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On the Beating of ASE and XPM Noise in
Optical Receivers

Ilya Lyubomirsky, Member, IEEE,and Michael Y. Frankel, Member, IEEE

Abstract—This letter presents a theoretical study on the effects
of beating between amplified spontaneous emission (ASE) noise
and cross-phase modulation (XPM)-induced noise in optical
receivers. Our theory of ASE-XPM beat noise predicts that such
beating effects are actually beneficial to receiver performance,
resulting in lower error probabilities. The ASE-XPM beat noise
produces skewed non-Gaussian probability distributions and
shifts optimum receiver threshold closer to the one level. These
conclusions are insensitive to the exact noise statistics assumed for
XPM or ASE.

Index Terms—Amplified spontaneous emission (ASE),
cross-phase modulation (XPM), noise, optical receivers.

I. INTRODUCTION

OPTICAL RECEIVER design is growing in importance as
wavelength-division-multiplexing (WDM) transmission

systems scale to ultradense channels spacing [1]. An optimally
designed receiver can partially compensate for the greater trans-
mission penalties inherent in ultradense WDM (UDWDM). The
performanceofanoptical receiver inUDWDMtransmissionsys-
tems depends critically on the optical and electrical filter shapes
and bandwidths [2]–[5]. These critical receiver parameters must
be optimized taking into account the presence of amplified
spontaneous emission noise (ASE), linear crosstalk, and fiber
nonlinearity. The ultimate goal is to approach the quantum limit
of receiver performance, although this is extremely challenging
due to fiber nonlinear effects, which distort the pulse shape and
produce noise in the receiver.

Cross-phase modulation (XPM) fiber nonlinearity is a
particularly important effect in UDWDM systems operating at
10-Gb/s channel rates [6]. XPM produces a signal-dependent
amplitude noise in the receiver, with a magnitude that is
inversely proportional to channel spacing [7]. Moreover, unlike
four-wave mixing, XPM cannot be eliminated by launching
adjacent channels with orthogonal polarization. Thus, XPM is
a fundamental impairment, along with the ASE noise always
present in optically amplified systems. In a well-designed
UDWDM transmission system, the optical launch power is
optimized to achieve a balance between ASE- and XPM-in-
duced noise at the receiver. Thus, an accurate description of
receiver performance must include a model for both ASE and
XPM, where the noise contributions from the two effects can
be equally strong.
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Systems limited by either ASE or XPM in isolation have been
studied extensively [7]–[10], and simple Gaussian noise models
have been used to include both effects in amodel [11]. In
this letter, we present a novel theory of receiver performance,
which includes the beating effects between ASE- and XPM-
induced noise in the receiver. Our theory predicts inherently
non-Gaussian probability distributions, with important conse-
quences, such as a shift in optimum receiver threshold and lower
error probabilities compared to the Gaussianmodel.

II. THEORY

Consider an optical nonreturn-to-zero or return-to-zero pulse,
corresponding to a logical one bit, arriving at a receiver. After
square law detection in a PIN or avalanche photodiodes receiver,
the optical pulse is converted to an electrical pulse, amplified,
filtered, and sampled by a clock and data recovery (CDR) cir-
cuit. We assume that the receiver circuitry is well designed so
the CDR samples the signal at the optimum sampling instant,
corresponding to the peak of the pulse. We model the resulting
sample by a normalized random variable (RV)

(1)

where is an RV corresponding to ASE signal-spontaneous
beat noise, is an RV corresponding to XPM noise, and

is the beating between the two optical noise terms
with a strength parameter. The addition of the noise beating
term is a central hypothesis of our theory, based on
the physics of square law detection. The RVis normalized,
without loss of generality, such that , which is equiv-
alent to normalizing ASE and XPM noise to peak optical power.
We assume that and are independent RVs, with zero
mean, and variance and , respectively.

RV can be written in a particularly simple, and physically
revealing, form by first considering the case

(2)

In this form, RV clearly exhibits the multiplicative noise nature
of the ASE-XPM noise beating effect [12]. The new RVsand

are also independent, with mean one, and varianceand
, respectively. Using a transformation technique [13], the

probability density function (pdf) of can be put into an integral
form in terms of and

(3)
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where the last equality assumes a Gaussian model for the pdf
of . A Gaussian model for ASE noise is deemed reasonable,
while we make no assumptions at this point about XPM noise
statistics. The error probability for receiving a “0” given that “1”
was transmitted is obtained by integrating over

(4)

where is the threshold voltage. In comparison, ignoring the
noise beating effects, and employing Gaussian statistics to de-
scribe XPM noise, the error probability would be

(5)
where .

The total error probability includes the probability for re-
ceiving a “1” given that “0” was transmitted. We assume the
transmitted signal has a high extinction ratio, and intersymbol
interference on the zero level is negligible. In this ideal case, we
can ignore the influence of XPM noise on the zero level, and em-
ploy a Gaussian pdf model of zero mean, and variance[11].
Thus, the probability for receiving “1” erroneously is

(6)

The total error probability is obtained from the above expres-
sions as , where the factor of
accounts for equala priori probability for transmitting “1” or
“0.” In the Gaussian approximation of ASE and XPM noise,
optimizing the threshold voltage in

yields the model.

