
446 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

CMOS technology. Fig. 6 shows the layout of this FIR processor with
a die size of 6.3� 6.3 mm2. The power consumption is around 3.8
W at a clock frequency of 200 MHz, where the power and function-
ality of the proposed processor were analyzed using the PowerMill and
TimeMill tools. The throughput rate is 50 MHz for 8-bit input data and
25 MHz for 16-bit input data. There are 241 742 transistors in the de-
sign, and the circuit density is around 164�m2 per transistor. When
considering 8-bit input data and (anti)-symmetric filter coefficients,
the proposed FIR processor can have a maximum of 64 taps with a
computational power of 12.8 billion multiplication-accumulation op-
erations/s. The specifications of the proposed FIR processor are listed
in Table IV. Additionally, performance comparisons between the pro-
posed FIR processor and processors presented in other work are listed
in Table V, where the factors of area per 10�12-bit multiplier A(mult)
and power per 10�12-bit multiplier P(mult) are defined using a 0.5�m
CMOS technology, a 3.3 V supply voltage, and a 50-MHz clock rate
[1]–[4]. The memory-based FIR processor with the 8-bit input data and
9-bit filter coefficients dissipates a higher power [4]. The CSD FIR pro-
cessor has the lowest power consumption and the smallest area because
values of filter coefficients are rounded off by a few nonzero digits [3].
As compared to the other Booth-algorithm FIR processors [1], [2], the
proposed processor is highly flexible, and has a good throughput rate,
a fair die size and a reasonable power consumption in a 5 V standard
cell implementation point of view.

V. CONCLUSION

Based on the radix-4 Booth algorithm, this work has successfully
developed an FIR architecture with programmable dynamic ranges of
input data and filter coefficients. Notably, the proposed architecture
employs only data-path controls to accomplish programmable opera-
tions. A practical FIR processor with 8-bit and 16-bit dynamic ranges
of input data and filter coefficients was also implemented by using the
TSMC 5 V 0.6�m CMOS technology. Moreover, the processor is op-
timized for odd or even (anti)-symmetric and asymmetric filter coeffi-
cients in ten operation modes. This programmable FIR processor can
be operated at a clock frequency of 200 MHz to produce throughput
rates of 50 M and 25 M samples/s for 8-bit and 16-bit input data of
various industrial applications, respectively.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valuable com-
ments and suggestions.

REFERENCES

[1] C. Nicol, P. Larsson, K. Azadet, and J. O’Neill, “A low-power 128-tap
digital adaptive equalizer for broadband modems,”IEEE J. Solid-State
Circuits, vol. 32, pp. 1777–1789, Nov. 1997.

[2] J. Choi, S. Jeong, L. Jang, and J. Choi, “Structured design of a 288-tap
FIR filter by optimized partial product tree compression,” inProc. IEEE
CICC, May 1996, pp. 79–82.

[3] K. Khoo, A. Kwentus, and A. Willson, Jr., “A programmable FIR digital
filter using CSD coefficients,”IEEE J. Solid-State Circuits, vol. 31, pp.
869–874, June 1996.

[4] C. Golla, F. Nava, F. Cavallotti, A. Cremonesi, P. Piacentini, and G.
Casagrande, “A 30M samples/s programmable filter processor,”Digest
IEEE Int. Solid-State Circuits Conf., pp. 116–117, Feb. 1990.

[5] W.-L. Liu and O. T.-C. Chen, “A highly-scaleable symmetric/asym-
metric FIR processor,” inProc. IEEE Int. Conf. Acoustic, Speech,
Signal Processing, Mar. 1999, pp. 1917–1920.

[6] J. Yuan and C. Svensson, “New single-clock CMOS latches and flipflops
with improved speed and power savings,”IEEE J. Solid-State Circuits,
vol. 32, pp. 62–69, Jan. 1997.

On-Line Test for Fault-Secure Fault Identification

Samuel N. Hamilton and Alex Orailoğlu

Abstract—In an increasing number of applications, reliability is essen-
tial. On-line resistance to permanent faults is a difficult and important
aspect of providing reliability. Particularly vexing is the problem of fault
identification. Current methods are either domain specific or expensive. We
have developed a fault-secure methodology for permanent fault identifica-
tion through algorithmic duplication without necessitating complete func-
tional unit replication. Fault identification is achieved through a unique
binding methodology during high-level synthesis based on an extension of
parity-like error correction equations in the domain of functional units.
The result is an automated chip-level approach with extremely low area
and cost overhead.

