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ABSTRACT
It is well known that optimal server placement is NP-hard. We
present an approximate model for the case when both clients and
servers are dense, and propose a simple server allocation and place-
ment algorithm based on high-rate vector quantization theory. The
key idea is to regard the location of a request as a random variable
with probability density that is proportional to the demand at that
location, and the problem of server placement as source coding,
i.e., to optimally map a source value (request location) to a code-
word (server location) to minimize distortion (network cost). This
view has led to a joint server allocation and placement algorithm
that has a time-complexity that is linear in the number of clients.
Simulations are presented to illustrate its performance.

Categories and Subject Descriptors
C.2.5 [Computer Systems Organization]: Computer-communication
Networks—Local and Wide-Area Networks; C.4 [Computer Sys-
tems Organization]: Performance of System

General Terms
Performance; Theory; Algorithms

Keywords
Content distribution, server placement and allocation, high density

1. INTRODUCTION
A content distribution network (CDN) reduces propagation delay,
relieves server load, balances network traffic, improves service re-
liability, and disperses flash crowds. Content from a provider is
distributed to multiple servers in the network, and a client request
is served by a ‘nearest’ server. Here, proximity may refer to geo-
graphical distance, hop count, network congestion, server load or
a combination. A central design issue is how to allocate and place
servers in the network. In the context of peer-to-peer network or ad
hoc wireless network, every node can be both a client and a server
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and the problem is to decide, in a distributed manner, how many
copies of a file to store and where.

Large scale cooperative Web caches that have been deployed, e.g.,
the IRCache project [28] and the Harvest project [4, 6], typically
adopt a hierarchical architecture, where a request is sent succes-
sively up a fixed hierarchy until the requested document is found.
Cooperative Web caching have also been proposed that are hash-
based [24, 14], directory-based [10, 19], and multicast-based [20,
27]. Most of these proposals assume a static configuration of the
caching network. Interesting self-organizing strategies of wide-
area cooperative caches is considered in [3, 23]. The proposal in
[3] is to deploy a large number of smaller caches and store pop-
ular objects throughout this caching network evenly. A radius r
is defined for each popular object. As this object is delivered, it
is cached at caches in the path that are r, 2r, 3r, . . . , away from
the origin server. Hence, in steady state, it is populated in concen-
tric rings in the network that are centered at the origin server with
radii r, 2r, 3r, . . . . This is enhanced by having caches communi-
cate with neighbors about their holdings, so that a local miss can
be directed to an appropriate neighbor. This can be done using the
techniques in [10, 19]. The idea in [23] is to dynamically replicate
servers based on current demand. A new server is added without
content and the system will automatically decide which objects to
migrate to it. The number and placement of servers and server se-
lection are based on request pattern, client-server proximity, and
server and network load.

The problem of optimal server allocation and placement is to decide
how many servers to employ for each website and where to place
them. Our ultimate goal is to develop simple distributed algorithms
that can be used to self-organize CDN on a large scale dynamically
based on current network traffic and client demands.

Server placement is known as the K-median problem in graph the-
ory: given a graph with N nodes, each node i with a request rate
r(i), pick K(< N) nodes as servers and assign each node to one of
these servers so that the total weighted distance between all nodes
i and their servers, weighted by r(i), is minimized. This problem
is shown in [15, 21] to be NP-hard for general graphs. Subsequent
efforts have been to find polynomial algorithms to solve special
cases and to find approximation algorithms to solve the general
case. For tree graphs, [15] presents an O(N 2K2) algorithm to
solve it optimally. This is improved to an O(N2K) algorithm in
[26]. Dynamic programming based algorithms are also described in
[18] (with complexity of O(N3K2)) and in [17] (with complexity
of O(NHK) where H is the height of the tree). An O(log N)
adaptive algorithm to place one server in a general tree and an



O(log3 N) adaptive algorithm to place two servers in a complete
binary tree are presented in [1]. Approximation algorithms for the
general K-median problem has been studied in [2, 7, 8, 12, 9]. The
best published approximation factor to date is 4 (i.e., the cost is at
most 4 times the minimum), with running time O(N3), achieved
in [9], based on the result of [12]. These algorithms, however, are
not applicable to large scale self-organizing CDN we envision, for
two reasons. First, the best approximation algorithms are based on
primal-dual schema and Lagrangian relaxation, which have high
running time for large N and more importantly, require global in-
formation throughout the execution. Second, these algorithms are
concerned with the placement of K servers to serve a single website
(content provider). In CDN, websites have greatly varying popular-
ity [5] and it is crucial to exploit this diversity in server allocation.

