
Accepted for publication in 2nd International Conference on Web Services (ICWS), San Diego, July 2004.

A Trust-based Context-Aware Access Control Model for Web-Services

Rafae Bhatti Elisa Bertino Arif Ghafoor
School of Electrical &
Computer Engineering,

Purdue University,
West Lafayette, IN

CERIAS and Department of
Computer Sciences,
Purdue University,
West Lafayette, IN

School of Electrical &
Computer Engineering,

Purdue University,
West Lafayette, IN

rafae@purdue.edu bertino@cs.purdue.edu ghafoor@purdue.edu

Abstract

A key challenge in Web services security is the design
of effective access control schemes that can adequately
meet the unique security challenges posed by the Web
services paradigm. Despite the recent advances in Web
based access control approaches applicable to Web
services, there remain issues that impede the
development of effective access control models for
Web services environment. Amongst them are the lack
of context-aware models for access control, and
reliance on identity or capability-based access control
schemes. In this paper, we motivate the design of an
access control scheme that addresses these issues, and
propose an extended, trust-enhanced version of our
XML-based Role Based Access Control (X-RBAC)
framework that incorporates context-based access
control. We outline the configuration mechanism
needed to apply our model to the Web services
environment, and also describe the implementation
architecture for the system.

Keywords: XML, Role-Based Access Control, Trust
Management, Web-Services

1. Introduction

Security in Web services is critical to their wide-

scale adoption and integration in Web-based enterprise
systems and softwares. The present day Web is abound
with examples of Web-based enterprise services, and
there is an increasing trend amongst them to migrate to
the Web services platform in order to enhance and
diversify the online services provided to their
customers. While shifting from the traditional client-
server architecture to Web services technology is seen
as an endorsement of the Internet community’s faith in

the promise of the Web services paradigm, the goals of
interoperability and ubiquity as envisioned by the Web
services technology can only reasonably be realized if
the unique security challenges posed by this paradigm
are appropriately addressed. Among these challenges
is to develop models for effective access control in
dynamic XML-based Web services. The uniqueness
here comes from the fact that the Web-based enterprise
resources being exposed via Web services are typically
dynamic and distributed in nature, and hence require
adaptive access control models that can capture the
dynamically changing security requirements of the
target enterprise.

The mechanisms required to effectively enforce
access control across distributed, heterogeneous
domains are becoming increasingly complex. This
complexity arises not only because of the sheer size of
the distributed clientele accessing online services but
also because of the fact that access control system
should capture security-relevant contextual
information, such as time, location, or environmental
state available at the time the access requests are made,
and incorporate it in its access control decisions. These
context parameters capture the dynamically changing
access requirements in a Web-based enterprise, and
hence are critical to the effectiveness of the resulting
access control scheme. The context directly affects the
level of trust associated with a user, and hence the
authorizations granted to him/her. These parameters
constitute what is generally termed as a “user profile”.
The access privileges of requestors to an online service
provider could be based on certain thresholds as
established by the System Security Officer (SSO)
based on the requestor’s access patterns. If at any time,
a requestor appears to deviate from his/her usual
profile, the thresholds (i.e. the trust level) would
automatically be reduced as a precaution to prevent a

potential abuse of privileges. This is a real-time
requirement, and is exceedingly important in dynamic
Web services serving thousands of customers with
diverse activity profiles. In order for the access control
to be effectively exercised in such scenarios with
context-sensitive access requirements, the traditional
access control models must be extended to make them
context-aware. To this end, we propose to employ the
generalized temporal extension to our X-RBAC [1]
model, the XML-based Generalized Temporal Role
Based Access Control (X-GTRBAC) model [2]. X-
GTRBAC was originally proposed as a solution to
enterprise-wide access control, but due to its XML-
based framework, it can also be configured to provide
access control in Web services. In Section 3, we
introduce the reader to the X-GTRBAC model and
outline the mechanism to extend X-GTRBAC as a
context-aware access control framework for Web
services environment.