Index Terms—Faults, reliability, reliable, test, ULSI, VLSI.

I. INTRODUCTION

As the sophistication and complexity of modern electronics in-
creases, so does our reliance on it. Utilization in critical areas such as
medicine, navigation, and transportation is already high and continues
to rise. More and more pilots, surgical patients, and even everyday
motorists bet their lives daily on the reliability of their electronics.
Thus, the need for reliable computational equipment is both immediate
and increasing.

Due to the dearth of efficient approaches to fault identification, de-
signers frequently resort to complete duplication of a set of functional
units in order to detect errors. Replication allows two units to compare
duplicate calculations for consistency. If the calculations are run on dis-
joint hardware, the design isfault secureat the single fault level, as no
single fault can corrupt output without detection. When an error does
occur, it still must be determined which of the two calculations is cor-
rect. The consequent hardware required for fault identification entails
additional complexity.

To avoid the cost associated with complete hardware duplication,
there has been an increasing focus in the fault-tolerance literature
on high-level synthesis [1]. Tailoring high-level synthesis routines
for compatibility with efficient hardware solutions facilitates the
production of more compact, reliable designs.

In this paper, we propose an algorithmic approach to fault iden-
tification that introduces error encoding schemes into high-level
synthesis. By endowing scheduling and binding routines with the
capacity to embed generic error correction codes, we enable efficient
implementation of calculation duplication via load balancing while
avoiding hardware complexity associated with traditional fault
identification techniques. By adopting algorithmic duplication, we
also introduce the capacity for fine grain reliability/cost tradeoffs
similar to performance/cost tradeoffs inherent in high-level synthesis
while simultaneously guaranteeing fault security for single faults. In
addition, unlike approaches based on more restricted fault models, a
voting or function unit fault cannot result in erroneous behavior. The
proposed technique represents the first fault-secure methodology for
fault identification to forgo triplication in favor of the significantly
lower cost duplication entails.

Manuscript received November 23, 1998; revised February 12, 1999.
The authors are with the Department of Computer Science and Engineering,

University of California, San Diego, La Jolla, CA 92093-0114 (e-mail:
hamilton@cs.ucsd.edu; alex@cs.ucsd.edu).

Publisher Item Identifier S 1063-8210(00)01036-2.

1063–8210/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000 447

Fig. 1. Overall fault isolation and recovery structure.

II. OVERALL APPROACH

The algorithmic approach we propose aims to combine an efficient
interjection of a small set of hardware with carefully tailored high-level
synthesis routines to achieve fault tolerance with low area overhead.
Detection is achieved through algorithmic duplication, which can avoid
full functional unit duplication through load balancing. Fault identi-
fication is accomplished through the insertion of error codes during
high-level synthesis. Fig. 1 outlines the operation of a system utilizing
our technique.

Errors are detected through comparison of all calculations and dupli-
cate calculations at periodic checkpoints, represented as C0–C2 in our
diagram. Note that as shown in Fig. 1, there can be significantly less
than one comparison per operation. Information reflected by reported
errors is collected and used for fault identification. When identification
has occurred, the system is reconfigured to remove the faulty unit, and
rollback to the last saved state is initiated.

In this paper, we do not address rollback insertion or reconfigura-
tion methodology, but concentrate on fault identification. For efficient
checkpoint insertion and reconfiguration techniques, refer to [1] and
[2], respectively. Our fault identification methods adopt the following
assumptions.

1) As in most fault models in this domain, during fault identification
we assume only a single functional unit is faulty. Multiple faults
can be handled, however, as long as they do not fall within the
same fault identification period.

2) We adopt a Byzantine fault model, wherein faults are not as-
sumed to produce consistently erroneous behavior. This fits with
data from testing literature, which indicates that many faults are
neither catastrophic, nor covered by limited fault models [3].

3) We restrict our exposition of fault tolerance techniques to within
basic blocks. Consequently, neither conditional branches nor
loops are addressed in our description. This is not a fundamental
restriction, but is made to simplify the presentation of our main
ideas.

