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We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting
over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare ‘‘tetrahedral’
qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed
the classical capability. We prove that shared entanglement permits 100% reliable quantum fingerprinting,
which will outperform classical fingerprinting even with arbitrary amounts of shared randomness.
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Introduction.—Quantum communication can signifi-
cantly improve on the resource requirements compared to
classical communication [1]. Fingerprinting, which ena-
bles an efficient way of inferring whether longer messages
are identical or not, is a particularly striking example as
quantum fingerprinting offers an exponential reduction of
resources compared to classical fingerprinting [2]. In fact,
even for single-qubit fingerprinting one can demonstrate an
advantage of quantum protocols with respect to classical
ones [3]. Here we establish the feasibility of single-qubit
optical quantum fingerprinting, by theoretical analysis and
also by experimentally generating and assessing the appro-
priate quantum optical states for encoding. In particular we
(i) develop an optical protocol for single-qubit fingerprint-
ing, (ii) show that two-photon coincidence measurements
suffice as the experimental test for comparing fingerprints,
(iii) prove that one shared entangled bit between Alice and
Bob allows zero-error quantum fingerprinting which out-
performs classical fingerprinting even with unlimited
shared randomness between Alice and Bob, and
(iv) present experimental results on the supply of finger-
print states that demonstrate the feasibility of the protocol.
Our results open the prospect of experimental quantum
communication complexity; although here we focus on
single-qubit fingerprinting and correlated photon pairs,
scalability will become possible as multiphoton entangle-
ment capabilities improve [4].

Within the simultaneous message passing model [5],
fingerprinting is constructed as follows. Two parties,
Alice (A) and Bob (B), receive classical n-bit message
inputs x and y from a supplier Sapna (S). Alice and Bob
wish to test their messages for equality but are forbidden to
communicate or share information with each other. They
can, however, communicate with a third party Roger (R).
Communication is expensive, so Alice and Bob create
(classical or quantum) fingerprints of length g for their
respective messages, which they send to Roger. Roger’s
goal is to generate a single-bit value z which provides the
best inference of the function

PACS numbers: 03.67.Hk, 42.50.Dv

and Roger is successful if z = EQ(x, y). If the inference is
guaranteed to be successful for x = y, the protocol is a
one-sided error protocol; a two-sided error protocol does
not provide such a guarantee. Each message belongs to a
set M = {0,..., m — 1} comprised of m different messages
represented as bit strings of length n = [log,m] and each
fingerprinttoaset F = {0, ..., f — 1} of f different finger-
prints. Classically, g = [log,f] and F = {0, 1}¥ while in
the quantum case F C H§ for H, = span{|0), |1)}. The
protocol is evaluated according to the worst case scenario
(WCS), in which Sapna, who is aware of other parties,
always sends message pairs for which the probability for
z # EQ(x, y) is maximized (i.e., performance in the WCS
corresponds to the ‘““guarantee’ on the protocol). For ex-
ample, when n = 2, g = 1, the WCS error probability is 1
for classical fingerprinting protocols with one-sided error
and no shared information between Alice and Bob [3].

We consider two scenarios for n = 2, g = 1. In the first
scenario, Alice and Bob simultaneously send to Roger
unentangled single photons [6] with polarization states
expressed in the logical basis |0) and |1). In the second
scenario, we relax the condition that a shared resource is
forbidden and provide Alice and Bob with a source of
entangled photon pairs in the singlet Bell state |¥~) =
(10, 1) — |1, 0))/+/2. In the first scenario we are able to
show that a linear optical single-qubit quantum fingerprint-
ing protocol outperforms single-bit classical fingerprint-
ing. In the second scenario, we show that there exists a
protocol that can yield perfect one-qubit fingerprinting,
outperforming one-bit fingerprinting with an arbitrary
amount of shared randomness.

Our first scenario is of special importance in the context
of quantum communication complexity: as established by
Buhrman et al. [2], without Alice and Bob sharing a
common resource (for example, entanglement or random
classical information) quantum fingerprinting requires ex-
ponentially less resources than its classical counterpart.
Our second scenario, on the other hand, is a step forward
with respect to a recent work by Massar [7] who proposed

EQ(x,y) = {0 %f xFy , (1) an interferometric fingerprinting protocol with Alice and
I ifx=y Bob sharing a resource in the form of a single photon from
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a common source and demonstrated a two-sided error rate
of 1/6 for m = 3. Horn et al. [8] provide a detailed
comparison of entanglement-assisted quantum fingerprint-
ing and its advantages over classical fingerprinting with
shared randomness.

