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F
uture commercial and military spacecraft are
envisioned to have an unprecedented degree of
autonomy and pointing accuracy, made possible
by increased on-board processing speed and
memory capabilities. These on-board capabili-
ties are imperative for the demanding tasks of

envisioned future space missions,
such as very large base interferometry
[1]-[3], deployment of space optical
telescopes, formation flying [4]-[7],
and autonomous spacecraft docking
and servicing [8]-[11]. In the past sev-
eral years, numerous spacecraft con-
trol techniques have been developed
that address the challenging attitude
tracking, stabilization, and disturbance rejection require-
ments for these missions.

One major aspect that has typically been missing in the
area of satellite attitude control development is experimen-
tal validation of the available theoretical results. Experimen-
tal testing is essential before any novel control laws can be
incorporated into future-generation spacecraft. The great-
est difficulty in implementing spacecraft control laws is
that ground-based experiments must take place in a 1-g en-

vironment, whereas the actual spacecraft will operate un-
der 0-g conditions. Simulating a 0-g, torque-free environ-
ment is not an easy proposition. In fact, until recently, only
a few government and industrial laboratories [12], [13] had
the capability to experimentally validate attitude control
laws in a realistic environment. With the recent expansion

of the commercial as well as military
satellite industries, there is an in-
creased need for rapid prototyping
and testing of the most promising atti-
tude control algorithms proposed in
the literature.

Several nongovernment agencies and
academic institutions have recently initi-
ated the development and construction

of realistic simulators that can be used to educate the next
generation of spacecraft dynamics and control engineers [14],
[15]. This article describes the recent efforts at the Georgia In-
stitute of Technology (GIT) to design, build, and test a rela-
tively low-cost (approximately US$20,000) spacecraft
simulator facility. The purpose of the GIT simulator is to evalu-
ate and improve various controllers available in the literature
and to develop new control strategies in an experimental
framework. This simulator is also used to demonstrate the fun-
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damentals of spacecraft attitude dynamics, attitude estima-
tion, and control to undergraduate students at Georgia Tech.

In the sequel, the major components of the spacecraft
simulator are described in detail. Accurate balancing of the
platform is necessary to duplicate a torque-free environ-
ment. Perfect balancing is obtained when the center of grav-
ity coincides with the center of rotation of the platform. To
achieve this goal, an identification algorithm was developed
to estimate the moment of inertia matrix and the center of
gravity of the whole platform. This algorithm can also be
used to estimate the inertia matrix for later use in attitude
tracking and indirect adaptive control schemes. Results
from the testing of a linear stabilizing controller are also re-
ported at the end of the article.

Overview of the Spacecraft Platform
The “bus” of the GIT spacecraft simulator consists of
a disk-shaped aluminum platform with a diameter of
60.96 cm (1.90 cm thick) that is supported on a hemispheri-

cal air bearing. The platform houses all the various space-
craft components (i.e., sensors, actuators, control com-
puter; see Figure 1).

The air bearing is operated with compressed air from an
external source through an air filter. The air filter removes
moisture, oil, and other impurities and regulates the air
pressure (roughly around 170-270 KPa depending on the
normal load). Three wheels are mounted under the platform
that can be operated in momentum or reaction wheel (RW)
mode. The wheels are each paired with a dc motor and am-
plifier. Encoders that are installed on the dc motors provide
angular position feedback. Power for the entire system is
provided by six 12-V batteries connected pairwise in series
to provide 24 V at a time.

On top of the platform, a PC104-type Pentium 266-MHz
main computer board (CMP5e) is used for data acquisition,
recording, controller implementation, and communication.
The remote PC and the CMP5e communicate via wireless RF
modems connected to their RS-232 serial ports. The remote
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PC monitors the status of the experiments and issues con-
trol commands such as start/stop, whereas the CMP5e unit
runs the control algorithm.

A photograph of the completed spacecraft simulator is
shown in Figure 2. An outline of the interconnection of the

several simulator subsystems is shown in Figure 3. In the
next section, we briefly describe the major subsystems of
the simulator.