Initially, we will also assume fault-free voting hardware. This as-
sumption is waived through incorporation of voting hardware into the
fault model in Section IV.

A. Error Detection

The basic approach to error detection is outlined in Fig. 2. Each cal-
culation is duplicated, allowing an error to be detected through com-
paring the results of identical strings of computations. Of course, a cal-
culation and its duplicate cannot share functional units. If they did so, a
fault in a single unit could corrupt both the calculation and its duplicate.
If this corruption occurred such that both erroneous results agreed, the
erroneous behavior would escape detection. For subsequent legibility,

Fig. 2. Fault detection through algorithmic duplication.

TABLE I
HARDWARE FORTRACKS REPRESENTED INFIG. 2

we denote a string of operations as astring, while a string and its du-
plicate is referred to as atrack.

By ensuring that strings and their duplicates utilize disjoint sets of
units, we ensure that erroneous results cannot remain undetected. Of
course, this is reliant on a single faulty unit assumption. Otherwise, a
fault could occur in sets of units such that a string and its duplicate
both arrive at the same incorrect result. Since the agreement between
a string and its duplicate is interpreted as anerror-freecondition, the
erroneous result would escape detection. Note that any system reliant
on duplication for error detection implicitly adopts this assumption,
since it is always possible for a functional unit performing a calculation
and the functional unit checking that calculation to produce erroneous
results simultaneously.

B. Fault Identification

While error detection is useful, our overall goal is faulty unit iden-
tification. Error detection through calculation duplication does not ac-
complish this. The error detection process does, however, contain in-
formation that can be useful for fault identification: if a track reports
an error, one of the units active in that track is faulty. Thus, as can be
seen in Table I, if track 1 reports an error, either unit A or unit B must
be faulty.

Note that the information present in any one track is only adequate
to narrow the set of potentially faulty units to two. By combining the
information provided by multiple tracks, however, we can still achieve
complete identification. For example, if track 1 and track 2 from Table I
both report errors, it can be deduced that unit A is faulty, since it is the
only unit used in both tracks. Similarly, if tracks 1 and 3 report errors,
unit B must be responsible.

A subtle issue raised by Fig. 2 is the possibility oferror masking.
Since strings can contain more than one operation, it is possible that
a faulty unit will produce incorrect results for an operation, but a sub-
sequent operation in the same string will correct the error before the
string is compared with its duplicate. Although error masking can re-
sult in faults remaining undetected that would be detected if every op-
eration were checked, it cannot result in undetected errors in the output.
This is because every output is the culmination of a calculation, and by
definition masked errors produce correct results at the end of output.
Thus, our system remains completely fault secure despite reduced com-
parator requirements.

Error masking is not the only way a faulty unit can remain unde-
tected. Since many faults only produce incorrect results under a limited
set of circumstances, they cannot always be detected through calcula-
tion duplication. This is particularly true with hard-to-test faults, where
the fault only rarely produces erroneous behavior. Tracks reflecting

448 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Fig. 3. Data flow graph, with asterisk denoting output nodes.

TABLE II
POSSIBLESCHEDULING OF DATA FLOW GRAPH IN FIG. 2 AND ITS DUPLICATE

USING SEVEN UNITS. A QUOTE DESIGNATES ADUPLICATE NODE

TABLE III
TRACKS FOR THESCHEDULE PRESENTED INTABLE II. STRINGS WITHIN A

TRACK ARE SEPARATED BY A SLASH

TABLE IV
INCLUSION PROPERTY OFUNITS IN TRACKS LISTED IN TABLE III

correct behavior by a faulty unit are referred to asfalse negatives, since
they fail to signal the presence of a fault. False negatives interfere with
the identification process, since they reduce the number of tracks re-
porting useful information to the fault-identification process.

C. Motivating Example

Fig. 3 shows a sample data flow graph for which we illustrate some
of the advantages inherent in algorithmic duplication, as well as the
challenges false negatives present.

The data flow in Fig. 3 can be scheduled in three clock cycles using
four functional units, indicating that hardware duplication would result
in eight units. As Table II shows, however, with algorithmic duplication
the data flow in Fig. 3 can be scheduled using only seven units, without
increasing the number of clock cycles. Thus, algorithmic duplication
can be achieved with less-than-complete hardware duplication.

