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Abstract

In this paper, an efficient computation method for computing the texture browsing descriptor of MPEG-7 is provided. Texture browsing

descriptor is used to characterize a texture’s regularity, directionality and coarseness. To compute the regularity of textures, Fourier

transform is first performed. To get more discriminative features for regularity computation, the Fourier spectrum is treated as an image and

the Fourier transform is performed again to produce an enhanced Fourier spectrum. A regularity measure based on the variance of the radial

wedge distribution is then calculated to determine the regularity of textures. For regular textures, the texture primitives are assumed to be

parallelograms, the two dominant directions are extracted by Hough transform. A scale computation method is then provided to determine

the scales corresponding to the two dominant directions. In addition, principal component analysis is provided to detect textures with only

one dominant direction. Experiments of texture browsing, coarse classification of textures and similarity-based image-to-image matching are

performed on the texture images of Brodatz album and Corel Gallery image database to demonstrate the efficiency and effectiveness of the

proposed method. The proposed method can be used in the applications of texture browsing and texture retrieval.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Texture almost presents everywhere in natural and real

world images. Texture, therefore, has long been an

important research topic in image processing. Successful

applications of texture analysis methods have been widely

found in industrial, biomedical and remote sensing areas.

Thus, appropriate descriptors for textures could provide

powerful means in applications of texture browsing, coarse

texture classification and texture retrieval. Three texture

descriptors have been specified in MEPG-7 [1]. The

Homogeneous Texture Descriptor (HTD) provides quanti-

tative characterization of texture patterns and is useful for

images with homogeneous textural properties. HTD can be

used for similarity-based image-to-image matching.

To provide descriptions for non-homogeneous textures,
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Edge Histogram Descriptor (EHD) is provided. The spatial

distribution of edges is extracted and is useful for image-to-

image matching when the underlying texture is not

homogeneous. Texture Browsing Descriptor also named

Texture Browsing Component (TBC) relates to the

perceptual characterization of texture, in terms of regularity,

directionality and coarseness. The coarseness is related to

image scale or resolution. This descriptor is useful for

browsing type applications and coarse classification of

textures.

Approaches for estimating the dominant directions of

textures in spatial domain [2] or in frequency domain [3]

have been proposed. Liu and Picard [4] proposed a texture

model addressing the perceptual characteristics of textures

mentioned above. The texture model proposed emphasizes

the perceptually most salient periodic information. To

determine the prominence of periodic structures in a texture,

the energy distribution of image autocovariance function is

examined. The image autocovariance is computed as the

inverse DFT of the image power spectrum. In addition,

a computation method of TBC has been recommended
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in [5,6]. In this method, an image is filtered using a bank of

scale and orientation selective band-pass filters called Gabor

wavelet [7]. To compute the dominant directions, direc-

tional histograms are constructed from the filtered images at

different scales and then the two histogram peaks with the

highest contrasts are considered as the two dominant

directions. To compute the scale and regularity, the filtered

images are projected along the two dominant directions to

form two sets of projections. For each set of projections, the

autocorrelation function is evaluated. The scale and

regularity are then determined based on the peaks and

valleys of the autocorrelation function. In addition,

consistency checks based on the neighboring relationship

of the projections are provided to make the method more

robust. As it involves the computation of applying Gabor

wavelet filters and autocorrelation function, the method is

relatively time-consuming.

In this paper, an efficient computation method of TBC

will be provided. The method is based on the fact that for a

directional texture image, the magnitudes of its Fourier

spectrum will concentrate on a certain direction; for regular,

on several directions; for irregular, not on any direction

[8,9]. To compute the regularity of textures, Fourier

transform is first performed. The Fourier spectrum is then

smoothed to reduce noises. The smoothed Fourier spectrum

is treated as an image and the Fourier transform is

performed again to produce an enhanced Fourier spectrum.

A regularity measure based on the variance of the radial

wedge distribution is then calculated to determine the

regularity of textures. For regular textures, the texture

primitives are assumed to be parallelograms, the two

dominant directions and their associated scales of the

primitives are determined by Hough transform [10]. In

addition, principal component analysis is provided to detect

textures with only one dominant direction. Experiments

of texture browsing, coarse classification of textures and

texture retrieval are performed to test the texture images of

Brodatz album [11] and Corel Gallery image database to

demonstrate the efficiency and effectiveness of the proposed

method.

