plane was introduced by
Toussaint [37] in an effort to capture many perceptually relevant features of the setS.
Specifically, given a setS of points in the plane, RNG(S) has for vertices the points of
S together with an edge betweenp and q if d(p, q) ≤ maxs∈S{d(p, s), d(q, s)}. An
equivalent definition states that two verticesp, q are joined by an edge in RNG(S) if
no point s of S lies inside LUNE(p, q), the “lune of influence” ofp, q defined as the
intersection of two open disks each of radiusd(p, q) centered atp, q, respectively, as
illustrated in Fig. 3.

Given a setS a points in the plane, the pointsp andq of S are asymmetric farthest
neighbor pair if both p and q are furthest from each other among the points ofS, i.e.,
all other points lie inside LUNE(p, q). Put differently,

FIG. 3. Illustrating LUNE(p, q).
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d(p, q) = max
s∈S
{d(p, s)} andd(q, p) = max

s∈S
{d(q, s)}.

The symmetric farthest neighbor graphassociated withS has the points ofS as vertices.
Two verticesp andq are connected by an edge if and only ifp andq are a symmetric
furthest pair [38]. For an illustration of the EMST, ANNG, RNG, and SFNG of a setS
of points in the plane the reader is referred to Fig. 4a–e.

The prefix computationproblem has turned out to be one of the basic techniques in
parallel processing, being a key ingredient in many algorithms. The problem is stated as
follows: given an associative binary operation◦ and a sequencea1, a2, . . . , an of items,
compute all the sums of the forma1, a1 ◦ a2, a1 ◦ a2 ◦ a3, . . . , a1 ◦ a2 ◦ . . . ◦ an.

PROPOSITION2.1 [20, 29]. The prefix sums(also maxima or minima) of a sequence
of n real numbers stored in one row of a mesh with multiple broadcasting of size n× n
can be computed in2(log n) time. Furthermore, this is time optimal.

The convex hull of a set of points in the plane is defined as the smallest convex set
that contains the original set [33]. Our arguments rely, in part, on the following result
proved in [29].

PROPOSITION2.2 [29]. The convex hull of planar set of n points stored in the first row
of a mesh with multiple broadcasting of size n× n can be computed in2(log n) time.
Furthermore, this is time optimal.

Vertices pi and pj of a convex polygonP are termedantipodal if P admits parallel
supporting lines throughpi and pj . The diameter of a convex polygon [33] is the
largest Euclidian distance between any pair of its vertices. A classic result [33] asserts
that the diameter of a convex polygon is the largest distance between antipodal pairs.

FIG. 4. Illustrating the EMST, ANNG, RNG, and SFNG graphs of a set of points.
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Recently, [8] showed that all the antipodal pairs of a convex polygon as well as any
semigroup computations involving these antipodal pairs can be determined efficiently.
More precisely, the following result was proved in [8].

PROPOSITION 2.3 [8]. Let P be an n-vertex convex polygon stored one vertex per
processor in one row of a mesh with multiple broadcasting of size n× n. Any semigroup
computation involving the antipodal pairs of P can be performed in2(log n) time. Fur-
thermore, this is time optimal.

3. THE LOWER BOUND

The purpose of this section is to establish a time lower bound for the following
proximity graph problems.

EMST: given an n-vertex unimodal polygon compute its Euclidian minimum
spanning tree.

Our lower bound arguments will be stated first in the CREW-PRAM. This approach
is motivated by a recent result of Linet al. [22] that allows us to extend many lower
bound results from the CREW-PRAM to meshes with multiple broadcasting.

For further reference we now state a fundamental result of Cooket al. [15].

PROPOSITION3.1 [15]. The time lower bound for computing the logical OR of n bits
on theCREW-PRAM is �(log n), regardless of the number of processors and memory
cells available.

In addition, we shall rely on the following recent result of Linet al. [22].

PROPOSITION 3.2. Any computation that takes O(t (n)) steps on an n-processor
mesh with multiple broadcasting can be performed in O(t (n)) steps on an n-processor
CREW-PRAM.

It is important to note that Proposition 3.2 guarantees that ifTM (n) is the execution
time of an algorithm for solving a given problem on ann-processor mesh with multiple
broadcasting, then there exists a CREW-PRAM algorithm to solve the same problem in
TP(n) = TM(n) time usingn processors. In other words, “too fast” an algorithm on the
mesh with multiple broadcasting implies “too fast” an algorithm for the CREW-PRAM.
This observation is exploited in [22] to transfer known computational lower bounds for
the PRAM to the mesh with multiple broadcasting.

