
A United Approach to Discover Multimedia Web Services

Qianhui Liang, Stanley Y.W. Su

Department of Electrical and Computer Engineering
University of Florida

P.O. Box 116200, Gainesville FL
{ qliang, su } @cise.ufl.edu

 Haifei Li, Jen-Yao Chung

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, New York 10598

{ haifeili, jychung } @us.ibm.com

Abstract

The Web services technology has been making a steady
progress since its initial emergence in the beginning of this
century. Since multimedia data have become ubiquitous on the
Internet, it is not surprising that multimedia Web services have
been receiving much attention by the Web services community.
In the Web services platform, UDDI is the current de facto
service discovery approach. Yet, researchers have long noticed
that the UDDI business model has not really achieved its
designated goal. In this paper, we have proposed an approach to
complement UDDI with WSIL in the Web services discovery.
The idea behind Unified Web Service Discovery (UWSD) is to
use both the brokering-based approach and the trust-based
approach in the Web services discovery. Further, UWSD is
designed for handling the multimedia service discovery with
specific QoS considerations. The services discovered by
UWSD are separated into two groups. The first group contains
relatively limited number of services that are trustworthy and
guaranteed. The second group contains a large number of
services, but the content is not guaranteed to be trustworthy. A
markup language is also designed to facilitate the discovery
process. We believe that the UWSD approach can better meet
the current demand of multimedia Web services discovery.

1. Introduction

According to the definition from W3C [1], a web service is
“a software application identified by a URI, whose interfaces
and bindings are capable of being defined, described, and
discovered as XML artifacts. A web service supports direct
interactions with other software agents using XML based
messages exchanged via internet-based protocols.” Multimedia
web services generally involve transportation of multimedia
contents over the Web, and management of composite devices
for multimedia contents [2].

1.1. Multimedia Services
Synchronized and interactive access to multimedia content

through the Internet has been a major service that the Web
provides. Due to the unique features of multimedia data, for
example, its large size, researches of Internet multimedia were
mainly focused on compressing, caching and streaming of
multimedia data. Now, with the emergence of Web services
technology and the standard way to represent, deliver and
transform data (XML/SOAP), the trend is to integrate
multimedia services with the most recent Web service
technologies.

A comprehensive infrastructure to support multimedia
Web services was proposed in [2]. A SOAP-oriented
component-based framework was designed to ease streaming
and caching of multimedia data through proxies with both the
service providers and the service requestors. Metadata and
multimedia content are separated into a number of SOAP
messages for the proxies to process. Besides, in order to adapt
the multimedia services to different composite devices,
composite capability/ preference profiles (CC/PP) [3] are
managed by specific managing components in the proxies.

Other related researches include WebSplitter [4], which
provides an XML framework for multi-device Web browsing.
In WebSplitter, XML metadata policy files are defined to
allow different parts of the Web pages to be accessed with
different privileges and devices. MyXML [5] is another
research effort using XML/XSL technology. An XML/XSL-
based template engine was proposed for solving the issue of
device independence in multimedia services by completely
separating content from format information.

The above researches benefit multimedia service providers
and requesters by improving the multimedia service
deployment and multimedia service request processing.
However, no effort has been made on improving the “service
registry”, which is responsible for service discovery, to better
facilitate multimedia Web service discovery.

1.2. Web Service Discovery
Publishing, discovering and invoking Web services are the

key functions that a Web services platform needs to support.
Web service providers advertise their services in a public
accessible place, for example, a service registry, to bring
greater business opportunities. Service requestors search the
registry for desired services, and then contact the service
providers to invoke the Web services. Web service discovery
is one of the central tasks of the Web services platform.
Further, to provide a discovery technology that allows easy
and precise service discovery by businesses or consumers all
over the Internet is among several basic issues the platform
designer needs to consider. Discovery methods can range
from manual to automatic. [6] has summarized the discovery
methods: Discovery is originally done manually through
email, Web browsing, phone calls, and even word-of-mouth.
Later, improved discovery technologies, which provide XML
formats assisting the look-up, emerged. They are less static
and less manual. Examples include Microsoft’s DISCO [7]
and IBM’s ADS [8]. Most recently, the use of Web-service
brokers and related protocols takes discovery technology to
the era of “automation”. With the supported specifications,

Web services can now be discovered by machines. UDDI is a
good example of the latest discovery technologies.

1.3. WSIL, UDDI and UWSD for Web Service Discovery
The WS-Inspection specification provides an XML format

for assisting in the inspection of a site for available services and
a set of rules for how inspection related information should be
made available for consumption [9]. A WS-Inspection
document provides a means for aggregating references to pre-
existing service description documents which have been
authored in any number of formats. These inspection
documents are then made available at the point-of-offering for
the service as well as through references which may be placed
within a content medium such as HTML.