The rest of the paper is organized as follows. The

proposed computation method is presented in Section 2. In

Section 3, experimental results and discussion are

described. Finally, in Section 4, we give a conclusion.
2. The proposed method

TBC characterizes perceptual attributes in terms of

regularity, directionality and coarseness. We will base on

the following properties of Fourier spectrum to measure

these three perceptual textural attributes: (1) for regular

textures, the Fourier spectrum consists of significant peaks

scattering out regularly on some directions of the frequency

plane, (2) for textures with strong directionality, the

directionality will be preserved in the Fourier spectrum,
and the high spectral values of Fourier spectrum will also

tend to lie in a direction which is perpendicular to the

direction of texture patterns, (3) for irregular textures,

spectral values are not concentrated on any direction. One

example demonstrating these properties is shown in Fig. 1.

In the following sections, we will first give a brief

introduction to the semantics of texture browsing descriptor.

Then, the details of the proposed computation method for

regularity, directionality and coarseness will be explained.

2.1. A brief introduction to the semantics of texture

browsing component

Texture browsing component is a 12-bits descriptor: 2

bits for representing regularity, 6 bits (3 bits!2) for

directionality and 4 bits (2 bits!2) for coarseness. The

descriptor allows a maximum of two directions and

coarseness values. The regularity is graded on a scale of

0–3, with 3 indicating textures with highly structured

periodic patterns, while 0 indicating irregular or random

textures. The directionality is quantized into six values,

ranging from 0 to 1508 in the step size of 308. Three bits are

used to represent directions, with up to two directions can be

specified. A coarseness component is associated with each

direction. Coarseness is related to image scale or resolution,

and is quantized into four values, with 3 indicating a very

coarse texture and 0 indicating a fine grain texture. In

addition, a separate bit called ComponentNumberFlag is

used to specify the number of components in the descriptor.

If it is equal to 0 then only one direction and its scale is

present, otherwise two directions will be present in TBC.

In this paper, we use v1 to denote the regularity, v2 and v4

the two dominant directions, and v3 and v5 the two scales

associated with the two dominant directions. In the

following, we will present an efficient computation method

for the above-mentioned descriptor components.

2.2. Computation of regularity (v1)

It is mentioned in [5] that texture with a well-defined

directionality even in the absence of a perceivable micro-

pattern is considered more regular than a pattern that lacks

directionality and periodicity, even if the individual micro-

patterns can be clearly identified. One pictorial example of

the four scales of regularity is shown in Fig. 2. From this

figure, we can see that Fig. 2(b) is considered more regular

than Fig. 2(c), even there are clear circular patterns in

Fig. 2(c). This shows that periodicity and directionality

should be more influential than other factors when

determining regularity. Highly regular (regularityZ3) and

regular (regularityZ2) textures are called as ‘high regu-

larity textures’, and slightly regular (regularityZ1) and

irregular (regularityZ0) textures as ‘low regularity tex-

tures’ in this paper.

For high regularity textures, their Fourier spectra consist

of significant peaks scattering out regularly on some



Fig. 1. Some examples of the Fourier spectra of regular, directional and irregular textures. (a) A regular texture (D1). (b) A directional texture (D106). (c) An

irregular texture (D54). (d) The Fourier spectrum of (a). (e) The Fourier spectrum of (b). (f) The Fourier spectrum of (c).
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directions; for low regularity textures, spectral values are

not concentrated on certain directions. These properties can

be further enhanced by performing Fourier transform on the

Fourier spectrum. The obtained Fourier spectrum is called

an enhanced Fourier spectrum. The textural features of an

enhanced Fourier spectrum are more prominent than those

of the original Fourier spectrum [12]. Two examples are

shown in Fig. 3. Fig. 3(a) shows a regular texture from D1

of Brodatz album. Fig. 3(b) shows the Fourier spectrum of

Fig. 3(a), the spectral peaks, each of which comes from the

contribution of those pixels with the same period in the

original image, spread out regularly along certain directions.

This property is enhanced in the enhanced Fourier spectrum,

the reason is that those peaks in the Fourier spectrum are

periodic, through applying Fourier transform again, peaks

with the same period will contribute to the same frequency,

making the peaks in the enhanced Fourier spectrum more
Fig. 2. An example of regularity classification. (a) Highly re
prominent. On the other hand, for those remaining pixels

(not peaks) in the Fourier spectrum, since they are not

periodic, by applying the Fourier transform again, they do

not contribute to the same frequency. This phenomenon also

enhances those peaks relatively. Fig. 3(c) shows the

enhanced Fourier spectrum of Fig. 3(a). Fig. 3(d) is the

image obtained by adding 30% of Gaussian noise on

Fig. 3(a). Fig. 3(e) is the smoothed Fourier spectrum of

Fig. 3(d), the frequencies to which the periodic patterns

contribute, are mixed with noises in the Fourier spectrum.