We show that the time lower bound for EMST is�(log n) on the CREW-PRAM, by
reducing the OR problem to EMST. For this purpose, letc1, c2, . . . , cn be an arbitrary
input to the OR problem. Consider a circleC and letb1, b2, . . . , b2n be equally spaced
points on the boundary ofC. It is easy to constructC such that the points are one unit
apart. Associate with each input bitci , (1≤ i ≤ n), the pair of pointsbi andbn+i on C.
If ci = 1 then perturb the pointsbi andbn+i by a small amountε clockwise as illustrated
in Fig. 5. Let P be the resulting polygon with its vertices denoted in clockwise order by
b1, b2, . . . , b2n. It is easy to see thatP is unimodal. Fig. 5 illustrates this construction
for n = 6 and the input sequence 0, 0, 1, 0, 0, 0.

If c1 = 1 then the answer to OR is 1 and we are done. Otherwise, consider any
algorithm that correctly returns the EMST of the polygonP. Clearly, EMST has 2n− 1
edges. InO(1) time n processors can identify theuniqueedge ofP that does not belong
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FIG. 5. Illustrating the lower bound argument for EMST.

to the EMST. Now the answer to OR is 1 if and only if the length of this edge is larger
than 1. Since the construction ofP takesO(1) time usingn processors on the CREW-
PRAM, Proposition 3.1 implies the following result.

THEOREM 3.3. The task of computing the Euclidian minimum spanning tree of an
n-vertex unimodal polygon has a time lower bound of�(log n) on theCREW-PRAM,
regardless of the number of processors and memory cells available.

It is important to note that the polygonP used in the reduction above is always convex,
in addition to being unimodal. Therefore, we have the following result which is of an
independent interest.

THEOREM 3.4. The task of computing the Euclidian minimum spanning tree of an
n-vertex convex polygon has a time lower bound of�(log n) on theCREW-PRAM,re-
gardless of the number of processors and memory cells available.

By virtue of Proposition 3.2 and of Theorem 3.3, combined, we have the following
important result.

THEOREM 3.5. The task of constructing theEMST of an n-vertex unimodal polygon
has a time lower bound of�(log n) on a mesh with multiple broadcasting of size n× n.

4. THE ALGORITHMS

The purpose of this section is to design time-optimal algorithms to compute the
ANNG, the RNG, the EMST, and the SFNG of ann-vertex unimodal polygonP =
p1, p2, . . . , pn stored in the first row of a mesh with multiple broadcasting of size
n × n. We let ANNG(P), RNG(P), EMST(P), and SFNG(P) stand for the proximity
graphs we wish to compute.
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Quite recently, a rather complicated algorithm for computing the ANNG of an arbitrary
set of points in the plane was proposed in [30]. To solve the ANNG problem for
unimodal polygons we rely on the following simple fact whose proof follows directly
from definition.

LEMMA 4.0. Let P be a unimodal polygon. Every edge is adjacent to its nearest neigh-
bor in P.

Note that Lemma 4.0 suggests an obviousO(1) time algorithm for constructing
the ANNG(P) of P. This algorithm only involves communications between adjacent
processors. As a result, if the unimodal polygon is available in a linear array ofn
processors, the corresponding instance of the ANNG problem can be solved inO(1)
time.

Recently, Olariu [26] developed simple linear-time sequential algorithms to compute
the EMST and RNG of a unimodal polygon. To make this work self-contained we now
recall a number of relevant properties of unimodal polygons established in [26].

PROPOSITION4.1. If a diagonal of P is an edge ofRNG(P) then its endpoints belong
to the two longest edges of P.

Call an edgee of RNG(P) P-critical if e 6∈ P. It is worth noting that Proposition 4.1
asserts that ifpi pj is P-critical, then pi and pj must be endpoints of the two longest
edges inP. A natural question to ask is: “How manyP-critical edges can RNG(P)
contain?” The answer to this question is given by the following result.

PROPOSITION4.2. If P is a unimodal polygon, thenRNG(P) contains at most one P-
critical edge.

An important consequence of Proposition 4.2 is the following.

COROLLARY 4.3. If P is an n-vertex unimodal polygon, thenEMST(P) shares at least
n− 2 edges with P.

The following result makes Corollary 4.3 more precise, by characterizing the diagonals
of P that can belong to EMST(P).

PROPOSITION4.4 [26]. A diagonal of P is an edge inEMST(P) if and only if it is a
P-critical edge inRNG(P).