In this paper, we take a completely different approach, focusing
on the case where both client and server densities are high. In
this regime, server placement can be regarded as a high-rate vector
quantization problem. The key idea is to regard the location of a
request as a random variable with a probability density that is pro-
portional to the demand at that location, and the problem of server
placement as source coding, i.e., to optimally map a source value
(request location) to a codeword (server location) to minimize dis-
tortion (network cost). This view has led to a simple joint server
allocation and placement algorithm with time complexity linear in
NM where N is the number of clients (e.g., client side proxies)
and M is the number of content providers; in particular, it is lin-
ear in N . Preliminary simulation results suggest that it has a good
performance-complexity tradeoff.

In the rest of this paper, we will present the high-density model
(Section 2) and derive a joint server allocation and placement algo-
rithm (Section 3). We compare the performance of this algorithm
with the best published approximation algorithm for the K-median
problem through simulations (Section 4). Finally we conclude with
limitations of this work (Section 5).

2. HIGH DENSITY MODEL
The proposal of [3] suggests the integration of storage with net-
work where every router is potentially a small cache. Network
nodes such as routers are in a best position to monitor traffic and
self-organize into a large scale CDN that adapt their configuration
to changes in client requests, network congestion, and server load.
The main savings come from reduced network traffic and propaga-
tion delay, and the central issue is the optimal allocation and place-
ment of these servers (or files in the context of peer-to-peer network
or ad hoc wireless network). This problem can be viewed as a high-
rate vector quantization with dimension two [11]. In this section,
we explain how this view leads to a simple server allocation and
placement algorithm, presented in the next section.

We start with the case of a single website, and extend it to the case
of multiple websites. A ‘website’ in our model may represent a
content provider, an entire website, a collection of files or applica-
tions, or a single file or application. A ‘node’ may represent an end
user of the website, or more likely, a client-side proxy that serves a
family of end users in the same local area network or same organi-
zation. By placing a server ‘at a node’, we mean placing a server
‘near’ the end user or client-side proxy represented by the node,
e.g., on the same subnet.

2.1 Single website

Consider a set V of points (called nodes) in the <2 plane indexed
by i = 1, 2, . . . , I . Let zi ∈ <2 be the coordinate of node i, and
Z = {zi | i ∈ V } be the set of coordinates of all nodes; we will
refer to a node both by i and by its coordinate zi. Node i accesses
the (single) website at a rate of r(i) requests per minute. We are to
place K ≥ 1 servers at locations s = (s1, . . . , sK), where sk ∈ Z,
and the goal is to choose these locations s so as to minimize the
total network cost of serving the requests, defined as follows.

Let d(i, j) be the ‘distance’ of serving a request of node i by a
server located at node j. Given server locations s, the distance mea-
sure d(i, j) partitions V into what are called Voronoi cells Vk ⊆ V
defined by:

Vk = {j ∈ V | d(j, sk) ≤ d(j, sl), ∀l}

such that ∪K
k=1Vk = V . If d(j, sk) = d(j, sl), ties are broken

arbitrarily so that Vk are disjoint. Hence members of Voronoi cell
Vk are nearest neighbors of server sk.

The cost of serving a Voronoi cell Vk is
∑

j∈Vk
r(j)d(j, sk). When

there are K servers, the network cost is

c(K) = min
s

K
∑

k=1

∑

j∈Vk

r(j)d(j, sk) (1)

where the minimization is over all server locations s = (s1, . . . , sK)
in V .1 This cost, in units of rate-distance, is a measure of minimum
network capacity required, the minimum amount of network traffic,
or total delayed weighted by demand, when there are K servers.