The success of the Web services technologies can be
attributed in part to the Universal Description, Discovery and
Integration (UDDI) protocol. UDDI creates a standard
interoperable platform that enables companies and applications
to quickly, easily, and dynamically find and use Web services
over the Internet. UDDI also allows operational registries to be
maintained for different purposes in different contexts.
However, the current UDDI business model still has a couple of
challenging problems to solve before it becomes a really
feasible discovery solution in the Web services platform.

In this paper, we propose a multimedia Web service
discovery approach, called Unified Web Service Discovery
(UWSD), by combining UDDI and WSIL. UWSD is expected
to get the best from both UDDI and WSIL, as well as to take
into consideration the special features of multimedia Web
services. The remainder of the paper is organized as follows:
we first present the necessity of combination in Section 2. In
Section 3, we discuss the quality issue in multimedia Web
services discovery. Then we explain the UWSD discovery
mechanism and UWSD system architecture in Section 4. After
that, we present the language for UWSD discoveries in Section
5. Section 6 gives a sample scenario of using UWSD to
discover a movie preview service. Section 7 concludes this
paper.

2. United web service discovery

2.1. Pros and Cons of UDDI and WSIL
The UDDI protocol is designed based on the Server/Client

model. UDDI uses a centralized repository to store information
about Web services. Its directory service relies on a server
(operator) operating on the centralized repository. This
centralized approach could have several shortcomings such as
“single point of failure” [10]. In order to alleviate the burden of
a single server, the UDDI organization has created several
mirror sites and replicated registration data across the mirror
sites. Currently, there are four UDDI operators: IBM,
Microsoft, SAP and NTT-Com. However, how to keep all these
data consistent is a resource-consuming task.

UDDI has promised to provide a platform where buyers and
sellers of services could easily connect to each other and access
information about potential trading partners. On this platform,
service providers could easily publish their services. Service

consumers could easily discover services and finally invoke
these services. Unfortunately, this promise seems to be not
fully fulfilled. According to [11], UDDI has two design flaws
that prevent itself and the Web services architecture from
achieving the expected goals: lack of moderation and
inadequate Quality of Service (QoS) guarantees. Without a
reliable and effective moderation, the registry could contain
out-of-date and even untruthful records concerning the Web
services. If the information held by the registry is
questionable, scalability and other designated good features of
the registry are meaningless. Quality of Service is the other
concern. UDDI brings opportunity of new partnership;
however, businesses need to establish the service quality
agreement before they are willing to buy a service. UDDI
does not take this issue into consideration. Neither QoS
characteristics nor other SLA (Service Level Agreement),
such as security, reliability, availability, were included into
the UDDI business model. Businesses thus become very
hesitated to use the service based on the information in UDDI
[12]. Things have been improved as far as business identity
fraudulence is concerned. The latest version of UDDI
specification, UDDI Version 3, expands the foundation of
UDDI Version 1 and Version 2 and brings desirable security
features into the UDDI protocol. Service providers digitally
sign the published data during registration, so that each entity
in UDDI is now attached with an XML digital signature.
Service requestors are allowed to find UDDI entities that are
signed. Some level of data integrity and authenticity is
delivered by a UDDI 3 registry together with the delivery of
the brokering service. Despite of this important security
advancement of UDDI, to include some form of central
control for keeping the business and service data updated and
posting the quality index of the services is still preferred.

WSIL is an aggregation of service descriptions. It allows
the service requestor to discover Web services deployed on a
Web server through inspection.wsil, the fixed-named top-level
WSIL document at the root of a Web site, and all other WSIL
files that inspection.wsil links to. These WSIL files are
moderated by each business and exist in the business’s web
site. The “find” requests are processed against each business’s
own Web site in a decentralized fashion. The single failure
point of the UDDI registry is now scattered to each Web
server hosting the Web services. Also, when discovering Web
services by accessing the business Web sites, a service
requestor can trust the information presented in the WSIL. It’s
similar to your trust of a friend’s words on what merchandise
his store carries and what quality the merchandise has.

WSIL helps to form a web of services of a service provider
in a very structured way. All these Web services could be
discovered by traversing the links from the top level
Inspection.wsil file. Since the location and convention of this
file is well known, the discovery can be performed in a
systematic way. However, WSIL only allows discovery of
services of known businesses. WSIL, by itself, does not define
a Web services repository and a mechanism to interact with
such a repository like UDDI does. Web services on different
servers are still isolated despite the presence of physical
connection through the Internet. As a result, new connections
between the providers, consumers and marketplaces cannot be

quickly made through a single access point. As such, WSIL
discovery is not enough for efficient cross-enterprise integration
that the Web services technology is promoting.