Figure 6 features a unimodal polygonP = x, u, w, v. As easily seen, LUNE(u, v)
is empty and souv is an edge in RNG(P). By Proposition 4.4,uv is also an
edge in EMST(P). We begin by showing that given ann-vertex unimodal polygon
P = p1, p2, . . . , pn, stored one vertex per processor in the first row of a mesh with
multiple broadcasting of sizen × n, the task of detecting the edges ofP that do not
belong to RNG(P) can be performed inO(1) time. For definiteness, assume that for
every i , 1 ≤ i ≤ n, processorP(1, i ) stores the vertexpi . Using the vertical buses we
replicate the contents of the first row in all the rows of the platform. Next, for everyi ,
1 ≤ i ≤ n − 1, processorP(i , i ) broadcasts the edgepi pi+1 to all the processors in
row i . Similarly, processorP(n, n) broadcasts the edgepn p1 throughout rown. Every
processor in rowi that detects that the point it stores in inside LUNE(pi , pi+1) sets
a local register to 1. All other processors set the register to 0. The following technical
result is key for ourO(1) time algorithm for computing the RNG(P).



TIME-OPTIMAL PROXIMITY GRAPH COMPUTATIONS 213

FIG. 6. Illustrating the concept of aP-critical edge.

LEMMA 4.5. For every row i, the set of processors that store a1 form an interval.

Proof. Suppose not and refer to Fig. 7. We find an edgepi pi+1 of the polygon
and two verticespj and pk such that j < k, pj and pk belong to LUNE(pi , pi+1)

while pj+1 does not belong to LUNE(pi , pi+1). However, now we contradict thatP
is unimodal, sinced(pi+1, pj ) < d(pi+1, pj+1), d(pi+1, pj+1) > d(pi+1, pk), and
d(pi+1, pk) < d(pi+1, pi ). This completes the proof of the lemma.

By virtue of Lemma 4.5, theleftmostprocessor in rowi that stores a vertex that lies
inside LUNE(pi , pi+1) can be detected inO(1) time. In turn, this processor informs
P(i, i ) that the edgepi pi+1 cannot belong to RNG(P). To summarize our findings we
state the following result.

LEMMA 4.6. The task of detecting the edges of P that do not belong toRNG(P) can
be performed in O(1) time.

We are now in a position to spell out the details of the algorithm to compute the RNG
of a unimodal polygonP.

ALGORITHM. Compute-RNG(P);

FIG. 7. Illustrating the proof of Lemma 4.5.
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Step 1. Determine the edges ofP that do not belong to RNG(P). If no such edge
exists then return(P);

Step 2. Let pi pi+1 and pj pj+1 be the two edges ofP that do not belong to
RNG(P); let pr ps be the critical edge of the polygon determined bypi , pi+1, pj , pj+1.
Return(P ∪ {pr ps} \ {pi pi+1, pj pj+1}).

THEOREM 4.7. Algorithm Compute-RNG returns RNG(P) of an n-vertex unimodal
polygon in O(1) time on a mesh with multiple broadcasting of size n× n.

Proof. By Lemma 4.6, Step 1 can be executed inO(1) time. If all the edges ofP
belong to RNG(P) then, at the end of Step 1 we exit with the correct answer.

On the other hand, if Step 2 is executed then by Proposition 4.2 we know that RNG(P)
has exactly one critical edge. Moreover, this edge is determined by the endpoints of the
two edges ofP that do not belong to RNG(P). This is precisely what Step 2 is computing.
Finally, the task of compacting the edges of RNG(P) into the leftmost positions in the
first row of the mesh is done in the obvious way:pi pi+1 is replaced withpr ps. All the
edges to the left ofpj pj+1 are to move one position to the left. Clearly, the compaction
phase of Step 2 can be performed inO(1) time. This completes the proof of the theorem.

Next, we present an algorithm to compute the EMST(P) of an n-vertex unimodal
polygon P = p1, p2, . . . , pn.

ALGORITHM. Compute-EMST(P);

Step 1. Determine the longest and second-longest edges ofP and let them bepi pi+1

and pj pj+1;

Step 2. Let pr ps be any critical edge of the polygon determined bypi , pi+1, pj ,
pj+1. If such a critical edge exists then return(P ∪ {pr ps} \ {pi pi+1, pj pj+1}).

Step 3. On the other hand, if such a critical edge does not exist, then EMST(P) is
obtained fromP by removing the edgepi pi+1. Return(P \ {pi pi+1}).

THEOREM 4.8. Algorithm Compute-EMST returnsEMST(P) of an n-vertex unimodal
polygon in2(log n) time on a mesh with multiple broadcasting of size n× n. Further-
more, this is time optimal on this architecture.

Proof. The correctness of this simple algorithm is guaranteed by a result in [26]. By
Proposition 2.1, computing the longest and the second-longest edges ofP takesO(log n)
time. The task of testing whether or not LUNE(pi , pi+1) is empty takesO(1) time. Thus,
the running time is bounded byO(log n) which is time-optimal by Theorem 3.5.