Subsystem Description
Air Bearing, Platform,
and Batteries
The air bearing that supports the platform is lo-
cated on top of a pedestal structure (1 m high),
and it allows the platform to move without fric-
tion ± °30 about the two horizontal axes (x and y)
and 360° about the vertical (z) axis. The bearing
is the SRA 300 spherical air bearing designed and
manufactured by Specialty Components Inc. The
bearing itself is made of 6061 aluminum alloy
hard-coated with Al2O3 and can hold up to 340 kg
of load when operating at 550 Kpa air pressure.
The GIT platform bearing is operated at 205 psi,
which corresponds to approximately 135 kg of
vertical load.
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Figure 2. The spacecraft simulator.
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The platform on top of the air bearing provides a mount-
ing surface for the simulator subsystems. The location of
the center of mass (desired to be at the center of rotation of
the simulator) can be changed by positioning several coun-
terweights in various slots and holes located at several
places on the platform. Care has been taken to position all
major components of the simulator, such as momentum
wheels, batteries, and amplifiers, in a symmetric fashion.
This makes it easier to balance the platform, as well as to lo-
cate the principal axes.

Power to the simulator is provided by three pairs of re-
chargeable sealed lead acid batteries rated at 12 V and 5 Ah.
Each pair of batteries is connected in series to provide 24 V.
The batteries are then in turn connected to a dc/dc con-
verter, which distributes the power to each spacecraft simu-
lator component.

Spacecraft Attitude Sensor
The main purpose of the spacecraft simulator is to test sev-
eral feedback attitude control laws. To implement the vari-
ous controllers, measurements for the Eulerian angles and
the angular rates are required. A dynamic measurement unit
(DMU-AHRS) by Crossbow, Inc., was chosen as the attitude
sensor unit. The DMU-AHRS provides the Eulerian angles,
angular rates, and linear acceleration. It can measure roll

and pitch angles of ±90° and heading angle of ±180°. The root
mean square (RMS) noise level in Eulerian angle measure-
ment signal is 0.1°. The angular rate range is ±150 °/s, and the
RMS noise level is 0.05 °/s. The accelerometer range is ±2 g,
and the RMS noise is 0.002 g. The accelerometer outputs
were not used in our case. Note that the peak-to-peak noise
is about six times higher than the RMS noise level. All the
measured values are available in both RS-232 and analog sig-
nal output. The analog signal provides faster sampling
rates, whereas the RS-232 port provides digital data directly
without introducing additional noise. For convenience, the
signals from the digital output were chosen after taking into
account the requirements for noise-free operation.

Momentum Wheel Speed
and Acceleration Sensor
Three encoders, rated at 500 counts/turn, are used to mea-
sure the angles of the momentum wheels. By differentiating
the encoder outputs, the rotational velocities and accelera-
tions of the wheels are calculated. A digital filter was de-
signed to reduce the noise caused by the differentiation of
the signal. Alternatively, a tachometer could have been used
to measure angular velocity directly. Differentiation and fil-
tering are still required to estimate angular acceleration in
this case. We have used encoders instead of tachometers,
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Figure 4. Encoder signal processing: phase detection and wheel turn count.



since the noise in the analog tachometer output can be
avoided and small velocities can be measured more accu-
rately with the encoder. One disadvantage of the encoders
is that the time delay caused by filtering is typically larger
than that for the tachometer. This delay, however, can be
kept small by careful filter design.

A standard flip-flop circuit was used to decode the en-
coder signal [16]. Figure 4 shows the complete schematic of
the encoder signal processing circuit. Note that two 8253
timers/counters are used. Each 8253 has three counters.
Since the three encoders need six counters, all counters in
both 8253s were used. The control signals for the 8253, i.e.,
address (A0,A1,A2), read (RD), write (WR), chip select (CS),
and data signals (D0-D7), are connected to the digital inter-
face of the I/O DMM32 board. The control signals A0, A1, A2,
RD, WR, and CS were implemented in software.

Wheels, Motors, and Power Amplifiers
Three Maxon dc motors (Model 143683) with a 24-V nominal
voltage were used as actuators in lieu of expensive,
space-certified reaction/momentum wheels. The three
wheels are made of steel. The stall torque of each dc motor
is 783 mNm, the maximum continuous torque is 88.8 mNm,
and the maximum permissible speed is 8200 rpm. Each mo-
tor is driven by a power amplifier made by Copley Control
(Model 403). It can deliver continuous power of 120 W (24-V
input) and peak power of 240 W (24 V input). The amplifier
generates a PWM output for precise torque control. During
initial testing, this power amplifier was observed to produce
negative voltage in a counterclockwise spin, which can dam-
age the power supply circuit or other electronic compo-
nents. Therefore, a diode (D1 in Figure 5) was used to clip
the negative voltage caused by the amplifier, and a capaci-
tor (C1 in Figure 5) was used to flatten the power fluctuation.
The power distribution schematic is shown in Figure 5.

