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Mitigating Error Propagation in Decision-Feedback
Equalization for Multiuser CDMA

Zhi Tian

Abstract—This letter presents a robust decision-feedback
equalization design that mitigates the error-propagation problem
for multiuser direct-sequence code-division multiple-access sys-
tems under multipath fading. Explicit constraints for signal energy
preservation are imposed on the filter weight vector to monitor
and maintain the quality of the hard decisions in the nonlinear
feedback loop. Such a measure protects the desired signal power
against the detrimental effect of erroneous past decisions, thus
providing the leverage to curb error propagation.

Index Terms—Decision-feedback equalization (DFE), error
propagation, multiuser code-division multiple access (CDMA),
recursive least-square (RLS) implementation, robust constraining.

1. INTRODUCTION

ECISION-feedback equalization (DFE) [1]-[3] is a very

effective receiver component that cancels intersymbol
interference (ISI) under diverse channel conditions without
causing noise amplification. However, for DFE and deci-
sion-directed adaptation in general [1], noise-induced symbol
decision errors may propagate through the feedback loop,
leading to unreliable transmissions with error bursts. Various
ad hoc techniques for mitigating error propagation have
been proposed, including taking preventive measures against
detectable feedback errors [4]-[6], and adopting equalizer
structures with a reduced probability of long error bursts [7]. In
practice, a typical operation of adaptive DFE detection involves
mode switching between a decision-directed blind transmission
phase and a training phase to avoid unreliable adaptation.

In this letter, we propose a constrained optimization ap-
proach to tackle the error-propagation problem existing in the
decision-directed class of adaptive filtering methods. The root
to error propagation lies in the quality of the hard decisions in
the feedback loop. As a countermeasure, we impose explicit
signal-preserving constraints on DFE to monitor and sustain
the accuracy of tentative decisions, such that detection errors
are less likely to happen or propagate. No extra error detection
or ad hoc monitoring devices are resorted to. Note that implicit
signal-preserving constraining is present in the basic single-user
and multiuser DFEs [2], [8]. We establish that it is the explicit
constraining that makes DFE robust to error propagation.

Paper approved by R. A. Kennedy, the Editor for Data Communications Mod-
ulation and Signal Design of the IEEE Communications Society. Manuscript
received January 9, 2002; revised May 22, 2002. This paper was presented in
part at IEEE Globecom Conference, San Antonio, TX, November 2001, and in
part at the Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, November 2001.

The author is with the Department of Electrical and Computer Engineering,
Michigan Technological University, Houghton, MI 49931 USA (e-mail:
ztian@mtu.edu).

Digital Object Identifier 10.1109/TCOMM.2004.826357

While this constraining strategy applies to any decision-di-
rected adaptive filter, its realization relies on the feasibility of
constructing practical signal-preserving constraints, which take
on various forms in different signal-processing applications.
For a multiuser direct-sequence code-division multiple-access
(DS-CDMA) system under multipath fading, it amounts to
constructing appropriate constraints on the feedforward filter
weights of DFE from the knowledge of the desired user’s
spreading code. When the constraints are properly constructed
to match the channel, they are able to pull an equalizer out of
a bad minimum by forcing energy preservation of the desired
signal. It naturally leads to robust blind multiuser DFE.

The constrained optimization idea has been developed
for blind equalization [9], and in linear minimum output
energy (MOE) detection for blind multiuser detection in
CDMA [10]-[12]. This letter takes a fresh look at the con-
strained approach and recognizes its efficacy in mitigating
error propagation for DFE. Based on this observation, along
with the existing literature on signal-preservation constraint
construction for multiuser CDMA, we develop robust blind
constrained DFE algorithms. The adaptive implementations
of these DFE algorithms will be described using recursive
least-squares (RLS) adaptation rules, and the corresponding
analytic steady-state signal-to-interference-and-noise ratio
(SINR) performance will be presented.