2.2. The Combined Approach
We propose a combined approach, called Unified Web

Service Discovery (UWSD), to get the best from both UDDI
and WSIL by using two complementary information sources to
discover Web services. UWSD makes Web services visible to
anyone on the Internet through the UDDI brokering service.
Meanwhile, it provides a trust-based searching facility through
the WSIL inspection. Searching the UDDI registry is based on a
multi-criteria query and is performed on a single or multiple
registries. A multi-criteria query is an aggregated query
consisting of several individual UDDI queries, each of which
may be on names, identifiers and categories. Aggregation
operations can be defined for “and,” “or,” and some other
script operators. Searching is thus made more convenient and
easier. WSIL, complementary to UDDI, makes up the other half
of the UWSD discovery. A WSIL discovery always starts from
the entry point of the business’s Web site. As far as the
discovery is done at the service provider’s site, the requestor
does not have to worry about the credibility of the services
discovered. All information from the Web site is moderated by
the business that owns these services thus should be integrate
and updated. The inspection documents are well organized to
be easily traversed.

3. Quality-enabled service discovery

As illustrated before, one of the challenges that UDDI faces
is that it lacks for QoS guarantees. The experience of using
multimedia Web applications, especially those interactive and
responsive ones are highly quality-dependent. It is necessary
that we make some quality considerations during the service
discovery process. In this section, we discuss the need for and
the value of performing a quality-enabled service discovery.
We also introduce two quality related criteria for the service
discovery.

3.1. QoS
Consumers continue to increase the range and complexity of

the quality provision on multimedia applications. Meanwhile,
there have been, and continue to be, efforts to provide different
quality of multimedia services upon different application
quality provisions. In such a business environment, the match
between the quality requirement of the user (or user
application) and the quality specification of the services is
important in many business activities. Quality of Service, i.e.
“QoS” defines a set of quantifiable and non-quantifiable
parameters of a network system (an application, a host, a
network device etc.) necessary to achieve the level of assurance
that its traffic and service requirements can be satisfied. QoS
has been discussed a lot by the Internet community.

The Web services platform gives a service-centric view of
Web applications to allow easy and homogeneous discovery.
Only with quality matching, could a discovered multimedia
Web service be truly usable. Therefore, it is desirable that

“service quality” checking is included as part of the discovery
process. With QoS, Web service providers have been able to
offer carefully tailored and finely differentiated services for
different customers. If the discovery request of a Web service
can also be differentiated by using the QoS, the differentiation
of the provided then could be easily mapped to the
differentiation of the requested.

In the Web services platform, the requestor may specify
the quality requirements in a discovery request for various
reasons. Here are two situations of specifying the QoS in the
discovery requests. In the first situation, the user signals
his/her network quality to the service discovery agent, in our
case UWSD, which would search for the Web services whose
QoS requirements are not violated. Service users usually
know the offerings of their network environment where they
are going to use the service. In the UWSD query, he/she may
describe his/her network resources through QoS parameters.
By a comparison between his/her description and the service
QoS, the discovery agent can tell if the service is good for the
user. In the second situation, the user has specific performance
requirements for using the service. If these requirements are
not met, the service is considered not usable under his/her
operating environment, although a service of same quality
may be still acceptable to most users’ tastes. In this case,
he/she could request a premium Web service experience by
describing the requirements through QoS parameters. The
discovery agent would discovery the services that meet his/her
superior requirements.

Below, we use the Internet multimedia streaming service
as an example to show why QoS information in the
description of an offer and demand of multimedia Web
services can be helpful. It is well known that Internet
performance is largely differentiated. With streaming, this
issue is more prominent because streaming media usually
contains large quantities of quality-sensitive information.
Streaming service receivers connect to the Internet via various
connection approaches. Well-connected business users receive
stream service through high-bandwidth connections. Their
access performance is primary due to the major backbone and
ISP peering delays and availabilities. On the other hand,
connected through lower-bandwidth, higher-latency lines,
such as T-1 lines, DSL connections, cable modem lines and
dial-up connections, the stream performance experienced by
small business and home users is mainly decided by the
bandwidth of the access link, the throughput of the local
service provider’s connection and the caching capability. For
both types of stream consumers, the performance can be
formulated as some function of a set of QoS elements. For this
reason, streaming content providers and streaming distribution
providers need to establish some QoS elements as the basis of
a Service Level Agreement (SLA) to ensure a consistent
quality, together with a certain measurement scheme to get
and analysis the QoS data. For example, Keynote [13] uses the
following pertinent factors to calculate the streaming quality:
connect time, redirect time, initial buffer time, video frame
rate, packet loss rate, bandwidth utilization and etc. For
adaptive/intelligent streaming, e.g. Windows Media Services
9 Series [14], the QoS data, such as bit rates and bandwidth
are a range of values, within which the media server can work