The CPU, I/O, and Interface Boards
The electronics suite includes the CPU unit, the I/O board, in-
terface board, and RF modem. The CPU board runs the soft-

ware that handles all hardware controls, timers, packet-based
communication, and the filters for the sensor signals. A
PC104-type Intel mobile Pentium 266-MHz board (model
CMP5e from Ampro Computers) was used as the CPU. It has 32
MB of main memory, an 8-MB memory disk, and two serial
ports. To meet all I/O requirements, a PC104-type analog inter-
face board (DMM32 from Diamond Systems Corp.) was in-
stalled on top of the CMP5e. This board has 32 single-ended or
16 differential, 16-bit A/D converters with a sampling rate of
200 kHz, four 12-bit D/A converters, and 24 programmable digi-
tal I/O. An interface board provides terminals for power and
communication, as well as sensor signals for easy interface.
Placed on the interface board is also a dc/dc converter for 5-,
12-, and 15-V voltage sources for various components. Another
option is to use a regulator to provide the necessary voltage
levels to the various spacecraft components. This board also
has flip-flops and counters to measure the encoder signals
(see the previous section). These counters are interfaced to
the DMM32 via the digital I/O ports of the DMM32. The inter-
face board was designed and built in-house.

Software
Two software applications were developed separately for
both the CMP5e on-board computer and the remote PC com-
puter. The latter is used to send start/stop commands and
commands for health monitoring, for postexperiment data
analysis and plotting. The CMP5e and the remote host com-
puters communicate via a wireless RF serial modem at a
speed of 56 K baud. The executable module for the CMP5e
implements hardware initialization and controller initializa-
tion; it also starts a 0.1-ms precision timer to schedule vari-
ous tasks and communication. The user can set up the main
control loop frequency. A frequency of 100 Hz was used for
all experiments described in this article.

The remote PC runs a separate view-based graphical
user interface (GUI) program that implements the control
toolbar, monitor view, message view, and other GUIs. The
programs on the remote PC and the on-board computer
communicate through the wireless RS-232 serial connection
with four types of custom-developed packets: data, mes-
sage, file, and command packets. During the experiment,
the time histories of all state variables are recorded in the
memory disk of the CMP5e in binary format. After the exper-
iment, the data file is transferred to the host PC, where it is
converted to a MATLAB *.mat file for further analysis.

Filtering and Identification
of Motor Parameters
Filter Design
Since the encoder signal from the motor only provides
angular information, we need to differentiate it once to
get angular rate and then once more to obtain angular ac-
celeration, if necessary. Since differentiation of sensor sig-
nals always amplifies noise, filtering of the signal is
necessary. A Butterworth or a Chebyshev type 1 filter can
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be used for this purpose, depending on the high-frequency
attenuation and time delay limitations. The frequency re-
sponses for both filters are shown in Figure 6. For all experi-
ments described in this article, a Butterworth filter was
chosen because of its smaller delay. Note that a sampling
frequency of 100 Hz was used for all experiments. It is as-
sumed that the spacecraft is moving slowly, and thus the
delay of 0.1 s caused by the filter can be ig-
nored; if necessary, this delay can be taken into
account with more sophisticated control de-
sign methods.

Estimation of Motor Damping
and Choice of Reaction Wheels
To keep the output torque sufficiently larger
than the friction torque, it is important to know
the friction effects of the motor. This allows
proper sizing of the momentum wheels. To esti-
mate the damping torque of the motor, the wheel
was spun up to a high speed and then the mo-
tor/wheel was left to decelerate. Since the inertia
of the wheel is accurately known, one can esti-
mate the magnitude of the damping torque. Figure 7 is the re-
sult of this experiment when the motor axis is horizontal; it
shows viscous friction and dry friction (stiction). These
damping torques can be an important factor affecting the siz-
ing of the wheels. Larger wheels provide a larger torque and
smaller damping. Smaller wheels provide good resolution in
torque output, but they also have more damping since they
usually operate at higher speeds.

Identification of Motor Dynamics
The static motor gain can be calculated from the specifi-
cations of the motor, the D/A converter setting, and the
motor amplifier gain. A least-squares fit was used for iden-
tification of the motor transfer function. Figure 8 shows the
transfer function from voltage input to the amplifier to
torque output. The gain of the motor is about 0.48 Nm/V at
zero frequency and decreases at higher frequency. As
shown in this figure, the motor bandwidth is quite high,
and the gain does not change much up to approximately 10
rad/s. This frequency is high enough
compared to spacecraft rigid-body re-
sponse (typically about 1 rad/s).
Thus, it was decided that no addi-
tional effort to improve the motor re-
sponse was required.