The case with Hamming distance measure is particularly simple, so
we next present its solution as an illustration of various definitions.

Example 1: Hamming distance

Under the Hamming distance defined by

d(i, j) =

{

1 if i 6= j
0 otherwise

the network cost is

c(K) = min
s

∑

j∈V

r(j) 1(j 6= sk for any k = 1, . . . , K)

where the indicator function 1(A) is 1 if A is true and 0 otherwise.
Hence the optimal locations are the first K nodes that have the
largest request rates. This is called the hot-spot algorithm in [22].
Without loss of generality (relabeling nodes if necessary), we can
assume that

r(1) ≥ r(2) ≥ · · · ≥ r(I)

The network cost under hot-spot algorithm is the total request rate,
summed over the remaining I − K nodes:

c(K) =

I
∑

j=K+1

r(j)

1This formulation assumes that the location of the origin server
(content provider) can also be optimized. This is optimistic but the
effect of this approximation is insignificant for a large network.



Hamming distance assumes that the cost of serving a remote re-
quest is independent of how far the request is from the server, and
hence is inappropriate. For proper accounting, the distance mea-
sure should take a larger value if the request is farther away from
its nearest server. Euclidean distance is one such measure. As noted
above, distance here may denote hop count, geographical distance,
network congestion, server load or a combination. A major as-
sumption in our model is that the metric adopted can be mapped
(isometrically) into Euclidean distance for the application of inter-
est.

We now approximate the network cost for the case when both nodes
and servers are dense.

2.2 High-density approximation
Let every point z = (z1, z2) ∈ <2 be a node. The request rate of
node z is r(z). Interpret the normalized request rate

f(z) = ρ−1r(z) where ρ :=

∫

r(z) dz (2)

as the spatial density of requests. The idea is to regard the loca-
tion Z of a request as a random variable with probability density
f , and the problem of server placement as source coding, i.e., to
optimally map a source value (request location Z) to a codeword
(server location s) to minimize distortion (network cost). We now
apply the techniques of high-rate vector quantization [11, Chapter
5] to derive a server placement algorithm.

The network cost is defined in an analogous way to (1) as, for a
single website and K servers,

c(K, s) := ρ
K
∑

k=1

∫

Vk(s)

f(z)d(z, sk) dz

Here, s = (s1, . . . , sK) are the locations of the K servers, Vk(s) =
{z|d(z, sk) ≤ d(z, sl), ∀l} is the Voronoi cell containing server
location sk. We assume that K is large so that Vk(s) is small,
and that f(z) is smooth so that f(z) ' f(sk) over Vk(s). We
further assume that the distance function is the Euclidean distance,
d(z, s) = ||z − s||. Then

c(K, s) ' ρ

K
∑

k=1

f(sk)

∫

Vk(s)

||z − sk|| dz

Next we approximate the region Vk(s) by a circular disk with the
same area centered at sk described by:

{z | ||z − sk|| ≤ ak} with ak :=

√

|Vk(s)|
π

where |A| denotes the area of set A. Then 2

c(K, s) ' ρ
K
∑

k=1

f(sk)

∫

{z:||z−sk||≤ak}
||z − sk|| dz

By changing the variable of integration, we get
∫

{z:||z−sk||≤ak}
||z − sk|| dz = a3

k

∫

{z:||z||≤1}
||z|| dz

=
2|Vk(s)|3/2

3
√

π
2Indeed, the following expression is a lower bound because, among
sets of the same area, the moment of inertia about sk of any set A
is the smallest when it is a circular disk centered at sk [11, Lemma
5.3.1].

and hence

c(K, s) ' 2ρ

3
√

π

K
∑

k=1

f(sk)|Vk(s)|3/2 (3)

To interpret, note that f(sk)|Vk(s)| is roughly the probability that a
request falls in Voronoi cell Vk(s). Then, (3) approximates the cost
of serving every request in Voronoi cell Vk(s) by 2

3
√

π

√

|Vk(s)|,
i.e., proportional to the square root of the cell’s area. Hence, roughly,
the sum

2

3
√

π

K
∑

k=1

f(sk)|Vk(s)|3/2

is the expected cost of serving a request in the network, and the
network cost C(K, s) is roughly this per-request cost multiplied
by the total request volume ρ.