with the client to optimize the experienced quality of the
content delivered. From the point of view of service requestors,
to find streaming services that fit their specific needs relies on
properly specifying the needs in terms of services and their
quality constraints. A consumer of the streaming service
sometimes has a limited capability in consuming the media data
or a constraint on the bandwidth dedicated to this usage.
Including a QoS specification in the description of the request
helps to avoid deleterious effect on the reception of streaming
data due to link overload and to maintain a well-managed
network concerning bandwidth distribution and to eliminate
harmful contention.

However, QoS is left out of the current UDDI Web service
discovery picture. In order to allow real satisfactory on the
discovery result, we introduce QoS specification into UWSD.
From the OSI perspective, QoS can be defined in a layered
specific way [15]. QoS parameters of one layer should be
directly mapped to the QoS parameters at the next layer. And
end-to-end coordination on QoS parameters of two
communicating parties is also necessary. In the UWSD context,
we are basically talking about the application layer from a
service discoverer’s point of view. QoS parameters of the
requestor at the application layer would have to be consistently
imposed over the Internet to achievement an end-to-end
performance level. UWSD permits specification of user
requirements of service quality. From the standpoint of service
requestors, it ensures that the services discovered are useful and
satisfactory. From the standpoint of service providers, it ensures
that the users do not violate the services’ resource requirements.
It is reasonable to include in UWSD four general QoS
parameters that are common to several layers: bandwidth,
latency, jitter and reliability.

With QoS in UWSD, the user expresses his/her concerns
regarding bandwidth, latency, etc. in the service discovery
request. These requirements of certain properties of a service
are used to look for a service with consistent QoS specification.
Below is an example of a UWSD service discovery request
with QoS concerns: a user is looking for a videoconferencing
Web service to be used for negotiating with an important
customer. He/She requires the service is delivered through a
network guaranteeing a bandwidth of 128Kbps, with a
maximum end-to-end latency no higher than 50msec. (We
assume that he is connected to the Internet by a leased line for
very fast and qualified network connection.) Another example
of a UWSD service discovery request is: someone is looking
for a Web service to preview new movies on the Internet over a
plain dial-up 28.8kpbs modem.

3.2. File Size
The encoding of multimedia information leads to a big file

size. Even after the file being compressed with an efficient
compression algorithm, such as MPEG-4, H.263, file size is
still the major factor that affects the transmission of multimedia
data over the Internet. Problems caused by transmitting big
multimedia files undermine the performance of the Web
applications in several aspects. One of them is the response
time. Here, we refer to the total elapse between the instance
when the request of multimedia information is issued and the

instance when the entire piece of information is ready to use
as response time. Keeping the QoS as a constant, the larger
the size of the loaded information, the longer the response
time would be. Users may trade in the details of the
information he/she is going to receive for a better response
time. In other words, the user chooses a file of a smaller size
so he gets to load his information faster.

There are other situations that would shed a light to the
importance of choosing multimedia files with a proper size. A
user may have several applications (channels) to share the
same physical connection. He/she wants the most important
applications, so-called mission-critical applications, to be
guaranteed of the majority of the resources. Examples of
mission-critical applications include eBusiness, EPR
(Enterprise Resource Planning), voice over IP (voIP),
videoconferencing etc. These applications require
performance guarantees so that they do not suffer from traffic
contention from less critical applications, such as large
(secure) FTP file transfers, uploading/downloading digital
music files and personal emailing or Internet messaging. A
simple solution to the traffic contention between critical and
non-critical applications may be minimizing the traffic
volume (by minimizing the file size) of the less important
applications to allow a commitment of a higher quality for the
important one. There are other more sophisticated solutions
such as policy-based traffic control. In policy-based traffic
control, traffic is grouped into different categories, such as
“mission-critical enterprise resource allocation group” and
“delay-sensitive streaming group.” Different policies are then
defined and applied to each group concerning the traffic
volume allowed. In case of outsourcing the functions provided
by any of these applications, the policies can be used as the
SLA for the registry to pick a proper provider for the
requestor.