Identification of Moment
of Inertia Matrix
One way of calculating the moments of
inertia (MOI) of the rigid spacecraft
simulator is to use a CAD model. An
AutoCAD model for the whole assem-
bly was thus developed, and mass den-

sities for the various components were assigned for the en-
tire system (see Figure 1). This model was detailed enough
to include small components such as bolts and nuts. The
mass distribution of the sensor and all other electrical com-
ponents was assumed to be homogeneous; the electrical
wires and some other small electrical parts were neglected.
This method gives a fairly accurate estimate of the inertia
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matrix. One drawback of generating the MOI estimation ma-
trix using a technical drawing package such as AutoCAD is
the difficulty associated with designing a complex 3-D CAD
model. Alternatively, experimental methods can be used
that are not affected by the complexity of the structure. Tra-
ditional pendulum methods, for instance, can be used to de-
termine the inertia values from the period of the pendulum.

Other experimental methods, such as those described in
[17] and [18], measure the external reaction forces induced
by load cells and find the inertia matrix that best fits the
equation of motion in a least-squares sense. The major
drawback of such methods is the significant amount of ef-
fort required for setting up and conducting the experiments.
Luckily, no such load cells are necessary for the spacecraft
simulator. The spacecraft simulator operates in a
torque-free (or almost torque-free) environment, and, in ad-
dition, it has fully featured motion sensors, which makes the
experimental inertia estimation much simpler. Torque-free
methods also have been proposed in the literature for iner-
tia estimation. For example, in [19], the authors used a
coasting maneuver. A solution was found after converting
the full nonlinear equation of motion to a standard
least-squares form. An optimal coasting maneuver was also
proposed based on stochastic analysis of the sensor noise.
An MOI estimation algorithm based on conservation of the
angular momentum is also given in [20]. When the inertia of
the spacecraft is changing, another approach is to use
real-time inertia estimation strategies. Bergmann et al. [21]
proposed a mass property estimation strategy using nonlin-
ear filtering, together with a simplified (nonlinear) model
for the equations of motion. An input selection method to
generate a feasible inertia estimation maneuver for this esti-

mator has been proposed in [22]. Other approaches for iner-
tia estimation are those often found in the spacecraft adap-
tive control literature [23], [24].

Below we describe the moment of inertia and center of
gravity estimation scheme used for the GIT spacecraft simu-
lator. The method is based on a standard least-squares iden-
tification algorithm using a series of experiments. In each
experiment, a torque profile is commanded and the angular
accelerations of the platform are recorded. Offline analysis
of the input-output data gives a very accurate estimation of
both the moment of inertia matrix and the center of gravity
of the platform. For comparison, the numerical values of the
MOI and the center of mass obtained from an AutoCAD
model are also provided.

Representation of Attitude Kinematics
A schematic of the spacecraft platform is shown in Figure 9.
Let � denote the inertial frame and � denote a body-fixed
frame, both with their origin at the geometric center of the
bearing, denoted by B* in Figure 9. Let { , , }

r r r
I J K and{ , , }

r r r
i j k de-

note the basis unit vectors of the frames � and �, respectively.
Finally, let the unit vectors along the three wheel axes be de-
noted by { , , }

r r r
i i i1 2 3 .

The unit vectors
r
i1 2 3, , are given in the body frame as follows:
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To describe the attitude of the spacecraft, a 3-2-1 Eulerian
angle sequence is used [25]. The direction cosine matrix
(DCM), which represents the transformation from the iner-
tial to the spacecraft body frame, is given by the equation
shown at the bottom of the page. The kinematic equations
for a 3-2-1 Eulerian angle sequence are given by [25]
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Equations of Motion
The full nonlinear equations of motion can be derived starting
from the momentum of a differential mass element dm as illus-
trated in Figure 10. Note that the center of mass of the platform
is located at S*. Let the angular velocity of the platform with re-
spect to the inertial frame be denoted by I Sr

ω , and let the angu-
lar velocity of the lth wheel with respect to the platform be

denoted by S Wr
lω .