We specify server location in this continuum model by server den-
sity λ(z), with the interpretation that the fraction of servers in
an infinitesimally small area dz around z is λ(z)dz. Hence the
number of servers in any region A is K ·

∫

A
λ(z)dz. Note that

∫

λ(z)dz = 1 so λ can also be regarded as the probability density
of server location. We approximate λ(z) by λ(sk) over the small
Voronoi cells Vk(s). Hence, since there is exactly one server in
each Voronoi cell, we have

1 = K ·
∫

Vk(s)

λ(z) dz ' K · λ(sk) |Vk(s)|

or
√

|Vk(s)| ' 1
√

λ(sk)K

Substituting into (3), and when K is large so that Vk(s) is small,
we have

c(K, s) ' 2ρ

3
√

πK

K
∑

k=1

f(sk)
√

λ(sk)
|Vk(s)|

' 2ρ

3
√

πK

∫

f(z)
√

λ(z)
dz (4)

Given request density f , our goal is to choose a server density λ
that minimizes the above approximate cost.

To simplify notation, define for any p-integrable function g, 0 <
p ≤ ∞, its Lp norm as

||g||p =

(
∫

g(z)p dz

)1/p

(5)

Using Hölder’s inequality, it can be shown that the right-hand side
(4) is lower bounded by [11, Chapter 5]

c∗(K) =
2

3
√

π
||f ||2/3 · ρ√

K
(6)

and this lower bound is achieved with the server density

λ∗(z) =

(

f(z)

||f ||2/3

)2/3

(7)

where, from (5), ||f ||2/3 =
(

∫

f(z)2/3 dz
)3/2

. Using (2), we can

also express c∗(K) and λ∗(K) directly in terms of the request rate



r(z). We have ρ||f ||2/3 = ρ
(

∫

f(z)2/3 dz
)3/2

=
(

∫

(ρf(z))2/3 dz
)3/2

= ||r||2/3 . Hence c∗(K) in (6) can be rewritten as

c∗(K) =
2

3
√

π
· ||r||2/3√

K
(8)

and λ∗(z) in (7) can be rewritten as

λ∗(z) =

(

r(z)

||r||2/3

)2/3

(9)

For ease of reference, we will called λ∗ the optimal server density
and c∗(K) the optimal cost in this paper.

Remarks:

1. This suggests a server placement strategy, when cost is mea-
sured by the Euclidean distance, where server density λ∗(z)

is proportional to the 2/3-power of the request density, f(z)2/3,
or equivalently, of the request rate, r(z)2/3. The strategy in-
curs an optimal cost c∗(K) that is proportional to ||r||2/3

and inversely proportional to
√

K.

2. Expressions (6–9) highlight the importance of spatial dis-
tribution of requests and agree with intuition: more servers
should be placed where requests concentrate.

3. The
√

K-dependence of the optimal cost is independent of
the spatial distribution r (or normalized distribution f ), but
just on the distance measure. If the square of the Euclidean
norm is used as the distance measure, then the optimal cost
will be inversely proportional to K.

We illustrate with three examples with uniform, Gaussian, and power-
law request densities. The requests are most widely spread with
uniform density, least so with Gaussian, and in between with power-
law density. For these densities, the optimal server densities are of
the same type as the request densities, but fall off less sharply away
from the center (see (7) or (9)).

Example 2: Uniform request density

Suppose the spatial density f(z) = 1/|A| is uniform over an area
A. Then the optimal server density λ∗(z) = 1/|A| is again uni-
form. The optimal cost is

c∗(K) =
2

3

√

|A|
π

· ρ√
K

Hence the cost is proportional to square root of the size of A. This
is intuitive since the more spread-out requests are, as measured by
the size of A, the more costly it is to serve them.