The tracks inherent in the schedule in Table II are presented in
Table III. In order for a specific functional unit to be identified, it needs
to be in a unique set of tracks. Otherwise, it could not be differentiated
from units with identical track sets. As can be seen in Table IV, the
tracks in Table III satisfy this property.

Due to the possibility of false negatives, however, it is not sufficient
for each unit to have a unique set of tracks. If the set of tracks that
include unita are a subset of the tracks including unitb, ambiguity
can arise. The problem is that ifa’s tracks report errors, it cannot be
determined whether unita is faulty, or whetherb is faulty but some of
its tracks are not reporting errors. For example, in Table IV, unit A is
included in track 1, which is a subset of the tracks including units B,
C, and D. If track 1 reports an error, either A is faulty, or B, C, or D is
faulty with false negatives in other tracks.

TABLE V
HAMMING TRACKS FORSEVEN UNITS

TABLE VI
DIFFERENTIATION FORHAMMING CODE USING SEVEN UNITS

Consequently, there is no reliable way of identifying unit A as faulty
without an alternative track decomposition. To enable identification of
any faulty unit within a set of tracks, the fault behavior of each unit must
bedifferentiatedfrom all other units. Unita is considered differentiated
from unitb if a track exists that utilizesa, but notb. Thus, in track 1 of
Table III, A, B, C, and D are differentiated from units E, F, and G. Note
that differentiation is not a symmetrical property, since adding a track
prevents units in the track from being subsets of excluded units, but
does not prevent excluded units from being subsets of included units.
Thus, while unit B in Table III is differentiated from unit F by track 1,
the tracks of F are still a subset of the tracks of B.

III. ENCODING ERRORIDENTIFICATION PROPERTIES

A common error encoding technique for fault identification is Ham-
ming code [4]. There are some subtle differences, however, between
the application of Hamming code to bit correction, and to functional
unit fault identification.

Following is an analysis of the properties of Hamming code, fol-
lowed by methods to extend it to allow complete identification. While
there is no straightforward method to apply the theoretical track sets
derived to complex data flow diagrams, the analysis of these sets sup-
plies useful techniques for implementing tracks for any data flow.

A. Hamming Track Sets

Hamming tracks are based on a logarithmic technique, where every
track differentiates one half of the units from the other half. Table V
shows Hamming tracks for seven units.

When applying Hamming to faulty unit identification instead of bit
correction, the method of error detection is quite similar. In Hamming
tracks, an erroneous track is detected using a comparison unit, which is
assumed to be fault-free.1 In Hamming bit correctioncode, the hardware
used to check parity is also assumed to be fault-free. The hardware as-
sociated with checking parity (XOR), however, is significantly simpler
than the voting hardware required for checking tracks (a comparator).

The simpler hardware requirements result from the addition of a
parity bit to each parity equation. Since each parity bit is itself subject
to error,n parity equations can only correct2n�n�1 bits of informa-
tion. Hamming tracks, however, have no equivalent requirements, and
can therefore include up to2n � 1 functional units inn tracks.

Table VI shows the differentiation properties of the Hamming tracks
shown in Table V. The entry in row A, column B of Table VI indicates

1This assumption is waived in Section IV.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000 449

TABLE VII
MIRROR HAMMING TRACKS FOREIGHT FUNCTIONAL UNITS

TABLE VIII
DIFFERENTIATION FORMIRRORHAMMING CODE USING EIGHT UNITS

that there exists one track where A is present and B is not (track 3 from
Table V). The zero entry in row B, column A shows that no tracks con-
tain B without including A. Thus, B is not differentiated from A. Con-
sequently, if the tracks containing B (1 and 2) report errors, it cannot
be determined whether unit B is faulty or whether A is (since track 3
could have a false negative). Since not all units are differentiated from
all other units, Hamming tracks are insufficient for fault identification.

B. Extensions to Hamming

Despite the flaws in Hamming track sets, they possess a useful char-
acteristic: all chart entries above the diagonal are greater than zero.
Using this fact, we can derive a new encoding scheme that fulfills our
differentiation requirements. The new code is calledmirror Hamming,
because it is derived by combining Hamming with its complement. The
complement will by definition produce a mirror image of the differ-
entiation chart, since for each track every unit previously missing is
differentiated from all units previously present. Therefore, Hamming
combined with its complement is fully differentiated.