II. DFE FOR MULTIUSER CDMA

Consider a multiuser DS-CDMA system with a spreading
gain of L. The multipath channel experienced by the kth
user can be modeled as a tapped-delay-line filter in the form
of gM(t) = Z?:"O_lggk)é(t — iT.), where T, is the chip
period, IV, denotes the (maximum) number of chips spanned
by the multipath channel, and ggk) are the unknown channel
tap coefficients. Let us assume the desired user to be user
1, for which we drop the superscript () for notational sim-
plicity. The received chip-rate baseband data vector x(k) can
be modeled as x(k) = Zivz”o h;b(k — i) + i(k) + n(k),
which combines the desired user’s current symbol b(k), its
surrounding N;, ISI symbols {b(k — i)}*,, each weighted
by its impulse response signature vector h;, and the noise
component v(k) := i(k) + n(k), consisting of both mul-
tiple-access interference (MAI) i(k) and the ambient noise
n(k). Synchronization is assumed for the desired user only, and
no information on the interfering users is required for demodu-
lating b(k). The length of x(k) is N. settobe N. > L + N,
which represents the memory length of the ensuing chip-rate
digital receiver. A matrix-vector model arises in the form of
x(k) = hb(k) + Had(k) + v(k), where h := hy, Hg :=
[hy hy, ], and d(k) := [b(k—1),...,b(k — N,)]".
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Fig. 1. Standard DFE and its equivalent MMSE filter.

It can be shown that the multipath channel vector h takes on
the form of h = Cg, where C is an N, x N, matrix whose
Jth column contains the spreading code vector delay shifted

by (j — 1) chips [11], and g := [931),...,9533_1 is the

fading gain vector of the N, delayed paths. The matrix C is
known to the receiver, while the multipath channel parameters
of the desired user, g, and all the parameters of other users, are
assumed unknown.

DFE is achieved via a chip-rate feedforward filter
w = [wi,...,wy,.]T, and a symbol-rate feedback filter
u = [ug,...,uy,]”, of length Ny > N, to cover all ISI

symbols, as illustrated in Fig. 1(a). The filters yield soft
estimates y(k) = wHx(k) — ufd(k), in which d(k) are
the decisions of past ISI symbols. The filter output y(¢) is
quantized by a decision device into a hard decision on b(k),
e.g., b(k) = sgn[R {y(k)}] for binary transmission. Existing
ISI can be exactly cancelled by matching the feedback taps to
the combined channel and feedforward filter impulse response,
using the minimum mean-square error (MMSE) principle
(assuming correct past decisions d(k) = d(k))

n“}11111 €= E {|b(k) — y(k)|2}
- E{|b(k) — whb(k) — w'Hgad(k)
—win(k) + ud(k)?}. M

The optimum DFE solution to (1) imposes the following implicit
soft constraints on w and u:

wlh=1 )
wiHg = uf 3)
min E{|va(k)|2}. (4)

Equations (2) and (3) recover the current symbol and eliminate
ISI, while (4) suppresses the noise and interference output.

III. ROBUST CONSTRAINED DFE

The dissection (2)—(4) on the intrinsic optimization process
in DFE reveals that signal energy preservation, implicitly per-
formed in (2), holds the key to alleviate the error-propagation
problem. Unfortunately, when noise-induced estimation errors
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oceur, i.e., d(k) # d(k), the design strategy in (3) no longer
cancels ISI. Incorrect ISI cancellation at this step may destroy
the balanced optimization performed by (2) and (4), leading to
decision errors in the current symbols that may propagate into
future estimates. For robustness against error propagation, it is
vital to monitor and maintain the decision quality inside the
feedback loop.

We propose to take out the implicit soft signal-preserving con-
straint in (2) and explicitly impose it as a hard constraint on the
feedforward filter, while (3) and (4) are still enforced as im-
plicit constraints by minimizing over (1). This constrained DFE
(C-DFE) detector is formulated as

min E {‘b(k) ~ wHx(k) + uH&(k)‘2} )
st. wHh=1. (6)

In the C-DFE structure, the quality of the feedback decisions,
namely, d(k), is monitored by the signal-preserving constraint
(2). Under adverse channel conditions, this constraint is ex-
pected to prevent the output signal power of the desired user
from dropping dramatically, therefore, decision errors are less
likely to happen or propagate. On the other hand, when the stan-
dard DFE is operating under stable transmissions, this constraint
is inherently complied to the maximum extent, and will only be
minimally activated.

Note that the constraint w* h = 1 itself is not a new contribu-
tion. In fact, it is implicit in the basic single-user and multiuser
DFEs in the absence of error propagation, as indicated by (2).
Our approach of imposing it as an explicit constraint is seem-
ingly redundant. However, when feedback errors occur, this im-
plicit constraint is no longer executed by (1) due to incorrect ISI
cancellation from another implicit constraint (3). In contrast, the
explicit constraint in (6) is still enforced to achieve signal preser-
vation. It is the explicit constraining that makes DFE robust to
error propagation. Explicit constraining on DFE enjoys other
benefits as well: 1) enhanced MAI suppression capacity, since
the MAI minimization in (4) is less likely to be compromised by
incorrect ISI cancellation; and 2) improved steady-state perfor-
mance for RLS-based adaptive DFE filtering, as will be shown
in Section VI.