This is due to that too many non-periodic noises exist. Thus,

it is difficult to extract textural features from the Fourier

spectrum. By applying Fourier transform to Fig. 3(e), the

spectral peaks appear more prominent on the enhanced

Fourier spectrum shown in Fig. 3(f). Fig. 3(g) shows a

random texture. Its Fourier spectrum is shown in Fig. 3(h).

The spectral responses in the Fourier spectrum are not
gular. (b) Regular. (c) Slightly regular. (d) Irregular.



Fig. 3. Two examples of the enhanced Fourier spectra for periodic and random textures. (a) A periodic texture (D1). (b) The smoothed Fourier spectrum of (a).

(c) The enhanced Fourier spectrum of (a). (d) The image after adding 30% of noise on (a). (e) The smoothed Fourier spectrum of (d). (f) The enhanced Fourier

spectrum of (d). (g) A random texture (D54). (h) The smoothed Fourier spectrum of (g). (i) The enhanced Fourier spectrum of (g).
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periodic and do not concentrate on certain frequencies but

scatter around the frequency plane. This is due to that pixels

of a random texture are not of certain periods, thus they will

not contribute to certain frequencies and form periodic

spectral peaks. This also makes the spectral responses in the

enhanced Fourier spectrum (see Fig. 3(i)) spread over all

directions. According to the above-mentioned properties,

the enhanced Fourier spectrum is adopted to discriminate

periodic from random textures.

A regularity measure, Radial Wedge Distribution

Variance (RWDV) proposed by Lee and Chen [12] can be

extracted from enhanced Fourier spectrum and used to

compute texture regularity. In the following, we will explain

RWDV briefly.
Given an enhanced Fourier spectrum, E(u, v), the radial

wedge distribution is first calculated. Fig. 4 shows the radial

wedges used. Let the radial wedges be denoted as RWi,

iZ1,.,m, mZ360/Dq, where Dq is the size of each wedge.

For each E(u, v), we accumulate it to RWi if it satisfies:

qi% tanK1 u

v

� �
!qiC1:

The energy of each wedge is then normalized by the total

energy of all wedges. Let ERWi, iZ1,.,m denote the

normalized energy of radial wedges RWi, then the RWDV is

defined as

RWDV Z
1

m

Xm

iZ1

ðERWi K �ERWÞ2; (1)



Fig. 4. The radial wedges used in the proposed method.
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where

�ERW Z
1

m

Xm

iZ1

ðERWiÞ:

For high regularity textures, as the spectral peaks spread

out regularly along certain directions while the spectral

values of low regularity textures spread over all directions,

the variance of all radial wedge energies of a high regularity

texture will be larger than that of a low regularity texture.

Therefore, RWDV can be used to measure textural

regularity. In our experiment, Dq is set as 18. Based on the

measure RWDV, the regularity of textures can be obtained.

According to the four scales of regularity mentioned

above, the following quantization method is deigned to

assign regularity:

v1 Z 0 if RWDV!5

v1 Z 1 if 5%RWDV!17

v1 Z 2 if 17%RWDV!30

v1 Z 3 if 30%RWDV

: (2)

The thresholds used in Eq. (2) are empirical values

determined from the training set of Brodatz album.
2.3. Computation of dominant directions (v2, v4)

High regularity textures can be defined by texture

primitives occurring repeatedly by some placement rules.

Based on the definition of Conner and Harlow [13], the

texture primitive forming a texture image is assumed to be a

parallelgram that can be described by two displacement

vectors. The directions of these two displacement vectors

correspond to the two dominant directions of high regularity

textures. On the other hand, for some directional texture,

there is only one dominant direction in the texture pattern.

For low regularity textures, there are no dominant directions

present in the texture image, thus it is impractical to extract
the direction component. In the following, we will describe

the method for detecting the single dominant direction for

directional textures and the method for detecting the two

dominant directions for high regularity textures.
2.3.1. Computation of the dominant directions (v2)

for directional textures

For directional textures, the spectral peaks of the Fourier

spectrum form a line-like shape. Based on this fact, a

method to measure the directionality of textures is proposed.