Let us outline the idea of our algorithm to compute the SFNG of ann-vertex unimodal
polygon P pretiled one vertex per processor in the first row of a mesh with multiple
broadcasting of sizen× n such that for everyi , (1 ≤ i ≤ n), processorP(1, i ) stores
vertex pi . By using the vertical buses, the polygonP is replicated in all the rows of
the platform. In every rowi , (1 ≤ i ≤ n), processorP(i, i ) broadcastspi horizontally.
Every processorP(i, j ) in row i computes the Euclidian distance betweenpi and pj .
Since the polygon is unimodal, exactly one processor, sayP(i, k), detects that it stores
the vertex pk which is farthest away frompi . Next, P(i, k) broadcastsk to all the
processors in rowi . This is tantamount to informing every processor in this row thatpk

is the farthest neighbor ofpi . Further, P(i , i ) broadcastsk to P(k, i ). Clearly, pi and
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pk are a symmetric farthest neighbor pair only ifP(k, i ) stores bothpi and pk as a
result of the previous broadcasts. The details follow.

ALGORITHM. Compute-SFNG(P);

Step 1. Using vertical buses, every processorP(1, i ), (1 ≤ i ≤ n), broadcasts the
vertex pi to the entire columni ;

Step 2. Every processorP(i, i ), (1≤ i ≤ n), broadcastspi to the entire rowi ;

Step 3. Every processorP(i, j ), (1 ≤ i 6= j ≤ n), computes the Euclidian distance
d(pi , pj ); in every row i , (1 ≤ i ≤ n), exactly one processor, say,P(i, k) detects that
pk is the farthest neighbor ofpi ;

Step 4. For every i , (1 ≤ i ≤ n), the processorP(i , k) that stores the farthest
neighbor of pi broadcastsk to the entire rowi . Every processor in rowi storesk in a
local registerR1;

Step 5. Every processorP(i, i ), (1≤ i ≤ n), broadcastsk, the index of the farthest
neighbor of pi , vertically to processorP(k, i ) who stores the value received in a local
registerR2;

Step 6. Every processorP(k, i ), (1 ≤ i 6= k ≤ n), for which the contents of its
registersR1 and R2 are i andk, respectively, identifies(pi , pk) as a symmetric farthest
neighbor pair and broadcasts this information to processorP(k, 1) in the first row of
the mesh.

THEOREM 4.9. The task of computing theSFNGof an n-vertex unimodal polygon can
be performed in O(1) time on a mesh with multiple broadcasting of size n× n. Further-
more, this is optimal in the sense that�(n2) processors are necessary to guarantee a
constant-time performance.

Proof. The correctness of the algorithm being easy to see, we turn to the complexity.
Clearly, all the steps in the algorithm involve simple broadcasting and arithmetic/logic
operations and run inO(1) time.

To argue for the processor optimality, letn be even and consider a regularn-gon stored
in the first row of the platform such that for everyi , (1≤ i ≤ n), processorP(1, i ) stores
vertex pi . Clearly, the symmetric farthest neighbor of every vertexpi , (1≤ i ≤ n), is the
vertex pn/2+i . However, information about this vertex must cross from the right half of
the mesh into the left half. Since�(n) pieces of information must cross this “boundary,”
an O(1) time performance requires a platform with�(n2) processors, as claimed.

5. CONCLUSIONS AND OPEN PROBLEMS

In this work we have addressed the problems of computing the ANNG, the RNG,
the EMST, and the SFNG of ann-vertex unimodal polygon. We have shown a time-
lower bound of�(log n) for the task of computing the EMST of ann-vertex unimodal
polygon. This lower bound holds for the CREW-PRAM as well as the mesh with multiple
broadcasting. We have shown that this time lower bound is tight by exhibiting a matching
EMST algorithm. In addition, the task of computing the ANNG, the RNG, and the SFNG
of a unimodal polygon can be computed inO(1) time.
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It is well known that EMST⊆ RNG⊆ GG⊆ DT [33]. We can prove�(log n) time
lower bounds for the problem of constructing the GG and DT of ann-vertex unimodal
polygon on a mesh with multiple broadcasting of sizen× n. Are these bounds tight?

Our time lower bound result shows that the above problems cannot be solved faster in
the computational model that we adopted. We have shown that theO(1) time resolution
of the SFNG problem requires�(n2) processors and that the ANNC can be solved in
O(1) time with�(n) processors. It would be interesting to know whether the remaining
problems can be solved with fewer thann2 processors. We pose this as an open problem.

Recently, several authors have shown that rectangular meshes sometimes yield faster
algorithms than square meshes. It would be interesting to see whether this is also the
case for nearest and farthest neighbor computations.
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