IV. BLIND FORMULATIONS OF ROBUST DFE

To implement the robust C-DFE in (6), both the desired
symbol b(k) and the channel information h are required to
be known to the receiver. Typically, b(k) is substituted by its
estimate I;(k) via decision direction [1]. To get around the
unknown channel knowledge h, it has been suggested in the
linear MOE literature that the signal-preserving constraint (6)
be alternatively implemented as w#C = f# [10]. Such a
contraint preserves the signal components that are projected
onto the delayed paths described by the columns of C. The
detection performance depends on how the constraint vector f
is specified, while the optimal value for f depends on not only
the data covariance of x(k), but also the channel gain g, both
of which are generally unavailable to the receiver. Common
practice is to choose a nominal value for f [10], or to optimize
it via a max/min formulation [11], [12]. We adopt these two
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constraint construction methods to develop robust blind DFE
algorithms as follows.

A. C-DFE With Fixed Linear and Quadratic Constraints

A simple strategy for constructing f is to set it to a fixed value
which is reasonably close to the optimal value over a wide range
of scenarios. To compensate for residual modeling mismatch,
we add a quadratic inequality constraint in the form of w”w <
T, to avoid excessive noise enhancement and to ensure adequate
ISI cancellation. This robust decision-directed C-DFE detector
is described by

2
min E { [b(0k) = wix(k) + u (k)| }

st. wiC = fo,WHW <T,. @)

Some reasonable ad hoc choices of the constraint parameters f,
and T, are discussed in [12]. Practical values for the fixed vector
f e CNoxlcouldbe [1 0 0", [1 1 117, or
[1 (1/N,-1) (1/N, —1)]", while a heuristic value
for T, is given by 2f(CH C)~f.

To express the optimum solution to (7), let us define several
correlation quantities: Ry := E{xx¥}, Ryq := E{xdf},
pxv- = E{xb*'}, Rxyny = Ry — Rdefd, and
Py = R}, — R;},C(CHR},C)"!CHERL},. Without
the quadratic constraint, the optifllal solution to w is given
by a linear combination of two weight vectors w = w + w,
in which w = R },C(CHR_},C)~f is in the form of a
standard linearly constrained minimum power (LCMP) weight
vector that satisfies the linear signal-preserving constraints, and
w = Pjp/pxp+ is the unconstrained DFE feedforward weight
vector projected onto the space orthogonal to the constraints.
Note that the matrix P, lies in the subspace orthogonal to C,
i.e., P3;C = 0, but it can be updated from the data vector x(k)
in the direct form [12].

With an additional quadratic constraint, the optimal solution
to w has the same form as above, but with Ry »s replaced by
its diagonally loaded version (Rx as + AI). The loading term
A is determined by quadratic constraint parameter 7,,. Having
obtained w, the optimal solution to u can be deduced as u =
RE w.

B. C-DFE With Variable Linear Constraints

In an effort to obtain a close-to-optimal constraint vector f, a
max/min approach with variable constraint parameters [11] can
be applied to C-DFE as follows:

. 2
HmHaX min E{‘b(k) —whx(k) + qu(k)‘ }
f]l=1 w,u

st. wHC=fH. 8)

The minimization process finds the weight vectors w and u to
suppress ISI and MAI while preserving the desired symbol, and
the maximization process finds a constraint vector f to max-
imize the signal energy after interference suppression. After
some manipulations, it is found that the optimized weight vec-
tors are w = R;,IMC(CHR;’IMC)_le + Pypxp- and u =
Rfdw, respectively. The vector e is the principal eigenvector of
(CHR},C)~!, while the optimized constraint vector is given
by f =e.
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TABLE 1
DIRECT FORM RLS IMPLEMENTATION OF LINEARLY AND QUADRATICALLY
CONSTRAINED DD-DFE DETECTOR

Init. w(0) = wq, W(0) =0, w(0) =wg, u(0)=0
P (0) = J5PZ, Rxa(0) =0, d(0) =0
Data Rxd(k) = pRxd(k — 1) +x(k)d" (k)
Updating | xq(k) = x(k) — Rya (k)d(k)
Decision y(k) =whH (k- Dx(k) — uf (k — 1)d(k)
b(k) = sgn [Re {f(k)}ik G
_ PoPy(k—1)xq
RES | e = T )P ar (h — xah)
Update Py(k)=p 1 [Pa(k—1)
—gu (k)xH (k)P (k — 1))
yp(k) = w(k —1)7xq(k)
Tentative | w(k) = w(k — 1) — gum (k)y, (k)
Weight ep(k) = b(k) — wH (k — 1)x,4(k)
Update w(k) = Ww(k —1) + g (k)e (k)
wi(k) = w(k) + Ww(k)
if [[w(k)[|? > To
v(k) =Py (k)yw(k)
Variable a = ||v(k)||?,
b= —2Re{v(k)w(k)},
Loading c=||lw(k)||? — To
A(k) = 2 (—b— Re { V6% —4ac})
w(k) = w(k) — A(k)v(k)
u(k) =R, (k)w(k)