Note that when implementing complementation, the set of units used
in n Hamming tracks is2n, not the2n � 1 units originally included.
As alluded to previously, Hamming is derived using a logarithmic ap-
proach to creating unique track sets for each unit. The unit assigned the
empty set of tracks cannot be included, of course, because by definition
it is not used in any of the tracks. During complementation, however,
the corresponding unit is included in all new tracks, and can therefore
be utilized. Table VII shows mirror Hamming tracks for eight units.

From the differentiation chart in Table VIII, it is clear that com-
plete differentiation has been achieved. Not only that, but the number
of tracks required using this technique is2(lgn), which allows func-
tional units to be fully differentiated by relatively few comparisons.

Complete differentiation such as that shown in Table VIII is indica-
tive of aminimum differentiationof one, i.e., the smallest entry in the
differentiation chart is one. Minimum differentiation is equivalent to
the number of false negatives required to create an ambiguity. This is
implicit in the definition of differentiation, since every differentiation
of a unita from another unitb represents an additional track where a
false negative would be required for unita’s tracks to become a subset
of unit b’s tracks.

Hamming code is not unique in its capacity to supply complete dif-
ferentiation when mirrored. The mirror of any error correction code is

sufficient for complete differentiation. This is because error correction
codes require a unique set of bits to be included for any fault, which is
sufficient to fill the upper half of the triangle in a differentiation chart
as Hamming code does in Table VI. The mirror then covers the other
half. While tangential to the fault identification work described herein,
it is interesting to note the reverse is also true. Any code that fills the
upper half of a differentiation table is sufficient for error correction.

To reduce the chance of an ambiguity arising, it is desirable to have
track sets with high minimum differentiations. Refinement of theoret-
ical track sets such as mirror Hamming is an impractical solution, how-
ever, as data dependencies and timing constraints limit straightforward
track formation. Section VI addresses derivation techniques for real-
istic track sets within the context of high-level synthesis utilizing the
analysis techniques developed in this section.

IV. FAULTY VOTING HARDWARE

The previous analysis has been based on the assumption that voting
hardware exhibits fault-free behavior. In this section, we incorporate
voting hardware into our fault model through a functional analysis of
potential voting faults. The two possible fault behaviors of a voting unit
are:

• the voter fails to report an error in the checked track;
• the voter reports an error in the checked track when no error

exists.
Note that by the single fault assumption, if the checked track contains

an error, the voting unit cannot be faulty. Thus, the only fault condition
that needs to be considered is the report of an error when the strings of
the checked track are in agreement.

To identify faults in voters that incorrectly report errors, we can in-
clude the voters in the set of units they check. Through inclusion in the
differentiation chart, faults in voters can be identified through the pre-
viously established techniques.

V. EXTENSIONS TOMULTIPLE SEQUENTIAL FAULTS

The techniques described above supply complete fault security in a
single fault environment. In fact, as long as only one fault occurs at
a time, the fault identification system remains fault secure under mul-
tiple sequential faults. For example, if multiple spares are included, our
system could identify and replace multiple faults as long as only one
occurred at a time.

This is a very reasonable fault model for permanent faults, as any
chip which passes manufacturing testing will likely develop permanent
faults very slowly, allowing each to be caught and identified separately.
If only one fault occurs at a time, the chance of the fault being detected
and identified approaches 100% as the time period between faults ap-
proaches infinity, given random input.

The only place this model loses realism is in the case of dedicated
comparators. In the case of comparators, the input is not random. In
fact, if a zero output from a comparator indicates no fault, only input re-
sulting in a zero output will occur unless there is a noncomparator fault.
This means if a voting unit were to develop a stuck-at-zero output fault,
that fault could remain undetected indefinitely. While the application
would continue to function correctly, the prolonged period without de-
tection increases the likelihood of another fault occurring. These two
faults could then interact such that the faulty voting unit masks errors
in the second faulty unit. Note that this cannot happen with voting units
containing stuck-at-one output faults, as the frequent error reports will
enable quick identification.

One solution to this problem is the use of nondedicated compara-
tors. That is, check other units using spare cycles in adders or other
units that can conduct comparisons. Since these units are responsible
for other operations, these other operations will detect stuck-at-zero

450 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

faults. In addition, this reduces overhead by reducing dedicated com-
parator requirements.