The velocity of dm is
given by

r r r
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r
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Similarly, the velocity of a differential mass dm of the wheel
is given by

r r r r r
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l l
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The angular momentum of the whole system with re-
spect to B* is then calculated as
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where IW Wl l/ *

is the inertia dyadic of the lth wheel with re-
spect to the wheel’s mass centerWl

* and I ( ) / *S W B+ is the iner-
tia dyadic for the entire body of spacecraft and wheels with
respect to bearing center B*. For convenience, let
I I≡ +( ) / *S W B and I Il l l≡ W W/ *

. Since viscosity effects of the air
bearing are neglected and pressure is always normal to the
spherical bearing surface, the only external torque exerted
on the bearing center is caused by gravity. Euler’s theorem
gives the equations of motion of the platform as
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Estimation of the Inertia Matrix
Since our experimental platform uses three momentum
wheels, we can achieve arbitrary motion by sending accelera-
tion commands to the wheels. The only external torque is
caused by gravity; the center of gravity can be identified along
with the inertia matrix. The estimation scheme uses the fact
that the equations of motion (2) are linear with respect to the
inertia parameters and the gravity term. Thus, the estimation
problem can be solved easily by a least-squares algorithm im-
plemented in regression form [19], as described below. During
identification, wheel acceleration commands are applied
along all three body axes. Since the platform cannot exceed
pitch and roll in excess of ±30°, a stabilizing LQR controller is
turned on to reorient the platform to the initial position if the
angular pitch and roll motions exceed these values.

We now rewrite (2) in matrix form. To this end, let RS
Wl be

the transformation matrix from the frame of the lth wheel

{ , , }
r r r
l l li j k to frame �. From Figure 11, the matrices RS
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l =1 2 3, , are given as
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Let { }
r
ω S and [ ]I S denote the vector

r
ω and the dyadic I

expressed in the frame �. Also, let [~]ω S denote the cross-
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product operator of the vector{ }
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ω S in matrix form [25]. Us-
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Equation (2) can now be written as
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Let Ak and Tk denote the values of A and T at the kth time
step, and define Ak and Tk as
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Finally, the least-squares estimation of x at time step t tk=
(denoted by $xk) that minimizes A x Tk k− is given by

$ †x A Tk k k= , (3)

where Ak
† is the pseudo-inverse of Ak . Assuming that Ak is

full-column rank, then its pseudo-inverse can be calculated
as A A A Ak k

T
k k

T† ( )= −1 .
To verify the regression equation A x Tk k= and investi-

gate the effect of numerical errors incurred during the ma-
trix pseudo-inversion (3), the previous inertia estimation
scheme was tested using simulated data. A simple angular
velocity stabilizing control law was used for the simulation.
The results are shown in Figure 12. Note that the error de-
creases as the simulation time step decreases. Thus, we
may conclude that the numerical error during the matrix in-
version in (3) is negligible.

The least-squares estimation algorithm described above
is straightforward but requires many data points to be pro-
cessed in a batch mode so as to ensure good results. In addi-
tion, this approach is not very efficient since, with every
new sample, the whole regressor matrix has to be inverted
from scratch. Alternatively, a recursive least-squares estima-
tion approach can be used to avoid the direct calculation of
the pseudo-inverse in (3).

The main idea behind recursive least-squares estimation
[26] is that the estimated value of x at the kth time step, $xk ,
can be obtained from its estimated value at the( )k −1 th time
step. To this end, let Pk

−1 denote the matrix

P A A A Ak k
T

k
i

k

i
T

i
−

=

= = ∑1

1

: ,

which implies that at each time step, the matrix Pk can be up-
dated from the kth regressor matrices. Given P0 and $x 0 , the
least-squares estimate $xk satisfies the following recursive
equations:

( )
( )

$ $ $x x L T A x

L P A P A I A P A

k k k k k k

k k k k k
T

k k k
T

= + −

= = +

− −

− −

−

1 1

1 1

1

P I K A Pk k k k= − −( ) .1

The estimate $xk is obtained by adding a correction to the es-
timate at the previous time step, $xk − 1. The correction term is
proportional to the difference between the measured value
Tk at the kth time step and the prediction of the observation
based on the previous parameter estimate, given by A xk k

$ − 1.
The components of the vector Lk are weighting factors that
tell us how the correction and the previous estimate should
be combined. Notice that the matrix Pk is defined only when
the matrix A Ak

T
k is nonsingular. To avoid singularities, the

recursive equations are initialized with a sufficiently large
positive definite matrix P0 .

Experimental Results
The previous algorithm assumes knowledge of the moments
of inertia of the wheels. These were calculated from AutoCAD.
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Figure 12. Verification of estimation equations by simulation.



Since the geometric complexity of the
wheels is simple, it is assumed that the
inertia values of the wheels from the
CAD model were accurate. These values
are given below:

I I Iw w w
11 11 11

3 21 2 3 1 792 10= = = × −. ( )kg m .