V. RLS ADAPTATION ALGORITHMS

Literature abounds on adaptive linear filtering in the RLS
form [13]. To make these techniques available for nonlinear
DFE adaptive filters, we develop a key transform that bridges
a nonlinear DFE filter to an equivalent linear MMSE filter, as
discussed below.

Observe that the optimum feedback filters in all DFE formu-
lations (1), (7), and (8) are given by u = Rfdw. We introduce
a new transformed data vector

xq(k) := x(k) — Ryad (k). )

When the feedback filter u is optimized, the mean square error
(MSE) value of DFE in (1) becomes [17]

2_F {’b(k) — (wa(k) - WHRxda(k)) ‘2}
:E{|b(k) —~ WHXd(k)|2} :

This implies that a nonlinear DFE filter based on the input data
vector x(k) is equivalent to a linear MMSE filter based on the
input x4(k).

This transformation process, illustrated in Fig. 1, enables the
construction of RLS adaptation rules for various DFE detec-
tors, based on well-studied RLS procedures for their equivalent
MMSE formulations. Accordingly, the robust C-DFE receivers
in Sections IV-A and B can be implemented as constrained
MMSE, whose adaptive implementations have been developed
in [12].

The direct-form adaptive RLS implementations of robust
DFE filters are summarized in Tables I and II. The algorithms
use a variable loading technique [12] to implement the quadratic
inequality constraint in (7), and the projection approximation
subspace tracking with deflation (PASTd) method [16] to
update the principle eigenvector e in (8). The constrained im-
plementation in the generalized sidelobe canceller (GSC) form

(10)
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TABLE 1I
DIRECT FORM RLS IMPLEMENTATION OF OPTIMIZED LINEARLY
CONSTRAINED DD-DFE DETECTOR

e(0) = £/[|f[l, n(0) = £, %(0) =0, u(0) =0
Init. T(0) = C(CHC)~ 1, w(0) = T(0)e(0),
Pu(0) = L PF, Rya(0) =0, d(0) =0
Data Rxd(k) = pRxd(k — 1) + x(k)d" (k)
Updating | x4(k) = x(k) — Rxq(k)d(k)
Decision | y(k) = wH (k- D)x(k) — uf (k — 1)d(k)
b(k) = sgn [ReP {fg)}%k )
_ c M -1 Xd
RLS g (k) = p+xF(B)Pas(k — 1)xq(k)
Update P (k) =pt Py(k—1)
—gum (k)xH (k)P (k —1)]
zp(k) = T(k — 1)"xq(k) -
Subspace | p(k) = etk — 1) 72p(k)
V(1 + = 1%a(k)HP s (k — 1)x4(k))
Tracking | n(k) = pn(k — 1) + |p(k)[? .
(k) = el — 1)+ (k) = efk = )p(1)) 21
T(k) = T(k — 1) — gm (k)z;, (k)
Weight ep(k) = b(k) — WH (k — 1)x4(k)
Update w(k) =W(k — 1) + g (k)et (k)
w(k) = T(k)e(k) + Ww(k)
u(k) = R, (k)w(k)

TABLE III
PERFORMANCE ANALYSIS OF ADAPTIVE DFE FILTERS (7 = (1 — /14 p)L)
RLS-DFE | RLS-CDFE
SINR* hII(Rx _ thI _ Hng —1h
SINR™ SINR SINR®  SINR

4+2y+p2
1+p

(147)+~/SINR" A+

can also be derived straightforwardly based on the adaptive
algorithms in [12].