Below is an example service discovery request that have a
file-size requirement. A teenager wants to preview movie
clips of “The Core” by Paramount Pictures and is looking for
a multimedia streaming service for the preview purpose. His
Web connection is very slow (through a 28.8kbps modem)
and he dose not like to experience a long loading time for a
large trailer. Rather, as a smart Internet user, he prefers to
preview several small trailers or short clips, shorter than one
minute each. In this way, he has a better idea of what the
movie is about without incurring a long waiting time. Here is
another example: A sales person is videoconferencing with his
boss. At the same time, he was also trying to download the
catalog from one of their suppliers’ Web site for reference in
his conversation. Not wanting to impair the conference
quality, he selects the supplier that has a small catalog file.

In summary, “QoS” and “File size” matching are included
as a part of the WSIL discovery in UWSD. Thus the discovery
of a multimedia service with some constraints on “QoS” or
“File size” is supported. In our proposed query language for
UWSD, there are two corresponding elements: “ContentSize”
and “QoS.” In Section 5, we describe the language in detail.

Fig.2. UWSD System Architecture

UWSD Processor

UWSD
Request

Interpreter

USML
Operator

WSIL
Operator

Query Result
Aggregator

Quality
Matchmake

r

U
W

SD
 D

is
co

ve
ry

 R
eq

ue
st

 D
is

co
ve

re
d

Se
rv

ic
e

L
is

t

4. UWSD Architecture

4.1. UWSD Discovery Approach
UWSD is designed to improve the existing discovery

approaches by combing two complementary ones, i.e. the
UDDI and the WSIL approach, for a both credible and
complete discovery. In Fig.1, we can see the relationship
among the UWSD discovery, the UDDI discovery and the
WSIL discovery. The user’s UWSD discovery request is
decomposed into two parts: the brokering-based discovery and
the trust-based discovery. The brokering-based discovery relies
on a repository that contains information about registered
businesses and services. The UDDI protocol defines not only
how the information is structured and organized in the registry,
but also a set of standard APIs to retrieve the information. In
our case, we use USML [16] in the brokering-base discovery.
USML (UDDI Search Markup Language) extends the original
UDDI by allowing searching multiple UDDI registries with
multiple queries, each of which has a different criterion. Trust-
based discovery allows business to directly query a known
business with which trust of some degree has already been
established before. This fits into the current Web services
situation because the broker does not provide enough
moderation on the registration information it is holding. Trust-
based discovery is expected to return meaningful and usable
services.

4.2. System Architecture
Fig.2. shows the system architecture of the UWSD

discovery operator. We call the operating component UWSD
Processor, which is shown as a “U” shape in the figure.
UWSD Processor takes the UWSD discovery request and
returns a list of discovered services. In this system
architecture, UWSD Request Interpreter is the module that
parses the UWSD discovery request and decomposes the
query into a USML query and a WSIL search. The USML
query is passed to USML Operator. The WSIL search
command is passed to WSIL Operator that searches the WSIL
hierarchy only to the prescribed depth. Remember that we
have added some quality requirement parameters as additional
criteria in the WSIL discovery. As such, the query result from
WSIL Operator needs to be processed in order to match the
services’ QoS with requestor’s quality specification. The
module of Quality Matchmaker takes the discovered service
information form WSIL Operator and the quality requirements
in the UWSD discovery request from UWSD Query
Interpreter. It matches the service’s quality with the
requirement of the user, and only passes the qualified ones.
The discovery result from WSIL discovery is relatively
credible, while the discovery result through UDDI discovery
contains none-moderated information. Therefore, the job of
the Query Result Aggregator module is to tag two sets of
results with “trustworthy” and “not guaranteed to be
trustworthy” respectively, and to integrate these results. The
list of services is returned to the requestor.

A user trying to find a multimedia Web service should
benefit from this combined service discovery approach. With
USML, the query is more flexible, and the result is more
complete. With the WSIL discovery extended by the quality
matching, not only the result is trustable, but also the
requirement of the requestor can be accurately matched to
achieve more satisfying results. Furthermore, thanks to the
combination of USML and WSIL, both completeness and
accuracy are achieved. The requestor is presented with both
the services that are safe to be used and the services that could
be examined for more business opportunities.