Another issue we highlight in the paper is trust-
based role assignment to users. There are different
(although related) notions of “trust” in the literature.
The one that is relevant to our purposes is the level of
confidence associated with a user based on certain
certified attributes thereof. In our framework, this level
of confidence is not quantitatively reported. Instead,
we rely on the Trust Management (TM) approach of
trusted third parties (such as any PKI CA1), and use the
certification provided by them to assign roles to users.
We derive our motivation for doing that from the
review of traditional access control schemes that have
adopted either an identity or capability-based approach
to authorize users [1, 3-7]. Such mechanisms do not
scale well to the distributed Web services architecture,
and hence would cause a significant burden to be
attached to the enforcement of the access control
scheme. This is because each credential needs an
explicit delegation act by the respective domain
administrators. In order to overcome this limitation, we
outline a mechanism to incorporate trust in X-
GTRBAC model in Section 3. In particular, we would
use TM credentials (i.e. certificates) to allow trust
establishment amongst distributed domains.

The remainder of this paper is organized as follows.
We begin by providing a compendium of related work
in the area of Web services security, and discuss how
our framework aligns with the existing security
architectures. We also review the features provided by
existing Web-based access control schemes, and their
suitability to Web services. We next introduce our

1 Public Key Encryption Certification Authority

trust-based context-aware access control model, which
is based on a temporal extension of X-RBAC with
trust domains incorporated into it. The paper concludes
with the discussion of implementation architecture of
our model and an overview of future research goals.

2. Background and Related Work

We shall now provide a background and
compendium of current state of the art in Web services
security. A fair amount of related research in this area
is due to the industry, with standards such as Security
Assertion Markup Language (SAML) [8] and
eXtensible Access Control Markup Language
(XACML) [9] being recently adopted. SAML defines
an XML framework for exchanging authentication and
authorization information for securing Web services,
and relies on third-party authorities for provision of
“assertions” containing such information. XACML is
an XML framework for specifying access control
policies for Web-based resources, and with significant
extensions can potentially be applied to secure Web
services. The XACML specification supports identity-
based access control and incorporates some contextual
information, such as location and time, into access
decisions, without any formal context-aware access
control model. There also are other emerging
specifications, most notable amongst them are the ones
outlined in WS security roadmap [10]. The roadmap
consists of a number of component specifications, the
core amongst them are WS-Security, WS-Policy, and
WS-Trust. WS-Security is similar in intent and
purpose to SAML, only uses a different technology.
WS-Policy is used to describe the security policies in
terms of their characteristics and supported features
(such as required “security tokens”, encryption
algorithms, privacy rules, etc.). WS-Trust defines a
trust model that allows for exchange of such security
tokens (using mechanisms provided by WS-Security)
in order to enable the issuance and dissemination of
credentials within different trust domains, and establish
online trust relationships. The models proposed in the
roadmap have been directed primarily at the
authentication aspect of Web services security, with an
emphasis on designing secure messaging protocols to
communicate the security-relevant information, such as
security tokens and characteristics of security policy.
The specification leaves room for custom authorization
models to be tied into the architecture at the
appropriate (i.e. WS-Policy) level. In this paper, we
present an access control model that is capable of
doing exactly that; our XML-based framework allows
easy integration into the existing XML-based

architectures for Web services security, while
providing an effective authorization mechanism
suitable for Web services environment.

There has been an effort in the research community
to highlight the challenges in Web-based access
control within the XML framework, including both the
initial DTD-based solutions [3-6], and the more recent
schema-based approaches [1, 7]. In [1], we have
presented X-RBAC, an XML-based RBAC policy
specification framework for enforcing access control in
dynamic XML-based Web services. X-RBAC was
designed to readily integrate within the XML
framework, and emphasized simple, yet effective,
administration through the use of RBAC. We also
maintained that X-RBAC includes a comprehensive set
of features that is comparable to the related access
control schemes cited above, and is targeted for the
Web services environment. Although X-RBAC and
related schemes provide viable solutions, there remain
issues that impede the development of effective access
control models for Web services environment.
Amongst them are the lack of context-aware models
for access control, and reliance on identity or
capability-based access control schemes. We next
elaborate upon these issues, and propose an extended
and trust-enhanced version of our X-RBAC model in

an attempt to address them.