Encoding.—For any message w € M that Alice or Bob
receive, they transform their qubit to a unique fingerprint
state |Q),,) with [Q = (0, ¢)) = cos(0/2)|0) + exp(i¢p) X
sin(6/2)|1). The state can be understood geometrically by
identifying 6 and ¢ with azimuthal and polar angles of the
(Bloch) sphere. We assume that Alice and Bob employ the
same mapping: x =y < [{,) = [). Quantum finger-
printing allows m different qubit states so each message
is distinctly encoded, but the distinguishability of these
distinct states diminishes as m increases, with indistin-
guishability quantified by &(Q/, Q) = (Q/|Q)? =
| cos(68/2)(0'/2) cos(0/2) + expli(¢p — ¢')] sin(6'/2) X
sin(0/2)|>.

Single-qubit fingerprinting is especially interesting be-
cause of its current feasibility. To demonstrate this, we
analyze the case m = 4 (n = 2). In this case the largest
overlap between different states is minimized by the fol-
lowing set of four states,

F= {IQW);QO — (0,0),0, = <2cos1i,2—”w>
N

()

for w = 1,2,3},

and 8 = 84y = 1/3 for all pairs of different states [9,10].
We refer to the states (2) as ‘“‘tetrahedral states’ because
the four states form the vertices of a tetrahedron on the
Bloch sphere [10].

Protocol. —Alice and Bob map their two-bit messages to
the tetrahedral states, and Roger’s task is to assess EQ(x, y)
by measuring and inferring whether [€),) = [€). The
original proposals [2,3] provided Roger with a controlled
swap gate and an ancilla qubit [Fig. 1(a)]. The ancilla is
prepared as (|0) + |1))/+/2 and entangled with the finger-
print states as follows: the two fingerprint states are not
swapped if the ancilla is in the state |0) and swapped
otherwise. The ancilla then passes through a Hadamard
gate and is measured in the logical basis with outcome r €
{0, 1} corresponding to the ancilla being in state |r). Roger
uses the measurement result r to determine z = 1 — r, with
outcome z = 0 and z = 1 yielding an inference of distinct
and identical fingerprint states, respectively. We call such a
strategy “pure” to signify that Roger is allowed no ran-
domness in making his inference.

The encoding (2) yields a one-sided error protocol be-
cause Roger’s error rate when Sapna sends x =y is
piame = 1 — (1/2)[1 + 8] = 0. In the WCS, Sapna always
sends different states so that, when Roger obtains r = 0, he
infers z = 1 with error rate pdiff = pWCS =1 —(1/2) X
[1 — &], which beats the classical result of p¥S = 1. For
m = 4 and tetrahedral encoding, we obtain pS = 2/3.

(@) 1 — )
|0) H I H measure
1220
SWAP
12,)
() R | [© ]
— A 1 feesag ﬁewfﬁ?
.*e ®, Vit
A 07t . w . v
O [
V) L] ..
. A 012 L)
—> B 0 1
L IR delay(ps) )
FIG. 1. (a) Quantum circuit of the original fingerprinting pro-

tocol [2,3]. (b) Linear optical implementation: Alice (A) and
Bob (B) each receive a two-bit message from Sapna (S) and a
single photon in a known polarization state from a source. The
photons are transformed (represented by A) to particular tetra-
hedral states according to the received message. The photons are
sent to Roger (R) who mixes them at a symmetric beam splitter
X and uses coincidence detection (two detectors DO and a
multiplier ®) to infer if the messages were the same or different.
(c) Coincidence dip with state |Q);) mixed with |Qg) (O), |Q;)
(@), [Q,) (+), and |Q3) (X). The plots correspond to the
normalized coincidence rate R/R,,,, (With R, = 474 s™! the
maximum observed rate, or background rate, for the HOM dip)
vs the relative delay between two photons. vy, and vg
represent the dip depth 1 — Rpi,/Rmax for photons in same or
different states, respectively.

A controlled swap gate is not available in a deterministic
linear optical system, but we show that it is not required. If
Alice and Bob each send a single photonic qubit encoded
in polarization to Roger, then Roger only needs to measure
whether the photons are in the same polarization. This
measurement can be accomplished with the Hong-Ou-
Mandel effect according to which two photons entering a
symmetric beam splitter in indistinguishable optical (in-
cluding polarization) modes exit it through the same port
[11]. These states produce a Hong-Ou-Mandel (HOM) dip
in the coincidence rate [12] as the delay of the incidence
photons is varied. For photons of nonidentical polarization,
the dip depth is degraded according to the mode overlap 6.

For n = 2, Alice and Bob each receive two-bit messages
from Sapna, which are used to encode their photonic qubit
into one of the tetrahedral states. Their photons are trans-
mitted to Roger who infers using a symmetric beam splitter
whether the messages were the same or different. This
protocol is depicted in Fig. 1(b). Ideally Alice and Bob
would have separate single-photon—on-demand sources,
but practically they will be supplied with correlated, un-
entangled photons from a down-conversion source. Later
we consider the case in which Alice and Bob share en-
tangled photons.