First, Fourier transform is applied to the image to obtain its

Fourier spectrum, and then the Fourier spectrum is

smoothed to reduce noises. Let the smoothed Fourier

spectrum be denoted as F 0(u, v), uZ1,.,N, vZ1,.,N.

A thresholding method [12] is then used to extract the

high spectral pixels from the Fourier spectrum. Let the set of

high spectral pixels be denoted by H. We then calculate the

principal components of H. To emphasize the importance of

pixels with higher spectral value in the calculation of

principal component, we use the spectral values of pixels as

weights when calculating the principal components [12].

The co-variance matrix C of H is then evaluated by

C Z
cuu cvu

cuv cvv

� �
; (3)

where

cuu Z
1

W

X
ðu;vÞ2H

F 0ðu; vÞðu K �uÞ2;

cvv Z
1

W

X
ðu;vÞ2H

F 0ðu; vÞðv K �vÞ2;

cuv Z
1

W

X
ðu;vÞ2H

F 0ðu; vÞðu K �uÞðv K �vÞ; cuv Z cvu;

and

W Z
X

ðu;vÞ2H

F 0ðu; vÞ; �u Z
1

W

X
ðu;vÞ2H

F 0ðu; vÞu;

�v Z
1

W

X
ðu;vÞ2H

F 0ðu; vÞv:

The two eigenvalues of C are evaluated, and let them be l1

and l2 with l1Ol2, respectively. For directional textures, as

the larger eigenvalue (l1) will be much greater than the

smaller eigenvalue (l2), thus the eigenvalue ratio, EVZ
l1/l2 can be used to measure the directionality of the texture

image. By investigating EV, we can determine whether a

texture is a directional one or not. For a directional texture,

the angle of the principle component plus 908 is used to

represent the dominant direction of the texture pattern. In

addition, the ComponentNumberFlag is set to 0 to indicate

that there is only one dominant direction in the texture. For

high regularity textures, the two dominant directions are
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extracted by a provided method presented in the following

section.
2.3.2. Computation of dominant directions (v2, v4) for high

regularity textures

As mentioned previously, if a texture contains patterns

oriented in some directions, then the high spectral values of

Fourier spectrum will also tend to lie in some directions

each of which is perpendicular to one direction of texture

patterns. We will base on this property to detect the two

dominant directions for regular textures.

Fourier transform is first performed on a high regularity

texture image. The thresholding method mentioned in

Section 2.3.1 is then performed on the Fourier spectrum to

locate high spectral pixels. Hough transform is then used to

extract the angles of the two dominant directions. The

following equation is used to represent a line:

x cos q Cy sin q Z r: (4)

Through the Hough transform, the angles q1 and q2

associated with the top two accumulating values are

extracted and q1Cp/2 and q2Cp/2 are considered as the

angles of the two dominant directions of the texture. q1Cp/

2 and q2Cp/2 are then quantized in step of 30 to obtain the

values of direction component. That is, v2Zb(q1Cp/2)/30c,

v4Zb(q2Cp/2)/30c.
2.4. Computation of scale (v3, v5)

To compute the scale component corresponding to each

dominant direction, the Fourier spectrum F(u, v) is first

transformed to G(r,q) by setting

Gðr; qÞ Z Fðu; vÞ; (5)

where uZbN/2!r cos qc, vZbN/2!r sin qc, 0%r%1,

Kp!q!p, N is the dimension of spectrum.

As mentioned in Section 2.3.2, through the Hough

transform, the two dominant angles q1 and q2 in the

Fourier spectrum can be extracted. Then, for each

dominant direction, qi, iZ1, 2, the radial array G(r, qi)

is logarithmically divided into four frequency bins

fCi
sjsZ0; 1; 2; 3g. That is

Ci
s Z fGðr; qiÞjr 2Bsg; Bs Z ½2KðsC1Þ; 2Ks
: (6)

For a fine texture, most of its energy will present in the high

frequency portion of the spectrum, thus Ci
0 will have larger

energy than other Ci
s. On the contrary, for a very coarse

texture, most of its energy will concentrate in the low

frequency portion of the spectrum, therefore Ci
3 will have

larger energy than other Ci
s. Thus, the scale corresponding to

qi can be determined by finding the scale index s0 with

maximum energy in Ci
s0

, and the scale index s0 is considered

as the scale component value.
3. Experimental results

Texture images of Brodatz album and Corel Gallery

image databases are used to test the proposed method. To

build up the Brodatz album database, eight patches of the

112 textures in Brodatz album are scanned and 896 texture

images are obtained for experiments. Four out of the eight

patches of each texture are used as training set to obtain the

empirical values for thresholds used, while the remaining

images are used as testing set. To build up the Corel Gallery

database, 1896 natural color texture images from Corel

Gallery image database are selected and used as testing set,

including abstract textures, bark textures, creative textures,

food textures, light textures, and other textures, etc. Some

examples of Corel Gallery database are shown in Fig. 5.