3. Trust–Enhanced X-GTRBAC Model

This section begins with an introduction to the X-
GTRBAC model. It then describes the mechanism to
configure X-GTRBAC to provide context-aware trust-
based access control in Web services.

3.1. X-GTRBAC- An Introduction

The X-GTRBAC framework is based on

Generalized Temporal Role Based Access Control
(GTRBAC) model [11]. X-GTRBAC augments
GTRBAC with XML to allow for supporting the
policy enforcement in an heterogeneous, distributed
environment. GTRBAC extends the widely accepted
Role Based Access Control (RBAC) model proposed
in the NIST RBAC standard [12]. RBAC uses the
concept of roles to embody a collection of permissions
within an organizational setup. Permissions are
associated with roles through a permission-to-role
assignment, and the users are granted access to
resources through a user-to-role assignment [13].
GTRBAC provides a generalized mechanism to
express a diverse set of fine-grained temporal

Table 1. Salient Features of X-GTRBAC

Element Type Element Name Purpose
XML User Sheet (XUS) Declares the users and their authorization credentials

XML Role Sheet (XRS) Declares the roles, their attributes, role hierarchy, and any
separation of duty and temporal constraints associated with roles

RBAC Element

XML Permission Sheet (XPS) Declares the available permissions
XML User-to-Role Assignment Sheet
(XURAS)

Defines the rules for assignment of users to roles; these
assignments may have associated temporal constraints

RBAC
Assignments

XML Permission-to-Role Assignment
Sheet (XPRAS)

Defines the rules for assignment of permissions to roles; these
assignments may have associated temporal constraints

RBAC Constraints XML Separation Of Duty Definition
Sheet (XSoDDef)

Defines the separation of duty constraints on roles

XML Temporal Constraint Definition
Sheet (XTempConstDef)

Defines the temporal constraints on role enabling and activation;
also defines temporal constraints for user-to-role and permission-
to-role assignments

GTRBAC
Constraints

XML Trigger Definition Sheet
(XTrigDef)

Defines context-based triggers for invocation of periodic events
subject to associated constraint evaluation

Authorization
Credentials

XML Credential Type Definition Sheet
(XCredTypeDef)

Defines the available credential types

constraints on user-to-role and permission-to-role
assignments in order to meet the dynamic access
control requirements of an enterprise. X-GTRBAC
allows specification of all the elements of the
GTRBAC model. These specifications are captured
through a context-free grammar called X-Grammar,
which follows the same notion of terminals and non-
terminals as in BNF, but supports the tagging notation
of XML that also allows expressing attributes within
element tags. The detailed specification of these
elements of X-GTRBAC framework can be found in
[2]. Table 1 enlists the salient features of the model.

We now describe the mechanism to configure X-
GTRBAC to provide context-aware trust-based access
control in Web services. Toward that end, we need to
outline a set of formal specifications to capture
contextual information, and illustrate how it can be
incorporated within the access control model. In
addition, we would need to provide an interface to the
system to accept TM credentials instead of its usual
user credentials as the basis of privilege assignments.

3.2 Context-aware access control

This section defines the set of specifications needed
to configure X-GTRBAC for context-aware access
control in Web services environment. We base our set
of specifications on a tuple language that can be
readily mapped onto our existing XML-based
framework. In the following, we provide the formal
definition of context, and then use that to provide the
definition for a service_access_request. In order to
formalize the context, we introduce a type system to
allow specifying domains of legal values for various
context parameters. Our formal model relies on the
components we define below:

Parameter Name Set: A set PN to denote the possible
names of context parameters
Parameter Type Set: A set PT to denote the possible
types of context parameters
Context Parameter: A context parameter is
represented by a data structure p, having the following
fields: name ∈ PN, type ∈ PT, and a function
getValue().
Roles Set: RR = {rr1, …. , rrk}, where rri, 1≤i≤k
is a regular role2 in GTRBAC
Operations Set: RO = {ro1, …. , rok}, where rok, 1≤i≤k
is a regular operation in GTRBAC

2 We introduced the term regular role in [17] to differentiate it from
an administrative role.

Service: A service is an abstraction of the operations
provided by the system on its resources. Formally, a
service is a subset of the data set RO, and is designated
by the service name srv that is defined according to
the wsdl:service element of the WebServices
Description Language (WSDL) document
Services Set: SRVS = {srv1, …. , srv k}, where srvi
, 1≤i≤k is a service.