III. RESULTS AND DISCUSSION

Fig. 1 shows the calculated pdfs, where
and (corresponding to ). The solid curves
represent the standard Gaussian model, which ignores any noise
beating effects. The dashed curve shows the calculated pdf when
ASE-XPM noise beating is included, and XPM is modeled with
a Gaussian pdf. As shown in Fig. 1, the ASE-XPM noise beating
tends to skew the pdf toward the one level, with a skew factor
[13] given by

(7)

The skew factor is positive definite, indicating that the pdf
is always skewed toward the one level as long as both ASE and
XPM noises are present in the receiver. In the example shown in
Fig. 1, the skew factor . Note that ASE-XPM beat noise
has relatively little impact on the total width of the pdf. This
can be clearly seen by considering the variance in RV, given
by , where the ASE-XPM beat
noise term gives a negligible contribution for ,

.
Fig. 2 compares the calculated error probabilities cor-

responding to the pdfs in Fig. 1 as a function of receiver

Fig. 1. Calculated probability distributions. Solid curves show Gaussian pdf
models for both one and zero level. Dashed curve shows how pdf for one level
changes when ASE-XPM beating effects are included with XPM treated as
Gaussian RV. Dotted curve is similar to dashed curve but with XPM treated
as a uniform RV. Dashed–dotted curve shows the case where XPM is absent.

Fig. 2. Calculated error probabilities. Solid curve shows the standard Gaussian
model. Dashed curve shows our model including ASE-XPM beating effects with
XPM treated as Gaussian RV. Dotted curve is similar to dashed curve but with
XPM treated as a uniform RV. Dashed–dotted curve shows the case where XPM
is absent.

threshold. The ASE-XPM beat noise has the effect of shifting
optimum receiver threshold toward the one level. ASE-XPM
beat noise also results in a lower error probability compared
to the Gaussian model. A qualitative explanation for these
effects, both of which follow from the skewed pdf, can be
given by considering the multiplicative nature of ASE-XPM
noise beating. Physically, the impact of ASE noise, being
proportional to signal strength, is reduced when XPM results
in the signal fluctuating down, and vice versa. Mathematically,
a skewed or asymmetric pdf results because the width of the
pdf (for ) is reduced when signal fluctuates down due
to XPM, while the width (for ) increases when signal
fluctuates up due to XPM. The case of no XPM is also shown
in the dashed–dotted curves of Figs. 1 and 2 for comparison.
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Fig. 3. Calculated error probability at optimum threshold as a function of
ASE-XPM beat noise strength parameter". Both ASE and XPM are treated
as Gaussian RV. Dashed line shows the error probability when XPM is absent.

The dotted curves in Figs. 1 and 2 show the pdf of the nor-
malized sample voltage and corresponding error probability
when XPM noise is modeled by a uniform pdf. The uniform pdf
is defined over an interval [ , ], where the parameter

to ensure the same variance as in the Gaussian
model of XPM noise. The uniform pdf model of XPM noise
tends to compress the tails in the pdf ofmore than a Gaussian
model of XPM. This results in an additional small shift in op-
timum threshold toward the one level, and a modest reduction
in error probability. Note that, due to mathematical symmetry in
RV as a function of and , the same error probabilities are
obtained by assuming a uniform pdf model of ASE noise, while
modeling XPM with a Gaussian pdf. Indeed, ASE-XPM beat
noise exhibits similar features for any reasonable statistics as-
sumed for ASE or XPM noise. However, in practical UDWDM
systems, where many channels are involved in producing XPM,
XPM-induced noise should be well modeled by Gaussian sta-
tistics.

It is straightforward to include an arbitrary strength parameter
for the ASE-XPM beat noise. The analogous result for (4) is

(8)

The corresponding formulas for variance and skew factor re-
main the same with replaced by . Note
that in the limit , (8) reduces as expected to the simple
model of ASE and XPM noise developed by Killeyet al. [14,
eq. (3)]. Fig. 3 shows the calculated error probability at optimum
threshold voltage as a function of ASE-XPM beat noise strength
parameter . As long as is of order unity, our theory predicts a
lower error probability compared to previous models, which ig-
nore ASE-XPM beat noise effects [11], [14, eq. (3)]. The exact

numerical value of ASE-XPM beat noise strength parameter
should be determined experimentally, for example, by finding
the best parameter fit ofto measured data of error probability
versus receiver threshold voltage.

IV. CONCLUSION

We have proposed a novel theory of receiver performance that
includes a model for ASE-XPM beat noise. Our theory predicts
that ASE-XPM beat noise tends to skew the pdf toward the one
level, also shifting the optimum threshold voltage. Such noise
beating effects are beneficial in reducing the total error prob-
ability at the optimum threshold. These conclusions are rela-
tively insensitive to the exact noise statistics assumed for XPM
or ASE. While this work focused on the beating between XPM
and ASE noise, our theory may have applications to other mul-
tiplicative noise processes, as long as they dominate over the
signal independent receiver thermal noise.
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