UWSD Discovery

UDDI Registry and
Related Protocols

WSIL WSIL
WSIL

Brokering-based
Discovery

Trust-based
Discovery

http://WWW.myBuddy.com

Inspection.wsil

Fig.1. UWSD Web Service discovery

Users

WSIL

4.3. Implementation
The proposed approach is implemented using IBM

Emerging Technology Toolkit 1.1 (ettk1.1) and Apache Tomcat
4.1.24. UWSD Processor includes a parser, which interprets a
UWSD service request into a WSIL search command and a
USML query, and a query result aggregator, which transforms
results from both sources into a canonical form with two
dimensions of rating data. One dimension of rating shows how
trustable the information is. The other shows how well it is
matched to the request. For example, result from WSIL search
is 100% trustable and result from UDDI search is 100%
matched. WSIL Operator uses wsil4j in the package and USML
Operator makes use of BE4WS (Business Explorer 4 Web
Services).

5. Language for UWSD

The language for UWSD, referred to as the Language
hereafter, is an extension of USML (Unified Search Markup
Language) as described in [16]. In addition, the Language also
includes constructs for specifying a WSIL discovery command
and some quality requirements of the Web service requested. In
this section, both parts of the Language, i.e. the USML query
and the WSIL discovery specification are discussed.

5.1. WSIL Discovery Specification
The major difference between the Language of UWSD and

the USML is the addition of the element called
“WSILDiscoverySpec.” This element represents a WSIL
service discovery based on starting URLs. A starting URL
needs to be set to the entry point of the Web server, where the
root level WSIL is located. Since the WSIL files in a Web
server are organized in a hierarchical manner through the
element of “link” with the top-level inspection document at the
entry point, WSIL files in a Web server could be retrieved for
discovery of services. To trade off between the number of
services discovered and the time spent in the discovery, it is a
good practice to limit the depth of the link-traversal. This is
presented in the element of “DepthofSearch”. As we discussed
in section 3, both QoS and file size are useful criteria when
selecting a service. We define a “QoS” element, with which the
service requestor may express his network quality requirement
such as the bandwidth, latency, jitter and reliability. “BWU” is
used to mark up the upper bound of the bandwidth and “BWL”
the lower bound of the bandwidth. We also define a
“ContentSize” element for the requestor to limit the size of the
multimedia files being transmitted.

WSIL requests are usually issued towards business partners
who are known to or even familiar to the service requestor. We
could expect that this discovery return credible result. And the
services discovered could be marked with a higher preferable
rating.

5.2. USML Query in the Language
The results by a UDDI discovery could return a large

amount of businesses that might become new partners later on.
However, due to the absence of enough moderation, how many
of them are really trustworthy is unknown. Detailed inspection

needs to be imposed before a decision of selection is made on
any of them. These services can be marked “not guaranteed to
be trustworthy”.

The UDDIQuery element of the Language defines the
format of a UDDI query based on an aggregated condition.

Parse and decompose the
request

UWSD request documents

Extract the value of
“StringURLs” and put

URLs in a list

Remove the first URL
from the URL list

Retrieve
Inspection.wsil from
the URL and parse it

Retrieve WSIL
documents

referred to by
“Link”

Number of
iterations reaches

the value of
“DepthOfSearch”

Yes

No

Yes

Construct UDDI
queries and put

them in a query list

“ContentSize”
and “QoS”
matching

Remove the first
UDDI query from

the query list

Query the
designated UDDI

registry

Yes

No

No

Integration of
the discovery

result

More URLs in the
URL list

More UDDI queries
in the query list

Fig. 3. UWSD XML document processing

We adopted the constructs defined in USML as the language
constructs to support UDDI queries. Below, we briefly review
the key concepts and mechanisms of the USML. USML
supports searching for three types of entities defined in UDDI,
Businesses, Services and Service Types. A business can be
searched by a business name, an identifier with its identified
name, a category name with its category code, or a URL of the
business (usually the home page of the business). A service can
be searched by a service name, or a category code. A service
type can be searched by a service-type name, or a category
code. “Source” is used to mark up the name of UDDI source.
“SourceURL” is used to mark up URL of the UDDI registry.
“BusinessName” is used to mark up a business name.
“Identifier” together with an attribute of “IdentifierType” is
used to mark up an identifier. “IdentifierType” can take either
“D-U-N-S” or “thomasRegister” as its value. “Category”
together with an attribute of “CategoryType” is used to mark up
a category code. “CategoryType” can take one of the following
four values: “NAICS,” “UNSPSC,” “GEO,” “UDDITYPE”
and “SIC.” “ServiceTypeName” is used to mark up a service-
type name. And “ServiceName” is used to mark up a service
name. “FindBy” identifies the data type of the retrieved object.
It can take one of the three values: “service”, “serviceType” or
“business.”