VI. SYNTHESIS

While Section III sets the theoretical foundation for on-line fault
identification, it does not cover synthesis issues. The main issues to
address are how to schedule and bind a dataflow graph into tracks,
and how to store track information with minimal overhead. In this
section, we address these issues, and describe our implementation of
a high-level synthesis algorithm. Application of our algorithm to a
benchmark from our results section is shown step by step to clarify
and illustrate our techniques.

A. Scheduling and Binding

Current high-level synthesis scheduling and binding algorithms do
not address differentiation issues. Consequently, modifications are re-
quired. When adjusting scheduling and binding algorithms to facilitate
differentiation, our priority is to avoid sacrificing performance.

Binding is the fundamental component in determining fault iden-
tification properties, as it determines what units are included in each
track. As it is rarely possible to bind according toa priori track sets
such as mirror Hamming, we do not attempt such a mapping. Instead,
we judge each track’s contribution to a differentiation chart, and use
this as a criterion to bind nodes in a greedy fashion. In our implemen-
tation, binding is interweaved into the scheduling process. We do this
to enable more intelligent comparison insertion during scheduling, as
insertion of a comparison operation dictates the formation of a track.

As we prioritize performance over differentiation, if binding
becomes disruptive to scheduling (due to the need to maintain
disjointness), a rebinding algorithm is called, which unbinds relevant
nodes and comparisons. The nodes are then rebound and comparisons
inserted in a simplified fashion, where track sizes are minimized by
reusing functional units between parents and children. If this is not
sufficient, the program delays scheduling the relevant node.

For most applications, it is neither possible nor desirable to fit all
operations into several long tracks. Long tracks limit minimum differ-
entiation potential and increase error latency. The solution is tocut the
length of tracks and, after checking for errors, introduce a new set of
tracks. These checks are done in parallel with the next clock cycle of
operations. We introduce cuts when functional units capable of a com-
parison are idle. In applications utilizing adders or other units capable
of comparison, this reduces overhead by eliminating dedicated com-
parator hardware.

Fig. 4 shows the basic structure of our scheduling and binding al-
gorithm. The application of that algorithm results in the schedule in
Table IX. The node number scheme follows a breadth first ordering of
the auto regressive (AR) filter dataflow presented in [5]. The hardware
input consists of seven functional units capable of multiplication and
addition, and two functional units capable of addition. Note that since
addition can be used for comparison purposes, all functional units in
this example may be scheduled to do comparisons. For simplicity of
illustration, each functional unit is given a uniform amount of time to
complete an operation.

The ability of each functional unit to do a comparison creates an
abundance of opportunities for track formation. In fact, it is possible in
this example to compare all 28 replicated data nodes, creating 28 tracks,
without increasing the number of functional units. There are only 19
tracks implicit in Table IX, as shown in Table X, however, which raises
the question why more idle functional units were not used for com-
parison. The answer is that a comparison may potentially stretch the
lifetime of the relevant register. For example, the result for node 1 is
calculated in clock cycle 1, and used in clock cycle 2 by node 5. If node

Fig. 4. Fault detection through algorithmic duplication.

TABLE IX
SCHEDULE AND BINDING OF AR FILTER IN TEN CLOCK CYCLES. A QUOTE

DESIGNATES A DUPLICATE NODE, AND AN ASTERISK REPRESENTS A

COMPARISON

1 were compared in clock cycle 6, the lifetime of the register storing
its value would be significantly stretched. We reduce the effect of this
phenomenon by taking register lifetime increases into account during
our derivation of the best comparison insertion.

B. Track Storage

The tracks in Table X have a minimum differentiation of 2, as shown
in Table XI. To allow online fault identification, the track information
must be encoded so that a comparator can trigger the union of the rel-
evant track set and the ambiguity set.

A simple approach to storing track binding is to embedn bits of
information for each checking operation, wheren is the number of
hardware units. These bits represent the units utilized by each track,
and can be intersected with the ambiguity set upon detection of an error.

For applications with a large number of tracks, this approach can
entail significant overhead. One technique to decrease this overhead is
to limit the set of potential track bindings. A multiplexer stores these
bindings, which are selected according to bits of information embedded
in the checking operation. As long as the number of possible tracks
is no greater than2n�1, this will result in a reduction in the bits of
information that must be stored with the checking operation. In our
example, the number of bits per comparison reduces from nine to five,
as there are 19 tracks.