Definition 1: (Context): A context set C consists of n
context parameters {p1, …. , pn}, n≥ 0, s.t. for any pi,
pj, with i ≠ j and 1 ≤ i, j ≤ n, we have that pi.name ≠
pj.name (i.e. the parameter names must be distinct).

We mention here that PN and PT constitute a set
of pre-specified parameter names and types determined
by the SSO. For example, the set PN may be defined
as: PN ={time_of_day, location,
duration, system_load}, with the
corresponding set PT defined as: PT ={Time,
String, Long, Integer}. The
p.getValue() function is used to dynamically
compute the value of the parameter, and its
implementation is system-dependent. For built-in
system parameters, such as time_of_day, it might
just serve as a wrapper around system functions such
as getCurrentTime(). The dynamic mechanism to
compute parameter values especially helps in the case
of mobile users accessing Web-based services, because
in such environments the parameter values are
constantly changing and may need to be re-evaluated
at certain intervals. Additionally, for dynamic access
constraints, such as duration, getValue() would
be called periodically to ensure that the constraint is
always satisfied. We also note from the preceding
definition that the context may be an empty set.

Definition 2: (Service_access_request): A service
access request is defined as a triple <role, srv,
context> where role ∈ RR, srv ∈ SRVS,
and context is defined according to Definition 1
and captured dynamically at the time of the access
request.

Based on the service_access_request, the system
determines the applicable access policy for the
requested service. This policy will be based on a set of
constraints on the role and service name, and evaluated
in conjunction with the available contextual
information to enforce fine grained access control. An
access policy consists of a collection of access
conditions. In order to formulate an access condition,
we refer to the notion of parameterized roles of [2].

Parameterized roles are roles supplemented with
role_attributes. The attributes set A of a role contains a
collection of contextual attributes (such as time,
location or system load) that may be used to define
context-based conditions on roles. The values of these
attributes are specified by the SSO, and these values
are compared with the values of the supplied context
parameters in order to evaluate an access request. The
set of contextual attributes of a role is hence a subset
of the set C of context parameters, and follows the
same type system. We formally define the
access_policy below. We assume the existence of a
function getAttributesSet(role), which
returns the set A for a given role.

Definition 3: (Access Policy): Let r ∈ RR be a role,
srv ∈ SRVS be a service name denoting a service. The
access policy AP for a (r, srv) pair is a set of clauses,
where each clause is a Boolean combination of
expressions. An expression is of the form <attr Ө
val> where attr is a role attribute s.t. attr
∈ getAttributesSet(r), val is the value of the
parameter as specified by the SSO in order for role r to
access the service srv, and Ө is any relational
comparison operator.

It may be mentioned that we have intentionally kept
our model generic enough, as it is unlikely for any one
model to capture all types of contextual information
and associated conditions that might arise in practice.

But for most practical purposes, the sets PN, PT and
role_attributes may be extended according to the
system requirements in order to define access
conditions based on appropriate context parameters.

We now give the following set of algorithms to
evaluate a service_access_request.