Example 3: Gaussian request density

Suppose the spatial density is Gaussian centered at the origin with
independent coordinates:

f(z) =
1

2πσ1σ2
e
− 1

2

(

z2
1

σ2
1

+
z2
2

σ2
2

)

Then the optimal server density is also Gaussian centered at the
origin but with 3/2 the variance in each coordinate:

λ∗(z) =
1

2πσ̃1σ̃2
e
− 1

2

(

z2
1

σ̃2
1

+
z2
2

σ̃2
2

)

where σ̃2
i = 3σ2

i /2. Hence the servers are less concentrated around
the center than the requests. The optimal cost is

c∗(K) =
√

3σ1σ2 · ρ√
K

Again, the more spread out requests are, as measured by σ1, σ2,
the more costly to serve them.

Example 4: Power-law request density

Suppose the spatial density has a heavy tail

f(z) = α1α2z
−(1+α1)
1 z

−(1+α2)
2 , zi ≥ 1, αi > 1

Then the optimal server density is also a power-law with a heavier
tail:

λ∗(z) =
1

9
(2α1 − 1)(2α2 − 1) z

−2(1+α1)/3
1 z

−2(1+α2)/3
2

and the optimal cost is

c∗(K) =
18α1α2

√

π(2α1 − 1)3(2α2 − 1)3
· ρ√

K

2.3 Multiple websites
Consider J websites indexed by j = 1, 2, . . . , J . Suppose requests
to website j has a total volume of ρj and a spatial density fj(z) (or
equivalently, a request rate rj(z) = ρjfj(z)). Out of a total of K
servers, kj servers are allocated to serve website j such that

J
∑

j=1

kj = K

and they are placed according to the optimal server density λ∗
j so

that the cost associated with website j is

cj(kj) =
αj
√

kj

where

αj :=
2

3
√

π
ρj ||fj ||2/3 =

2

3
√

π
||rj ||2/3

as explained in the last subsection. Note that servers for different
websites can be co-located at the same node. We will choose server
allocation kj to minimize the network cost:

c∗(K) = min
kj

∑

j

cj(kj) =
∑

j

αj
√

kj

s. t.
∑

j

kj = K, kj ∈ {0, 1, . . . , K}

For large K, relax the constraint that kj be integers. We hence
solve the following simple convex program:

c∗(K) = min
kj

∑

j

αj
√

kj

s. t.
∑

j

kj = K, kj ≥ 0



The necessary and sufficient condition for k∗
j to be optimal is the

Karush-Kuhn-Tucker condition:
αj

2k
∗ 3/2
j

= β for all j

which, together with the feasibility condition, yields the optimal
allocation and cost:

k∗
j =

α
2/3
j

∑

l α
2/3
l

· K

=

∫

r
2/3
j

∑

l

∫

r
2/3
l

· K (10)

c∗(K) =

(

∑

j

α
2/3
j

)3/2

· 1√
K

=
2

3
√

π

(

∑

j

∫

r
2/3
j

)3/2

· 1√
K

Remarks:

1. Recall that ρj represents the popularity of website j, and fj

represents the spatial density of requests for website j. They
are related through the request rate rj(z) = ρjfj(z). Hence,
optimal allocation depends critically on website popularities
as well as spatial densities of requests. Specifically, the frac-
tion of servers allocated to website j should be proportional
to
∫

r
2/3
j (or equivalently, to

∫

f
2/3
j ). The optimal cost is

proportional to
(

∑

j

∫

r
2/3
j

)3/2

and inversely proportional

to
√

K.

2. We can combine equations (9) for optimal placement and
(10) for optimal allocation to express optimal number of servers
in a unit area for each website j directly in terms of the total
number K of servers:

λ∗
j (z)k∗

j =
rj(z)2/3

∑

l

∫

r
2/3
l

· K

Hence, the optimal density is proportional to rj(z)2/3, as a
fraction of total request rate for all websites.