The following results show the aver-
aged values for the inertia matrix and
the vector mgrs

r
from a series of ten ex-

periments. Each experiment was per-
formed for about 50-80 s. For
comparison, the inertia matrix calcu-
lated from AutoCAD geometry is also
provided. For convenience, during the
experiment, the mass center was
moved below the bearing center (+z)
to make the platform stable by adjust-
ing a vertical counterweight. The
counterweight can later be moved up
to make the platform neutrally stable
for other experiments. In this case, the
inertia can be adjusted using the paral-
lel axis theorem [25].

The results of the estimation are shown in Table 1. Figure
13 shows graphically the results of the ten experiments. In
Figure 13, I I I I I11 12 13 22 23, , , , , and I 33 are the elements of I

=
in the

spacecraft body frame �.
The results of the experiments show remarkable consis-

tency, especially for the principal moments of inertia I I11 22, ,
and I 33. The products of inertia and the center of mass location
have very small values. As a result, their estimation is more
susceptible to numerical and measurement errors, noise, etc.
The standard deviations are σ( ) .I 11 0 0075= , σ( ) .I 22 0 0091= ,
σ( ) .I 33 0 0022= , σ( ) . ,I 12 0 0049= σ( )I 13 = 0.0028, σ( ) . ,I 23 0 0060=
σ( ) .mgrsx = 0 0011, σ( ) .mgrsy = 0 0019, and σ( ) .mgrsz = 0 0160.
Note that because some components such as wires and coun-
terweights were not modeled, the experimental values are
somewhat larger than those found with the AutoCAD model.

Results from the Implementation
of an LQR Controller
In this section, we present some experimental results for a
simple stabilizing controller. Several assumptions are made
to linearize the equations. First, the small product-of-inertia
terms were neglected. Second, assuming small Eulerian an-

gles φ and θ, one obtains that & , &φ ≈ ≈p qθ and &ψ ≈ r, where
p q, , and r are the angular velocity components of the
platform expressed in a body-fixed frame. Third, assuming
that p q, , and r are also small, the equations of motion (1)
and (2) can be linearized about the origin. The resulting sys-
tem can be written in the standard form

&x Ax Bu= + , (4)

where x p q r T= φ[ , , , , , ]θ ψ and

A =
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(5)

The control input is u M M M T= [ , , ]1 2 3 , where M l , l =1 2 3, , is
the torque applied to the lth wheel. An LQR controller that
minimizes a quadratic cost of the form
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{ }J x Qx u Ru tT T= +
∞

∫0
d ,

(6)

whereQ ≥ 0 and R > 0,andstabilizesφ, , , ,θ ψ p q, and r canbede-
signed using standard methods [27]. UsingQ = diag [ , , , , , ]1 1 1 1 1 10
and R = diag[ , , ]111 , the state-feedback control u Kx= with

K =
− −0 9659 1 7769 0 2589 0 6674 0 0

0 2589 0 3107 0 9659 1

. . . .

. . . .8727 0 0

0 0 0 0 1 3 7760.















 (7)

was obtained. Experimental results for two different initial
conditions with this LQR controller are shown in Figure 14.

Also shown, in Figure 15, are the re-
sults from the numerical simulations.
The experimental and numerical re-
sults are close except for the ψ/r chan-
nel owing to torque saturation of the
z-axis wheel, as is clearly evident from
the bottom plots of Figure 14.

Conclusions
A spacecraft simulator facility has
been designed and constructed at the
Georgia Institute of Technology
School of Aerospace Engineering. The
simulator is to be used primarily for
educating undergraduate students in
spacecraft attitude dynamics and
control. During its construction, sev-
eral technical issues were encoun-
tered, including choice of motors,
sizing of the wheels, and sensor range
and resolution. Identification of mo-
tor dynamics and friction, as well as
motor damping estimation, was
deemed necessary to better charac-
terize the motor properties. A spe-
cial-purpose software was written to
implement the control laws and
schedule the necessary hardware
tasks. The mass and moments of iner-
tia of the spacecraft simulator were
estimated using a least-squares ap-
proach by commanding known
torques and observing the angular ac-
celeration response. The results from
several experiments showed good
consistency and corroborated the
mass and inertia values obtained from
an AutoCAD model. After careful bal-
ancing of the platform, an LQR con-
troller was designed, based on a
linearized model of the system, and
successfully implemented on the sim-
ulator. The experimental results were
consistent with those obtained from
numerical simulations.
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