Roger assigns r := 0 for a no-coincidence and r := 1
for a coincidence event, then employs (as before) the
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strategy z = 1 — r. The result » = 1 guarantees that the
two messages are distinct whereas » = 0 only indicates
that the messages were possibly the same. In fact, this
HOM dip protocol is equivalent to the controlled swap
version of single-qubit quantum fingerprinting: if Sapna
sends x = y, a definite no-coincidence event guarantees
pame = () whereas for x # y the probability that Alice’s
and Bob’s photons do not trigger a coincidence detection is
identically pdiff =[(1 4+ 8)/2]. Thus Sapna always sends
different messages in the WCS, and for m = 4, and tetra-
hedral encoding, pY¢S = 2/3.

This error rate appears relatively high, yet it is superior
to classical one-bit fingerprinting with one-sided error, in
which failure is guaranteed for at least one pair of mes-
sages, resulting in p¥<S = 1 [3]. Of course a 100% failure
rate for the classical case can be improved by allowing
Roger a random (““mixed”) strategy, but then the quantum
protocol can be improved in the same way, always main-
taining its superiority over the classical case [3,8].

Experiment. —The feasibility of this protocol has been
demonstrated by creating simultaneous pairs of tetrahedral
states and analyzing the dip achieved by Roger’s setup in
Fig. 1(b). To create correlated photons, a Ti:Sapphire laser
tuned to a wavelength of 790 nm emitted 170 fs pulses that
were frequency doubled and then down-converted in a
type I configuration via a 2 mm beta-barium borate crystal.
Output photons were spectrally filtered with a 2 nm inter-
ference filter and transmitted through A/2 and A/4 wave
plates which were rotated to convert the polarization state
in each channel into one of the tetrahedral states. The two
photons were then overlapped in free space on a symmetric
beam splitter and subjected to measurements with single-
photon counting modules; the experimental results are
presented in Fig. 1(c) where state |{),) is mixed with itself
and each of the other three states. The largest dip in
Fig. 1(c) corresponds to the traditional HOM dip with
two identical states, and the degree of distinguishability
is varied by controlling the relative delay between the two
photons. The experimental coincidence rates as a fraction
of the maximum coincidence rate R/R,,,, for all 16 pos-
sible fingerprint pairs are given in Table I (first set of
numbers) and are consistent with Clarke er al.’s experi-
mental results for tetrahedral states [9].

Ideally, the dip depths should be vy, = 6same = 1 and
vaisr = Oaqir = 1/3. Because of an imperfect spatio-
temporal overlap of the two single-photon wave packets,
the depth of each dip is, however, degraded. Experimental
values of v, are consistently at 88% or higher, whereas
those of v ;s approximate 30% and exhibit some additional
variation due to birefringence in the beam splitter and
systematic errors in wave plate setting.

The fingerprinting error rates can be determined from
the empirical depths, bearing in mind that for ideal single-
photon sources and detectors, the coincidence rate in the
flat part of the HOM graph is half the photon pair produc-
tion rate. Therefore, given a dip depth v, the probability for
a pair of photons to generate a coincidence event is

TABLE I. Experimental HOM dip depths
(v,,,)/fingerprinting error rates (pX»") for each pair of tetrahe-
dral states.

Bob
Alice 0 1 2 3
0 0.88/0.06  0.31/0.66  0.24/0.62  0.26/0.63
1 0.30/0.65 0.88/0.06 0.25/0.63 0.40/0.70
2 0.44/0.72  0.30/0.65  0.89/0.06  0.25/0.63
3 0.20/0.60  0.30/0.65  0.35/0.63  0.89/0.06
Peoine = (1 — v)/2. From a coincidence event, Roger will

infer that the input states differ. If the input states were
indeed not identical (w # w'), Roger will make a correct
inference with a probability p..,. and an error with a
probability p2* =1 — p.one = (1 + v,,,)/2. If, on the
other hand, the input states are identical, the error proba-
bility for given w is pZY = peoine = (1 — v,,,,)/2. The
error rates calculated in this manner are displayed as the
second set of numbers in Table I and are in good agreement
with the theoretically expected pfame = 0, pdiff = 2/3 de-
rived above.

In practice, parametric down-conversion is not sufficient
as a photon production tool because Alice and Bob are not
aware when a photon pair has been produced and sent to
Roger. Practical quantum fingerprinting will be advanta-
geous with respect to its classical counterpart only with
deterministic (on-demand or heralded [13]) single-photon
sources, loss-free communication channels, and highly
efficient single-photon detectors. A further advantage can
be gained by using number-resolving detectors [14] that
can distinguish no-coincidence events from those in which
one of the photons has been lost during transmission or
detection.