Example 5: Zipf-like popularity

It has been widely observed empirically that the popularity of web-
sites (files) follows a Zipf-like distribution, i.e., the probability that
the jth most popular website is accessed (from any node) is pro-
portional to j−β , 0 < β ≤ 1; see e.g. [5] and references therein.
We model this by requiring the total request volume ρj for website
j to follow a Zipf-like distribution:

ρj = Rj−β, 0 < β ≤ 1

Then

αj =
2R

3
√

π
j−β ||fj ||2/3

Hence the number k∗
j of servers that should be allocated to website

j is proportional to (
∫

f
2/3
j )·j−2β/3 , i.e., it also follows a Zipf-like

distribution. The optimal cost is

c∗(K) =
2R

3
√

π

(

∑

j

∫

(j−βfj)
2/3

)3/2

· 1√
K

3. ALLOCATION AND PLACEMENT AL-
GORITHMS

The approximate model in the last section suggests a server allo-
cation and placement algorithm where a fraction of servers that is
proportional to

∫

r
2/3
j is allocated to each website j, and the spatial

distribution of these servers should be proportional to the 2
3

-power
of the spatial distribution of requests. Even though the high-density
model is continuous, we apply its insight to derive discrete algo-
rithms.

Given:

1. I points (nodes) in <2, indexed by i = 1, 2, . . . , I .

2. J websites, indexed by j = 1, 2, . . . , J ;

3. I × J request rate matrix r where r(i, j) represents the re-
quest rate from node i to website j;

4. the total number K of servers.

Allocation algorithm:

1. For each website j, compute aj :=
∑

i r(i, j)2/3. Let a :=
∑

j aj .

2. Allocate kj = max{1, [aj K/a]} number of servers to web-
site j, where [k] is the nearest integer to k.3

Placement algorithm:

1. For each website j, place kj servers in the following manner.

2. Partition <2 into N < I disjoint grids A1, A2, . . . AN .

3. For each grid An, compute

bjn :=
kj

aj

∑

i∈An

r(i, j)2/3

Let bbjnc be the integer part of bjn and b̌jn := bjn − bbjnc
be the fractional part of bjn.

4. Choose bbjnc number of nodes in grid An to be servers.
With probability b̌jn ∈ (0, 1), an additional node in grid An

is chosen to be a server.

3If the resulting
∑

j kj differs from K because of rounding, adjust
kj in any reasonable way to obtain

∑

j kj = K.



The server allocation and placement algorithm has a time complex-
ity of O(IJ); in particular, it is linear in the number I of nodes.

We can also combine the allocation and placement algorithm into

Joint allocation and placement algorithm:

1. Compute a :=
∑

i

∑

j r(i, j)2/3.

2. Partition <2 into N < I disjoint grids A1, A2, . . . AN .

3. For each grid An, for each website j, compute

bjn :=
K

a

∑

i∈An

r(i, j)2/3

Let bbjnc be the integer part of bjn and b̌jn := bjn − bbjnc
be the fractional part of bjn.

4. Choose bbjnc number of nodes in grid An to be servers for
website j. With probability b̌jn ∈ (0, 1), an additional node
in grid An is chosen to be a server for website j.

4. PERFORMANCE EVALUATION
In this section we present preliminary simulations to compare the
performance of our algorithm with the approximation algorithm
of [12]. Since the approximation algorithm does not dictate how
servers should be allocated when there are multiple websites, we
study only the case of single website.

As noted above, even though the insight of high-rate vector quan-
tization is obtained in a continuous model, the server allocation
and placement algorithm works on discrete problems with arbitrary
(discrete) request rates r. However, to compare with the analyt-
ical (approximate) expression for costs, we choose in our simu-
lations request distributions whose continuum approximations are
uniform, Gaussian, and power-law, the three spatial request densi-
ties in Examples 2-4, as follows.

For each simulation run, we first generate I points in the unit square
[0, 1]2 , uniformly distributed over the unit square. We fix a total
request volume ρ. For each point i, we assign its request rate to be

r(i) =
ρf(i)

I

where f(i) is the spatial density over the square [0, 1]2 evaluated
at the coordinate zi := (xi, yi) of point i. Then f(i) is a contin-
uum (and normalized) approximation of r(i), in the sense that r(i)
represents the demand in a small region of size 1/I around zi that
follows the spatial density f .