Since the size of the multiplexer and the number of bits of informa-
tion required for binding identification are dependent on the number
of possible track bindings, it is desirable to minimize them. This mini-
mization must be done within the context of maintaining differentiation

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000 451

TABLE X
TRACKS FORINSERTEDCOMPARISONS

TABLE XI
DIFFERENTIATION TABLE FOR IRREGULAR TRACKS

properties. One technique is toregularizethe track set. This involves
deriving a small core set of track bindings, and mapping checking op-
erations into this core set. During mapping, it is important to ensure
that checking operations are only mapped to core tracks if the track
binding of the checking operation is a subset of the binding of the core
track. As long as this subset property holds true, a faulty hardware unit
cannot be incorrectly eliminated from the ambiguity set.

The disadvantage of regularization is that differentiation is weak-
ened. For example, if a check using units (A B D) is mapped to the
core track (A B C D), unit C would not be eliminated from the ambi-
guity set despite not having been utilized in the original track. Thus,
differentiation is redefined such that all units in the original track are
differentiated from all units not in the core track being mapped to. For
applications with numerous tracks, however, differentiation is already
likely to be quite good. Since this is also the application group which
derives the most benefit from regularization, the technique should be
seriously considered for any implementation with a large number of
tracks.

The main challenge involved in the regularization of tracks is the se-
lection of a core track set. Once this is done, a greedy algorithm can be
used to map each check to the core track which improves differentia-
tion the most.

To selectx core tracks, we utilize a genetic algorithm approach
which incorporates elements of simulated annealing. Following the
generation of a set of seed tracks, it iterates through the following
steps until onlyx tracks remain.

1) Select a group ofx tracks.
2) Feedeach track based on the differentiation properties of the

group as well as individual contributions.

TABLE XII
REGULAR TRACKS AND MAPPING FROMIRREGULAR TRACKS

TABLE XIII
DIFFERENTIATION TABLE FOR REGULAR TRACKS

3) Bleedthe group by decreasing their food. Any tracks with no
food remaining are discarded from the set.

4) Breedremaining tracks in the group by giving each a chance of
creating a duplicate containing a minor mutation.

Seed tracks include mirror Hamming codes as well all possible tracks
with 0, 1, or 2 units excluded. The possibility of adding all original
tracks as well was considered, but discarded due to the likelihood that
these tracks represent local maxima. Simulated annealing techniques
were interjected to gradually increase bleeding and decrease breeding.
Consequently, the number of tracks initially swells, followed by a slow
decline.

The selected set is saved if its differentiation properties are better
than any previously generated. If upon completion the algorithm has
failed to achieve the minimum differentiation desired, the process is
retried, relying on random elements in the algorithm to explore new
possibilities.

Running theFeed, Bleed, and Breedalgorithm on the tracks in
Table X results in the core tracks in Table XII. Mapping the tracks from
Table X into the core tracks results in the differentiation properties
shown in Table XIII. Note that encoding the original track set requires
five bits as there are 19 tracks, while the core set of

VII. EXPERIMENTAL RESULTS

The scheduling and binding implementation was tested on an AR
filter, a discrete Fourier cosine transformation (DFCT), and an elliptic
filter, under a variety of conditions. The hardware requirements for
these benchmarks are presented in Table XIV.

Each benchmark was tested through a wide spectrum of perfor-
mance/cost tradeoffs, comparing the functional unit requirements
of standard implementations for fault identification through triple
modular redundancy, and fault security through modular duplication
without fault-identification methodology. As expected, our technique
entails significantly less overhead than triple-modular redundancy
(43% savings). In addition, our results indicate that despite the
interjection of fault-identification properties, our techniques compare
favorably to modular duplication (11% savings), despite the fact that
modular duplication lacks fault-identification capabilities.

The differentiation properties of each implementation are shown in
Table XV. The result of applying our regularization algorithm is also

452 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

TABLE XIV
EXPERIMENTAL RESULTS

TABLE XV
RESULTS FORIRREGULAR AND REGULAR TRACK SETS

shown. While the small benchmark sizes reduce the effectiveness of
regularization, it can be seen that regularization can effect a decrease in
control at the cost of losing some differentiation capacity. Thus, for ap-
plications where reduced error latency supplied by high differentiation
values is crucial, irregular tracks remain the methodology of choice.
For applications where control size is more relevant, however, our re-
sults show that even in small applications a differentiation of one can
be maintained during regularization, thereby facilitating smaller con-
trol logic while maintaining viable differentiation.