The ComputeAccess algorithm works as

follows. In Step 1, the clauses corresponding to the
(role,srv) pair are retrieved from the AP into a
dynamic array CL. Step 2 retrieves the attributes of
the role into a dynamic array A. In Step 3, the
algorithm loops over the array CL and calls the routine
getDecision() for each of the clauses. Each
clause has potentially multiple expressions, and so
each expression is evaluated using the
evaluateExpr() routine. For each expression,
this routine retrieves the attribute from the attribute
array A and then calls the routine
checkCondition() to evaluate the conditions
corresponding to this role attribute. This routine loops
over the set C of supplied context parameters and finds
the matching context parameter for this role attribute
by calling the match() routine, which internally
compares the name and type of the two entities. Since
the set A is a subset of set C, this search always results
in a match. When a match is found, it compares their
values according to the operator specified in the AP. If
the condition is satisfied, a value of true is returned to

Algorithm: ComputeAccess
Input: role, srv, C //C is context array
Output: decision d , d ∈ {YES, NO, PENDING, N/A}

 1: CL[] = getClauses(role,srv)
 2. A[] = getAttributesSet(role)
 3. FOR i = 1 to length(CL) DO
 clause = CL[i]
 access = getDecision(clause,A,C)
 IF access = false
 return NO
4: IF access = true
 return YES

Algorithm: getDecision
Input: clause,A,C
Output: result //boolean

 1. initizalize(result[])
 2. FOR i = 1 to size(clause) DO
 expr = clause.getExpr(i)
 result[i]=evaluateExpr(expr,A,C)
 3. return computeResult(result[])

Algorithm: EvaluateExpression
Input: expr, A, C
Output: result //boolean

1. name = expr.getAttrName()
2. attr = getAttribute(A,name)
3. result = checkCondition(attr, C)
4. return result

Algorithm: checkCondition
Input: attr, C
Output: result //boolean

1. p=match(C,attr)
 IF p.getValue()Ө val
 result = true
 ELSE
 result = false
2.: return result

getDecision. After the result for all access
conditions within the clause has been computed, the
getDecision routine then computes the overall
result for the clause and returns it to
ComputeAccess. If any of the clauses evaluates to
false, a NO is returned as the output of the
ComputeAccess algorithm, because the overall
access decision is a conjunction of all individual
clauses. Otherwise, after the loop terminates
successfully over all the clauses, a YES is returned.
Other decisions such as PENDING or N/A may also
be returned by incorporating system-specific logic into
the algorithm.

As an illustration, consider the example of a
recently launched initiative of a German insurance
company [14]. The company leverages Web services
technology to introduce online visitors to its services,
and allows them to purchase insurance coverage
through an entirely digital process. The evaluation of
an online coverage request requires several kinds of
personal information to be made available, and the
same needs to persist in the company’s database for a
subsequent evaluation of an insurance claim. At that
point, however, the access to the customer’s resources
should only be granted after establishing the fact that
the requestor indeed is “the” genuine customer. For
instance, assume that the following
service_access_request is submitted for evaluation to
the system:

<role=priv_cust,
service_name=”review_claim”,
context={p1{time,12PM},
p2{location,”WashDC”},p3{duration,
0},p4{system_load,”low”}>.

This request says that a user belonging to the
priv_cust (privileged customer) role has requested
to review an online insurance claim through the Web-
based review_claim service offered by the
company. The context recorded at the time of access
request is provided to the system as part of the request.
Note that duration is initialized to 0 because the
access has not yet started. Now, assume that the
following AP is applicable to the given (role, srv)
pair:

 {< CL1> , < CL2 >, < CL3> , < CL4 >}
s.t.
CL1: {time > 9AM} AND {time < 5PM)
CL2: {location = “WashDC”} OR

tion = “NewYork”} {loca
CL3: {system_load != “high”>
CL4: {duration ≤ 600s}

Based on this information, the system would return
an authorization decision for this
service_access_request. The available contextual
information indicates that the access conditions are
satisfied. In addition, due to the duration constraint
specified for the requested service and enforced by the
dynamic temporal constraint mechanism of GTRBAC,
the access duration of the user is continuously
monitored, and any violation thereof is detected on a
per-user basis by the GTRBAC Processor (see Table
2). The mechanism to deal with the violation is system-
specific, but GTRBAC allows a trigger mechanism to
take immediate actions in such situations (such as de-
activating the role for the given user). Detailed
discussion on such mechanisms can be found in [2].