We take the number K of servers to be 20% of I . We execute our
server placement algorithm on the given set of I nodes, J = 1
website, and request vector r to obtain the coordinates of these K
servers. We vary I from 100 to 20,000, and measure the network
cost

c(I) =
K
∑

k=1

∑

i∈Vk

r(i)||zi − sk||

where zi = (xi, yi) ∈ [0, 1]2 is the coordinate of point i and sk ∈
[0, 1]2 is the coordinate of the nearest server k. It is simpler to look

at the normalized cost

ĉ(I) =

√
K

ρ
· c(I)

which is predicted by the theory to be a constant independent of I ,
K or ρ, and depends only on the spatial density f (see the expres-
sions for optimal costs in Examples 2, 3, and 4).

We note that the for each case of I , the number of servers assigned
by our algorithm may be different from K (= 0.2I), because of
two reasons. First, the algorithm computes the number of servers
that should be located in a grid An, and each server must be located
at a node in that grid. For a grid An with a large aggregate request
rate

∑

i∈An
r(i), the number of servers assigned to An may ex-

ceed the number of points in An. This depends on the size of the
grid. The excess is ignored when all points in grid An have been
assigned as servers. Second, the fractional part of the optimal num-
ber of servers is used to add a server probabilistically. Hence, for
each I , we conduct 20 simulation runs, and for each run, we note
the coordinates of the I points and the actual number of assigned
servers.

We then apply the k-median algorithm of [12] to each of the 20
simulation runs, using the same coordinates and the actual number
of servers produced by our algorithm for each run.

The average normalized costs ĉ(I), averaged over the 20 runs, are
shown in Figures 1–3 as a function of I . For each spatial distri-
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Figure 1: Normalized cost ˆc(I) as a function of the number I
of nodes for uniform request distribution.

bution, we plot the normalized costs of our algorithm (for I up to
20,000), and that of the k-median algorithm (for I up to 1,000).
Also shown in the figures are the theoretical values for the normal-
ized costs according to the high density model (straight lines).

We make a few remarks. First, the empirical costs of our algorithm
are close to the analytical value, validating our high density model.
Second, the cost under our algorithm is never more than twice the
cost under the k-median algorithm. Third, our algorithm has time
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Figure 2: Normalized cost ˆc(I) as a function of the number I
of nodes for Gaussian request distribution.
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Figure 3: Normalized cost ˆc(I) as a function of the number I
of nodes for power-law request distribution.

I High density k-median

100 0.01 sec 1.3 sec
200 0.01 5.6
500 0.02 53
750 0.02 144

1000 0.03 294
5000 0.17 —
10000 0.35 —
20000 0.69 —

Table 1: Average running time

complexity linear in I and hence can handle much larger problem
sizes. This tradeoff may be appropriate for large-scale dynamically
self-organizing CDN.

Table 1 shows the running time, averaged over the 20 runs for each
I . The simulations were run on a 1.5GHz Pentium 4 processor with
256Mb RAM, linux kernel 2.4.2, gcc 2.96-79 and Matlab R12.1.

5. CONCLUSION
By viewing server placement as a vector quantization problem in
the case when both clients and servers are dense, we have derived a
simple server allocation and placement algorithm. Preliminary sim-
ulations suggest that it has a good tradeoff between performance
and complexity. Our results highlight the importance of both the
spatial distributions of client requests for each website and the to-
tal request volume for each website. The total volume represents
the website’s popularity and has been found to follow a Zipf-like
distribution [5]. It determines the server allocation: more popular
contents should be allocated more servers. The spatial distribu-
tion of requests determines where these servers should be placed
around the network. However spatial distribution of requests is not
well exploited in current systems, both because of the difficulty in
measuring it empirically [16, 13, 25], and because of the lack of a
theoretical understanding of its role.

Our current joint sever allocation and placement algorithm, though
much simpler, still requires nonlocal information to implement.
The idea is to have each local region decide how many servers
to employ and what contents to store based only on the fraction
of local client requests for different contents, as a fraction of to-
tal volume on the network, a piece of nonlocal information. The
scheme naturally adapts to changes in client request pattern to re-
duce propagation delay and balance network load. It’d be interest-
ing to develop a distributed version of this algorithm that is suitable
for real-time implementation on a large scale.
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