VI. STEADY-STATE RLS PERFORMANCE ANALYSIS

This section presents the theoretical SINRs for DFE adaptive
filters under stable transmissions. Accurate past decisions are
assumed for the steady-state analysis. The two DFE receivers for
comparison are RLS-DFE and RLS-CDFE, which are the RLS
versions of the unconstrained DFE in (1) and the constrained
C-DFE in (6), respectively. The analytic results will also answer
the following question: Is explicit constraining redundant under

stable transmissions?
Let us define SINR* := (E?{y(k)}/var{y(k)}) and

SINR® = limy. oo (B2 { wH (k = 1)x(k) — w¥ (k — 1)d (k) }
[var {wH (k — 1)x(k) —uf (k — 1)d(k)}) as the optimum
SINR and steady-state SINR, respectively. Our analysis on the
steady-state performance of w(k) and u(k) builds upon the
SINR measures for w(k) and w(k), which have been studied
under the context of unconstrained MMSE filtering and LCMP
filtering, respectively [13]-[15]. The detailed derivations are
referred to in [18], and the major analytic results are summa-
rized in Table III.

The analytic results are verified using a CDMA setup with
seven equal-powered users. The spreading gain is L = 31, and
the feedback filter length is Nd = 5. For both RLS-DFE and
RLS-CDFE, a forgetting factor u = 0.9 is used, and the ex-
perimental SINR™ curves are obtained using 200 Monte Carlo
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Fig. 2. Steady-state SINR> performance.

simulations. Fig. 2 shows that the simulation results match well
with the analytic SINR values. The SINR performance gap be-
tween the optimal DFE/CDFE and the steady state RLS-CDFE
is smaller than that of the unconstrained RLS-DFE. This indi-
cates that appropriate constraining on adaptive DFE improves
its steady-state performance.

Although our performance analysis does not take into ac-
count decision-feedback errors, it offers justification for incor-
porating our constraints even under stable transmissions. The
advantage of explicit constraining in error-prone environments
will be tested by simulations next.

VII. SIMULATIONS

We compare the standard decision-directed DFE (DD-DFE)
receiver against our decision-directed C-DFE with fixed linear
and quadratic constraints (DD-CDFE-LQC), and with opti-
mized variable constraints (DD-CDFE-VC). RLS adaptation
rules discussed in Section V are applied to all these DFE
detectors.

The first example examines the dynamic behavior of these
DFE detectors in a multiuser DS-CDMA communication
system with a spreading gain of L = 31. The spreading codes
for all the users are generated randomly. The desired user
experiences frequency-selective multipath fading. The channel
response of each path is generated using the Jakes’ method
with a maximum Doppler spread corresponding to a terminal
speed v = 3 km/h. The path delays and path variances are
taken from the land-mobile model of GSM Rec 05.05, resulting
in a channel delay spread of N, = 8 chips. The channels for
interferers are assumed to be Rayleigh faded. The simulation
starts with one desired signal and six MAI signals, each of SNR
= 5 dB. At time k£ = 500, a strong MAI signal of 20 dB is
added to the system, and the SNR of the desired user drops to
2.5 dB. The channel of the desired user remains time invariant
during the first block of 500-chip duration, but changes to a
different realization for the rest time. Such a change in the
environment may lead to detrimental error propagation. Fig. 3
shows the average bit-error rate (BER) versus time for each
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Fig. 3. Average BER of RLS-DFE filters in a dynamic environment.
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Fig. 4. Steady-state BER performance of RLS-DFE filters.

of the RLS adaptive DFE algorithms using a forgetting factor
1 = 0.995. The curves are generated using 10 000 simulations.
It is shown that the unsupervised DD-DFE has much higher
BER in the changing environment, as a result of its vulnerability
to error propagation. Both of the constrained DFE receivers,
on the other hand, sustain the impact of error propagation and
MAL This is primarily because the constrained portion of each
weight vector works against past decision errors to preserve
the desired signal output energy, thus providing the leverage to
prevent error propagation and maintain a stable transmission.

Fig. 4 depicts the BER performance of these DFE receivers
under stable transmission, averaged over 500 simulations. A
similar channel model is used as in the first example, but without
a sudden change of environment. The BER performance of ro-
bust C-DFEs is slightly better than that of the unconstrained
DFE, when error propagation is not a concern. The error perfor-
mance demonstrated here is consistent with the SINR behavior
analyzed in Section VI.
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VIII. SUMMARY

We have observed that explicit signal energy-preserving
constraints on DFE filters are capable of mitigating the per-
plexed error-propagation problem. This robust constraining
idea leads to various blind constrained DFE formulations,
in which erroneous decision errors in the feedback loop are
inherently monitored and curbed by our constraints, eliminating
the need for training or mode switching under adverse channel
conditions. We have also developed adaptive RLS algorithms
for these constrained DFE filters via transforming them into
equivalent linear MMSE filters. Our theoretical study confirms
that constrained DFE filters enjoy enhanced steady-state
performance under stable transmissions, in addition to their
robustness to error propagation.
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