Two-sided errors.—In the above theoretical analysis, we
have established the superiority of quantum fingerprinting
with respect to classical, assuming a one-sided error
scheme. On the other hand, our experimental results ex-
hibit two-sided errors (diagonal error terms in Table I are
nonzero). In order to verify that the quantum advantage
holds in spite of the experimental imperfection, we must
compare classical and quantum WCS error rates assuming
that Roger incorporates randomness and employs a mixed
strategy aimed at minimizing these rates.

The mixed strategy is as follows. Roger makes an initial
inference z = 1 — r as before. He then generates a final
inference z* by randomly inverting the value of z with
probabilities 7 for z = 1 and 7r; for z = 0. The new error
rates will be given by

(pdlff * (1 _ 7T())Pdlff + m (1 _ pdlff ,

3)

(psame — (1 _ Wl)psame + (1 — psame ;
for Sapna supplying x # y and x = y respectively. The
WCS error rate corresponds to the higher of the above
probabilities, so Roger must choose 7y and 7| so as to
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minimize it. Substituting our experimental values of
piame — .06 and pdiff ~0.65 into Eq. (3) we find that
the optimum is achieved for 7y = 0.37 and 7 = 0, in
which case the error rates are (pdif)* = (psame)* = 0,41,
For this optimal mixed strategy, Sapna’s choice of mes-
sages becomes irrelevant: all cases correspond to a WCS.
For the classical case, the minimum WCS error rate equals
0.5, thus confirming the advantage of the quantum
protocol.

Shared entanglement.—Thus far Alice and Bob have
been denied any communication, but experimentally it is
straightforward to provide Alice and Bob with an en-
tangled pair of photons. In Ref. [7], Massar showed that
a shared ebit (in the form of a single photon interferometri-
cally split between Alice and Bob [15]) helps one achieve a
fingerprinting error rate of 1/6 for m = 3. Here we show
that shared entanglement in fact allows perfect single-qubit
quantum fingerprinting for m = 4 and, furthermore, ex-
ceeds the classical limit. The classical analog to this case
corresponds to the performance in the WCS for Alice and
Bob sharing random bits that are secret from Sapna.

We allow Alice and Bob to share the Bell singlet state
|W~). Alice and Bob each receive a two-bit message from
Sapna and apply one of the four Pauli operations according
to which message has been sent. The result is that the state
sent to Roger is one of the four Bell states. If Alice and Bob
perform the same Pauli operation, | ¥ ™) is invariant (up to a
global phase); if Alice and Bob apply different transforma-
tions, |¥~) maps to a different Bell state. Thus, for Roger
to infer whether the messages are the same or different, he
needs only to detect whether he has received the state | ¥ ™)
or not. The Bell state discriminator, in the form of a HOM
dip apparatus discussed earlier, suffices as a discriminator
between the Bell state |¥ ) and the other three Bell states
[11]. For a perfectly efficient setup, a coincidence is guar-
anteed for an input Bell state |~), and no coincidence
occurs for the other Bell states. Therefore, the protocol can
achieve p¥CS = 0 by consuming one ebit for each pair of
two-bit messages delivered by Sapna.

The physics underlying this fingerprinting scheme re-
sembles that employed in quantum dense coding [11], but
the purposes that these two communication protocols serve
are quite different. Whereas, in the latter case, a shared ebit
is used to communicate a classical two-bit message from
Alice to Bob, the former allows a third party (Roger) to
compare two two-bit messages.

A 100% success rate is unachievable in classical one-bit
fingerprinting regardless of how many random bits Alice
and Bob share. If Alice and Bob share one random bit (in
the case of a shared ebit, Alice and Bob could convert their
ebit to a shared classical random bit if they wish), Roger’s
success rate for classical one-bit fingerprinting rises from
zero to 1/2 when Roger follows a pure strategy. If Alice

and Bob share an arbitrarily large number of random bits,
Roger’s success rate improves but cannot exceed 2/3 for
any fixed number of random bits [8].

Conclusions.—We have proposed an optical protocol for
single-qubit fingerprinting, experimentally demonstrated
its functionality for the case m = 4, and shown that tetra-
hedral states can be produced that meet the requirements
for beating the classical one-bit fingerprinting protocol for
m = 4. We have also proven that single-qubit quantum
fingerprinting with shared entanglement can succeed with
a zero error rate, which beats the classical fingerprinting
protocol with an arbitrary amount of shared randomness
between Alice and Bob. The experimental results show
that, in reality, two-sided errors must be accounted for, but
we have shown that Roger’s best strategy is to randomly
vary his inference of whether the states are the same but not
change his guesses as to whether they are different, and this
approach yields a performance, given experimentally ob-
tained parameters, that exceeds the classical error bound.
Quantum fingerprinting is an excellent example of the new
field of quantum communication complexity [1], and our
results here open this field to experiments. Further work is
now underway on quantum fingerprinting with two qubits
and beyond, which will allow scaling and complexity
issues to be fully investigated.
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