Three types of experiments are designed to illustrate

the effectiveness and efficiency of the proposed method:

(1) texture browsing, (2) coarse classification of textures,

(3) similarity-based image-to-image matching. Firstly, in

the experiment of texture browsing, several query con-

ditions are used to retrieve images. The query conditions are

designed to include all elements of the TBC descriptor, they

are: (1) retrieving highly regular or regular textures which

are not very coarse and oriented at around 30 degree,

(2) retrieving irregular textures, (3) retrieving directional

textures. Secondly, in the experiment of coarse classifi-

cation of textures, the proposed texture browsing descriptor

and the proposed method of MPEG-7 TBC are used to

classify the texture images of Brodatz album into direc-

tional, high regularity (regularityZ2 or 3) or low regularity

(regularityZ0 or 1), respectively, and the comparison of the

efficiency of the proposed method and MPEG-7 TBC is

illustrated. Finally, in the experiment of similarity-based

image-to-image matching, the textures are retrieved by

query-by-example. To demonstrate the effectiveness of the

proposed method as a prescreening step of a texture retrieval

system, retrieved result using the proposed method for

prescreening is compared with that without using the

proposed method for prescreening. To demonstrate this

advantage, three experiments are conducted and similar

images are retrieved given the following three types of

query images: (1) a directional texture, (2) a regular texture,

and (3) an irregular texture.

3.1. Texture browsing

The experimental results of texture browsing are shown

in Fig. 6. Fig. 6(a) shows some retrieved texture images

satisfying condition 1. The retrieved images meet the

regularity, scale and directional criteria set in condition 1.

Fig. 6(b) shows the result of condition 2, all retrieved

textures are irregular textures. Finally, Fig. 6(c) shows the

result of condition 3, it verifies that the principle component

analysis method proposed can locate directional textures

correctly. The results shown in Fig. 6 demonstrate the

effectiveness of the proposed methods for computing



Fig. 5. Some textures of Corel Gallery image database used in the experiments. (a) An abstract texture. (b) A bark texture. (c) A creative texture. (d) A food

texture. (e) A light texture. (f) A flower texture. (g) A cloud texture. (h) A candy texture. (i) A brick texture.
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the regularity, directionality, scale components as well as

ComponentNumberFlag.
3.2. Coarse classification of textures

In this section, the proposed texture browsing descriptor

and the proposed method of MPEG-7 TBC are used to

classify the texture images of Brodatz album into direc-

tional, high regularity or low regularity, respectively.

Four patches for each of the 112 textures in Brodatz

album are scanned and 448 texture images are obtained as

the testing set. The classification rate is computed as the

total number of correctly classified images divided by the

total number of images in the testing set. The classification

result and the average computation time required of
the proposed method and the proposed method of MPEG-

7 TBC are shown in Table 1. The experiment is conducted

on an Intel PC with a CPU of 1.2 GHz and 120 M of RAM.

As shown in Table 1, the classification rate is roughly

comparable for both the proposed method and the proposed

method of MPEG-7. However, the proposed method is more

efficient than the proposed method of MPEG-7 in terms of

computation time. It takes averagely 1.2 s to produce a

texture browsing descriptor while the proposed method of

MPEG-7 takes 8.9 s.
3.3. Similarity-based image-to-image matching

In this section, three examples of similarity-based image-

to-image matching by combining texture browsing



Table 1

Performance comparison of the proposed method and the proposed method

of MPEG-7

Indicator Method

The proposed method MPEG-7 TBC

Classification rate (%) 95.5 96.3

Average computation time (s) 1.2 8.9

Fig. 6. Some examples of texture browsing. (a) Some not very coarse textures with high regularity and are orientation around 30 degree retrieved under

condition 1. (b) Some irregular textures under condition 2. (c) Some directional textures retrieved under condition 3.
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descriptor and MPEG-7 HTD are presented to illustrate the

benefits of using the proposed method as a prescreening step

of a texture retrieval system. The retrieval is achieved by

query-by-example. Given a query image, the retrieval

system first select textures in the database whose values of

ComponentNumberFlag are the same as the query image as

candidates for later comparison. If the query image is not a

directional texture (ComponentNumberFlagZ1), then its

regularity is determined and those images with the same

regularity as the query image are extracted as candidates.