VIII. C ONCLUSIONS

We have described a comprehensive approach to fault identification,
which provides full fault security under a broad fault model. Fault iden-
tification is achieved without triplication through the interjection of
parity-like error correction equations for functional units during high-
level synthesis. Furthermore, load-balancing techniques are utilized to
reduce functional unit and voting hardware requirements. In addition,
regularization algorithms are presented to reduce control logic area.
The product is the first automated, chip-level synthesis technique to
achieve fault-secure fault identification with only modest increases in
area.

REFERENCES

[1] A. Orailoğlu and R. Karri, “Automatic synthesis of self-recovering VLSI
systems,”IEEE Trans. Comput., vol. 45, pp. 131–142, Feb. 1996.

[2] W. Chan and A. Orailŏglu, “High-level synthesis of gracefully degrad-
able ASICs,” inProc. Eur. Design and Test Conf., Mar. 1996, pp. 50–54.

[3] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. Rockville, MD: Computer Science,
1990.

[4] P. Vera,Introduction to the Theory of Error-Correction Codes. New
York: Wiley, 1989.

[5] R. Jain, A. Parker, and N. Park, “Module selection for pipelined syn-
thesis,” inProc. Design Automation Conf., June 1988, pp. 542–547.

Evolutionary Algorithms for the Synthesis of
Embedded Software

Eckart Zitzler, Jürgen Teich, and Shuvra S. Bhattacharyya

Abstract—This paper addresses the problem of trading off between the
minimization of program and data memory requirements of single-pro-
cessor implementations of dataflow programs. Based on the formal model
of synchronous dataflow (SDF) graphs [1], so-called single appearance
schedules are known to be program-memory optimal. Among these
schedules, buffer memory schedules are investigated and explored based
on a two-step approach: 1) An evolutionary algorithm (EA) is applied to
efficiently explore the (in general) exponential search space of actor firing
orders; 2) For each order, the buffer costs are evaluated by applying a
dynamic programming post-optimization step (GDPPO). This iterative ap-
proach is compared to existing heuristics for buffer memory optimization.

Index Terms—Dataflow, evolutionary algorithms, memory management,
software synthesis.

I. INTRODUCTION

Software synthesis has become an important component of the im-
plementation process for embedded VLSI systems due to flexibility
and time-to-market considerations.

Synchronous dataflow (SDF) [1] is a restricted form of dataflow in
which the nodes, calledactors, have a simple firing rule: The number
of data values (tokens, samples) produced and consumed by each actor
is fixed and known at compile time. The SDF model is used in in-
dustrial DSP design tools, e.g., SPW by Cadence, COSSAP by Syn-
opsys, as well as in research-oriented environments, e.g., Ptolemy [2],
GRAPE [3], and COSSAP [4]. Those systems include code genera-
tion tools with code (usually optimized assembly code) stored for each
actor in a target-specific library. Typically, code is generated from a
given schedule by instantiating actor code in the final program by code
inlining. Subroutine calls may have unacceptable overhead, especially
if there are many small tasks.

With this model, it is evident that the size of the required program
memory strongly depends on the number of times an actor appears in a
schedule, and so-calledsingle appearance schedules, where each actor

Manuscript received November 27, 1998; revised July 26, 1999. The work of
E. Zitzler was supported by the Swiss National Science Foundation. The work
of S. S. Bhattacharyya was supported by the U.S. National Science Foundation
under CAREER Grant MIP9734275.

E. Zitzler is with the Computer Engineering and Networks Laboratory (TIK),
ETH Zürich, Zürich, Switzerland.

J. Teich is with the Computer Engineering Laboratory (DATE), University of
Paderborn, Paderborn, Germany.

S. S. Bhattacharyya is with the Department of Electrical and Computer Engi-
neering, and the Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD 20742 USA (e-mail: ssb@eng.umd.edu).

Publisher Item Identifier S 1063-8210(00)01026-X.

1063-8210/00$10.00 © 2000 IEEE