3.3 Incorporating trust domains

In this section, we briefly describe a mechanism to
incorporate trust domains in X-GTRBAC to enable
effective access control in a distributed environment,
where user identities are not known a-priori. Since X-
GTRBAC makes the access decisions based on the
eligible roles for known users, we can use TM
credentials to assign roles to users. While it is
sometimes viewed as appropriate in TM to adopt a
direct authorization model, i.e. to combine
authentication and access control into one
authorization step [15], we would like to motivate here
that the indirection through roles helps scalability and
flexibility in the case of large scale open systems,
especially Web services. Hence, a significant
advantage that accompanies the role-based approach
adopted in our framework is that of simplified
authorization administration [13]. An earlier approach
that merged features from TM and RBAC, called the
Role based Trust management framework (RT), was
reported in [16]. However, our primary goals are
different from RT. The latter is primarily a TM
credential exchange and distribution mechanism to
assist authorizations in a distributed environment; it
does not support an elaborate access control scheme
beyond the basic permission-to-role assignment
mechanism in RBAC. We focus on providing a
context-aware access control model for the Web
services environment, and rely on TM credentials for
determining the trust level (i.e. role) associated with a
user. As mentioned in the introduction, the trust level
can be subsequently adjusted based on the user’s
activity profile. Such a profile can be maintained by
logging the contextual information associated with the
invocation and acceptance of a
service_access_request.

Table 2. Description of X-GTRBAC system modules

 Module Name Description
Document Composition Module (DCM) Used to compose the policy documents; contains the XML-Policy Base that

serves as the document repository; is an external component of the model

Policy Loader The interface of the system to the DCM; used to load the XML policy files
into the system

Policy Validation Module Validates the XML policy files for existence checking and type conformance
according to policy rules; XML syntax validation is also implicitly done

XML processor Contains an XML parser that generates the DOM tree representation of the
XML policy files

GTRBAC Processor Contains a GTRBAC Module that translates the DOM tree representation to
internal RBAC data structures representing the system state at any time;
maintains logs of sessions and updates the system data structures to allow
contextual information to be incorporated in access decisions

The use of TM credentials to establish role
memberships of users requires the X-GTRBAC model
to be adapted to accept distributed TM credentials. We
touch upon the mechanisms needed to do this in the
next section, but leave an elaborate treatment of the
same for some future work, as it is not the focus of our
current paper. It may be noted here that the trust-based
approach to verifying user credentials effectively adds
authentication support to our existing authorization
model.

4. Implementation Architecture

There is an on-going effort underway on extending
our implementation prototype, first reported in [1]. The
major components of X-GTRBAC system architecture
are summarized in Table 2. The existing prototype
incorporates the temporal constraint enforcement
mechanism as per the GTRBAC model. The
generalization of the contextual information to include
parameters other than time as described in the paper is
being incorporated into the system. We are also
working toward a set of specifications that would
allow us to substitute the existing credential evaluation
mechanism with that involving TM credentials.
Because of the modular design of X-GTRBAC, this
task can be accomplished with only slight
modifications in the overall architecture. The
components affected would be (i) the XML Policy
Base, since it would now need to store a different
XCredTypeDef sheet based on TM credentials, and (ii)
the XML Processor, since it would now employ a
different evaluation logic for processing credential
declarations. Our set of specifications would be XML-

based, and hence can be expected to integrate well
with the existing framework.

5. Conclusion

In this paper, we have outlined a mechanism to
develop a trust-based, context-aware access control
model for Web services based on the X-GTRBAC
framework. X-GTRBAC is a temporal extension of the
earlier X-RBAC model for access control in Web
services. The mechanism presented in the paper
extends X-GTRBAC to support context-aware access
control based on both temporal and non-temporal
contextual conditions. In addition, we outline a
mechanism to incorporate trust domains into X-
GTRABC by the use of distributed TM credentials for
unknown users. Such an approach effectively adds
authentication support to our system. We have
discussed the configuration of X-GTRBAC for its
application in Web services environments, and also
proposed extensions to our current implementation
architecture for the purposes outlined in this paper. We
intend to report the detailed results of our on-going
implementation efforts in some future work. We also
plan to explore the interplay of contextual conditions
in the presence of separation of duty constraints and
role hierarchies. In these situations, it is critical to
ensure that the access to services based on inherited
permissions do not violate any separation of duty
constraints. Another future direction of research would
be to investigate the suitability of the proposed
administration model for X-GTRBAC [17] to Web
services. We expect to see our framework evolve with
time, as Web services standards are continually being

enhanced, and would likely incorporate additional
security mechanisms such as secure messaging and
transaction support into our system. Along related
lines, it would be desirable to design a framework to
evaluate security properties of a Web service based on
the existing and emerging Web services specifications.