On the other hand, if the query image is a directional texture,

then the above-mentioned candidate filtering by regularity is

not performed. The MPEG-7 HTD [5] of the query image

are then extracted and compared with the HTD of candidate

images. The candidate images are then sorted by the

descending order of similarity and displayed to users.

The MPEG-7 HTD characterizes the texture using the

mean energy and the energy deviation from a set of frequency

channels. The 2-D frequency plane is partitioned into 30

channels. The frequency plane partitioning is uniform along

the angular direction with step size of 308 while the division

along the radial direction is on an octave scale. The

individual channels are modeled using Gabor functions [7].
The HTD can be represented by a 62-dimensional vector as

HTD Z fDC; fSD; e1; e2;.; e30; d1; d2;.; d30

� �
; (7)

where fDC and fSD are the mean and standard deviation of the

image, respectively, and ei and di are the mean energy and

energy deviation of the corresponding ith channel, respect-

ively. To measure the similarity between the query image and

candidate images, the distance measure between the feature

vector HTDq of the query image q and HTDc of a candidate

image c is defined to be

Dðq; cÞ Z
X

k

HTDqðkÞKHTDcðkÞ

aðkÞ

����
���� (8)



Fig. 7. An example of texture retrieval given a directional texture as query image using MPEG-7 HTD. (a) Retrieved result without prescreening. (b) Retrieved

result with prescreening.
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where a(k) is the standard deviation of the set of the kth

feature over the entire database and are used to normalize the

individual feature component.

Fig. 7 shows an example of combining texture browsing

descriptor and HTD feature in a texture retrieval appli-

cation. The upper-left image of the displayed result is a

directional texture used as a query image. Fig. 7(a) shows

the result without using the proposed texture descriptor for

prescreening. Most of the top 16 retrieved images are

irregular textures and some are quite different from the

query image. Fig. 7(b) shows the result with prescreening.
Fig. 8. A texture retrieval example given a regular texture as query image. (a) Re
Most of the top 16 retrieved images are directional textures

and some look similar to the query image. This illustrates

the effectiveness of the proposed method as a prescreening

step of a texture retrieval system.

Fig. 8 shows another texture retrieval example. The

query image shown in the upper-left position is a regular one

with horizontally and vertically repeated primitives.

Fig. 8(a) shows the retrieved result without prescreening.

Although the query image is a regular texture, some

irregular textures are mistakenly retrieved in the top 16

ones. Fig. 8(b) shows the retrieved result with prescreening.
trieved result without prescreening. (b) Retrieved result with prescreening.



Fig. 9. A texture retrieval example given an irregular query image. (a) Retrieved result without prescreening. (b) Retrieved result with prescreening.
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All retrieved textures are regular textures and most of them

have horizontally and vertically repeated primitives.

Fig. 9 shows another example of texture retrieval given

an irregular query image. As shown in Fig. 9(a) and (b), the

retrieved images with prescreening and without prescreen-

ing are basically the same. The performance of using the

proposed method to prescreen candidates and that of using

MPEG-7 HTD alone is comparable in this case.
4. Conclusion

In this paper, an efficient computation method for

computing the texture browsing descriptor specified in

MPEG-7 is provided. The eigenvalue ratio obtained by

performing principal component analysis on the Fourier

spectrum of the texture image is used to detect directional

textures. To compute the regularity, Fourier transform is

applied to the Fourier spectrum image to produce an

enhanced Fourier spectrum. A spectral measure based on

the variance of the radial wedge distribution is then

calculated from the enhanced Fourier spectrum and applied

to compute the regularity. To compute the directionality

components, Hough transform is applied on the Fourier

spectrum to detect two dominant directions. A scale

computation method is then provided to compute the scales

corresponding to the two dominant directions. The texture

browsing descriptor can be used in applications of texture

browsing. In addition, a texture retrieval system can use the

descriptor to find a set of candidates with similar perceptual

properties and then use other similarity-based image-to-

image matching descriptor such as MPEG-7 HTD to get a

precise similar match among the candidate images.
Experiments designed for texture browsing, coarse classi-

fication of textures and texture retrieval show the efficiency

and effectiveness of the proposed method.
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