5.3. The Language Schema
The schema of UWSD requests is defined as

UWSDRequest.xsd (The xsd file is not listed here. However,
we show an instance document of this schema in section 6).
This schema defines the basic building blocks of the UWSD
XML documents. The root element is “Schema”. Its attribute of
“targetNamespace” indicates that elements defined in this
schema come from “http://www.cise.ufl.edu/UWSDSchema”
name space. The segment of xmlns:us="urn:uddi-org:api_v3"
indicates that all elements and data types prefixed with “us”
come from the “uddi-org:api_v3” name space, which is UDDI
schema version 3. The “UWSDRequest” element is used to
mark up a UWSD discovery request. It is composed of four
child elements: “UDDIQuery”, “WSILDiscoverySpec”,
"AggOperator” and “RequestTypeName”. As we discussed in
section 5.1 and 5.2, UDDIQuery is used to specify UDDI
queries with specific query criteria on specific UDDI registries,
and “WSILDiscoverySpec” is used to specify a WSIL
discovery command. “AggOperator” identifies the aggregation
among multiple UDDI queries and “RequestTypeName”
identifies the type of resources requested. Fig. 3 shows a flow
chart of how a request XML document is processed.

6. Sample Scenario

We would like to present a sample scenario of the service
discovery using UWSD, the united discovery approach. In this
scenario, a teenager plans to go to the theater to see the movie
“The core” by Paramount Pictures ®. Before that, he needs to
preview this movie on the Internet. He uses UWSD to search
for a movie preview service. Below lists the UWSD discovery
request in discoveryTheCorePreview.xml:

<?xml version=”1.0”?>

<UWSDRequest
xmlns=”http://www.cise.ufl.edu/UWSDSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance”
xsi:schemaLocation=”http://www.cise.ufl.edu/UWSDSch

ema http://www.cise.ulf.edu/schemas/UWSDRequests.xsd”>
<UDDIQuery>
<Query>

<Source>
Public UDDI

</Source>
<SourceURL>
https://uddi.ibm.com/ubr/inquiryapi
</SourceURL>
<Category CategoryType=”UNSPSC”>

<tModelKey>
uuid:CD153257-086A-4237-B336-

6BDCBDCC6634
</tModelKey>
<KeyName>

Entertainment service
</KeyName>
<KeyValue>

90.15.00.00
</KeyValue>

</Category>
<ServiceName>

Trailer of “The core”
</ServiceName>
<FindBy>

Service
</FindBy>

</Query>
</UDDIQuery>
<WSILDiscoverySpec>

<StartingURLs>
http://www.thecoremovie.com/

</StartingURLs>
<DepthOfSearch>

2
</ DepthOfSearch>
<ContentSize>

5
</ContentSize>
<QoS>

<BWU>
28.8

</BWU>
</Qos>

</WSILDiscoverySpec>
</UWSDRequest>

On one hand, the requestor directly searches the official
Web site of the movie, www.thecoremovie.com, for preview
services. He requests that the maximum searching depth is
two. He specifies that the size of the trailer is around 5
Megabytes. Since he has a slow dial-up connection and
doesn’t want to jam his network traffic, he requests the upper
bound of the bandwidth is 28.8kbps. On the other hand, he

searches the IBM public UDDI registry for a “Trailer of The
core” under the UNSPSC category of “Entertainment service”.
The service from the official movie Web site should be
trustworthy. And the services obtained from the UDDI registry
would provide him with additional choices.

When this service discovery request document is input to
UWSD processor, it is first parsed by UWSD Request
Interpreter and is decomposed into a USML query and a WSIL
discovery command. Two lists are then constructed: a WSIL
URL list and a UDDI query list. The WSIL URL list contains a
single URL: “http://www.thecoremovie.com/”. The UDDI
query list contains a single UDDI query against IBM public
registry. WSIL Operator would perform the WSIL discovery on
the identified URL of the movie Web site. It retrieves
Inspection.wsil from http://www.thecoremovie.com/ and parses
this WSIL document. (We are simply using this Web site as an
example of WSIL-enabled Web sites. Currently, wsil
documents are not provided.) URLs of WSDL documents or
other description files regarding the Web services are recorded.
Also recorded are file size and Qos associated with each Web
service discovered. Further, through the “Link” element in
Inspection.wsil, more WSIL documents can be retrieved. Thus,
more services and description documents can be discovered.
This process is only repeated once, since “DepthOfSearch” is
set to 2 in this example. All discovered Web services are passed
onto Quality Matchmaker, where “QoS” and “ContentSize” of
each service are compared with the requirements in the service
discovery request. Not qualified services are filtered out. In this
example, there are three of them from Paramount's official THE
CORE web site: “large trailer”, “medium trailer” and “small
trailer.” Since the user specifies the file size to be around 5
megabytes, only the “smaller trailer” is selected. At the same
time, The UDDI query in the UDDI query list is sent to UDDI
Operator. The “FindXXXX” APIs in UDDI are used to search
for a business/service_type/service by the business name, the
category, the identifier, and etc. Results from both WSIL
Operator and UDDI Operator are aggregated by Query Result
Aggregator and then sent back to the requestor. The “small
trailer” from WSIL Operator is guaranteed to work. The
streaming clips and trailers from UDDI Operator would have to
be checked by the requestor personally to verify the truthfulness
and the quality of the services.