Acknowledgements

Portions of this work have been supported by the
sponsors of the Center for Education and Research in
Information Assurance and Security (CERIAS) at
Purdue University, and the National Science
Foundation under NSF Grant# IIS-0242419.

6. References

[1] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, “Access
Control in Dynamic XML-based Web-Services with X-
RBAC”, In proceedings of The First International
Conference on Web Services, Las Vegas, June 23-26, 2003.

[2] R. Bhatti, "X-GTRBAC: An XML-based Policy
Specification Framework and Architecture for Enterprise-
Wide Access Control”, Masters thesis, Purdue University,
May 2003. Available as CERIAS technical report 2003-27.

[3] E. Bertino, S. Castano, E. Ferrari, “Securing XML
Documents with Author X”, IEEE Internet Computing May-
June 2001.

[4] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P.
Samarati, “A Fine Grained Access Control System for XML
Documents”, ACM Transactions on Information and System
Security, Volume 5, Issue 2, May 2002.

[5] N. N. Vuong, G. S. Smith, Y. Deng, “Managing Security
Policies in a Distributed Environment Using eXtensible
Markup Language (XML)”, Symposium on Applied
Computing, March 2001

[6] S. Hada, M. Kudo, “XML Access Control Language:
Provisional Authorization for XML Documents”, October
16, 2000, Tokyo Research Laboratory, IBM Research.

[7] X. Zhang, J. Park and R. Sandhu, Schema based XML
Security: RBAC Approach, IFIP WG 11.3 2003.

[8] OASIS, Security Services TC
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=security

[9] XACML 1.0 Specification
http://xml.coverpages.org/ni2003-02-11-a.html

[10] Security in a Web Services World: A Proposed
Architecture and Roadmap
http://www106.ibm.com/developerworks/securiy/library/ws-
secmap/

[11] J. B. D. Joshi, Elisa Bertino, Usman Latif, Arif
Ghafoor, "Generalized Temporal Role Based Access Control
Model (GTRBAC) (Part I) - Specification and Modeling",
Submitted to IEEE Transaction on Knowledge and Data
Engineering. Available as CERIAS technical report 2001-
47.

[12] D. F. Ferraiolo , R. Sandhu , S. Gavrila , D. R. Kuhn ,
R. Chandramouli, “Proposed NIST standard for role-based
access control”, ACM Transactions on Information and
System Security (TISSEC), Volume 4, Issue 3, August 2001.

[13] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman,
“Role Based Access Control Models”, IEEE Computer Vol.
29, No 2, February 1996.

[14] Accenture Web Services Case Study
http://www.accenture.com/xd/xd.asp?it=enweb&xd=services
\microsoft\case\micr_ergo.xml

[15] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. The KeyNote Trust Management System, version
2. IETF RFC 2704, September 1999.

[16] N. Li, J..C. Mitchell, and W. H. Winsborough. Design
of a role-based trust management framework. In Proceedings
of the 2002 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2002.

[17] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, "X
GTRBAC Admin: A Decentralized Administration Model
for Enterprise Wide Access Control”, In proceedings of 9th

ACM Symposium on Access Control Models and
Technologies, New York, June 2-4, 2004.

	1. Introduction
	2. Background and Related Work
	3. Trust–Enhanced X-GTRBAC Model
	3.1. X-GTRBAC- An Introduction
	3.2 Context-aware access control
	3.3 Incorporating trust domains

	4. Implementation Architecture
	5. Conclusion
	6. References