7. Conclusion

In this paper, we have demonstrated the deficiencies of the
current UDDI discovery. We argue that a combined approach
making use of UDDI and WSIL would get the best out of both
UDDI and WSDL. We have proposed in this paper Universal
Web Service Discovery for Web service discovery. With
UWSD, a service discovery request is decomposed into a
brokering-based discovery and a trust-based discovery. The
trust-based discovery is guaranteed to produce a result that is
trustworthy and that matches quality requirement well. Queries
against the UDDI registries provide new business opportunities.
But further investigation on the result is recommended. USML
is used in the combined approach for a more flexible UDDI
search. WSIL discovery is also enhanced to better cater
multimedia Web service discovery.

8. References

[1] Web Services Architecture working group, “Web Services
Architecture, W3C Working Draft 14 November 2002”,
http://www.w3.org/TR/2002/WD-ws-arch-20021114.
[2] Jia Zhang, Jen-Yao Chung, “A SOAP-Oriented Component-
Based Framework Supporting Device-Independent Multimedia Web
Services, IEEE-MSE 2002, Dec. 2002.
[3] W3C Composite Capability/ Preference Profile,
Http://www.w3c.org/TR/CCPP-struct-vocab/, W3C Working Draft,
March 15, 2001.
[4] R. Han, V. Perret, and M. Naghshineh, “WebSplitter: a Unified
XML Framework for Multi-Device Collaborative Web Browsing”,
Proceedings of the ACM 2000 Conference on Computer Supported
Cooperative Work, 2000, Philadelphia, Pennsylvania, USA, pp. 221-
230.
[5] “Web Engineering Device Independent Web Services”,
Proceedings of the 23rd International Conference on Software
Engineering, 2001, Toronto, Ontario, Canada, pp. 795-796.
[6] Baljit Singh Chandhoke, Brent Heetland, Herb Turner, Ed
Waitkaitis, “Will UDDI Succeed as the Web Service Description and
Discovery Standard?”, http://198.11.21.25
/capstoneTest/Students/Papers/docs/UDDIproceedings311231.pdf,
2003.
[7] Aaron Skonnard, “Publishing and Discovering Web services with
DISCO and UDDI”, http://msdn.microsoft.com/
msdnmag/issues/02/02/xml/default.aspx, Feb, 2003.
[8] W. Nagy, F. Curbera, S. Weerawaranna, “The Advertisement and
Discovery of Services (ADS) protocol for Web services, http://www-
106.ibm.com/developerworks/ webservices/library/ws-ads.html, Oct.
2000.
[9] WSIL, Web Services Inspection Language, available at
http://www-106.ibm.com/developerworks/webservices/library/ ws-
wsilspec.html
[10] Sitthichai Laoveerakul, Kittinarong Laongwaree, Sissades
Tongsima, “Decentralized UDDI based on P2P,” available at
http://www.hpcc.nectec.or.th/C4/grid/UDDI.pdf, 2003.
[11] Tarak Modi, “WSIL: Do we need another Web Services
Specification? Explaining the difference between UDDI,” available
at http://www.webservicesarchitect.com/content/articles/modi01.asp,
2003.
[12] SalCentral, “UDDI Weather report,” available at
http://www.salcentral.com/uddi/default.asp, 2003.
[13] http://www.keynote.com/solutions/solutions_pm_
streaming_perspective_tpl.html
[14] Microsoft Windows Media Technology
http://www.microsoft.com/catalog/display.asp?subid=22&site=816;h
ttp://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwmt/html/intelligent_streaming__qwes.asp
[15] Quality of Service: Motivations, Requirements, Architecture and
Services, http://www.comp.leeds.ac.uk/si32/ lectures/si32.3.2.pdf
[16] Liang-Jie Zhang, Haifei Li, Henry Chang, Tian Chao, “XML-
based Advanced UDDI Search Mechanism for B2B Integration,” 4th
International Workshop on Advanced Issues of E Commerce and
Web-based Information Systems (WECWIS), 2002.

