
Three-Dimensional Model-Based
Object Recognition and Segmentation

in Cluttered Scenes
Ajmal S. Mian, Mohammed Bennamoun, and Robyn Owens

Abstract—Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a

challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an

object is automatically constructed offline from its multiple unordered range images (views). These views are converted into

multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these

views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This

results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These

models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously

matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes.

The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is

declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were

performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was

achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.

Index Terms—Multiview correspondence, registration, 3D object recognition, segmentation, 3D representation, shape descriptor,

geometric hashing.

Ç

1 INTRODUCTION

THE aim of object recognition is to correctly identify objects
in a scene and estimate their pose (location and orienta-

tion). Object recognition in complex scenes in the presence of
clutter (due to noise and the presence of unwanted objects)
and occlusions (due to the presence of multiple objects) is a
challenging task. Object recognition from 2D images is an
appealing approach due to the widespread availability of
cameras. However, 2D recognition techniques are sensitive to
illumination, shadows, scale, pose, and occlusions. Three-
dimensional object recognition on the other hand, does not
suffer from these limitations. An important paradigm of
3D object recognition is model-based (e.g., [22], as opposed to
view-based, e.g., [18]) whereby 3D models of objects are
constructed offline and stored in a model library using a
suitable representation. During online recognition, a range
image of the scene is converted into a similar representation
and matched with the models of the database in order to
recognize library objects.

A 3D model of a free-form object [3] is constructed by
acquiring its range images from multiple viewpoints so that
its surface is completely covered. These views are then
registered in a common coordinate basis. Registration is
performed in two steps, namely, coarse and fine registration
[6]. Coarse registration can be performed manually or

automatically through system calibration or feature matching
[6]. We will focus on automatic coarse registration using
feature matching, also known as correspondence identifica-
tion [34]. Coarse registration is followed by fine registration,
using, for example, the Iterative Closest Point (ICP) algorithm
[4]. After fine registration, the views are integrated and
reconstructed to form a seamless 3D model.

The main challenge in 3D modeling is the automatic
establishment of correspondences between overlapping
views. This problem becomes more challenging when the
views are unordered (i.e., the order in which the views were
acquired is unknown and, hence, there is no a priori knowl-
edge about which view pairs overlap). A pairwise correspon-
dence algorithm is not practical in such cases because it must
exhaustively search for correspondences between NðN�1Þ

2
view pairs (OðN2Þ, where N is the total number of views). In
the case of unordered views, a multiview correspondence
algorithm is more suitable. We define multiview correspondence
asaone-to-manycorrespondenceapproach(OðNÞ)wherebya
single view is simultaneously matched with multiple views.
Ourmajorcontributioninthemodeldatabaseconstruction isa
novel multiview correspondence algorithm which is an
extension of our pairwise correspondence algorithm [34].

Existing correspondence techniques such as the RANSAC-
based DARCES [8], bitangent curve matching [42], spin
image matching [22], geometric histogram matching [1],
three-tuple matching [9], and SAI matching [19] are all
pairwise correspondence techniques and, therefore, cannot
be efficiently applied to solve the multiview correspondence
problem [33]. Huber and Hebert [20] proposed a framework
for automatic 3D modeling from unordered views. Their
framework is, however, based on an exhaustive search
(OðN2Þ) to find correspondences between all possible pairs
of views in order to initialize a graph of relative pose

1584 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

. The authors are with the School of Computer Science and Software
Engineering, The University of Western Australia, 35 Stirling Highway,
Crawley, WA 6009, Australia.
E-mail: {ajmal, bennamou, robyn}@csse.uwa.edu.au.

Manuscript received 7 Mar. 2005; revised 26 Jan. 2006; accepted 3 Feb. 2006;
published online 11 Aug. 2006.
Recommended for acceptance by R. Basri.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0126-0305.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

estimates. The exhaustive search is followed by the multiview
surface matching algorithms which search for discrete edges
(pairwise correspondences) in the graph and verify each
pairwise correspondence by performing global (multiview)
fine registration of all the views. This adds to the computa-
tional complexity of the already expensive exhaustive search.

Our multiview correspondence algorithm automatically
establishes correspondences between the unordered
2.5D views of a free-form object by performing a one-to-
many correspondence search (OðNÞ) using a 4D hash table
(Fig. 1, Modules B and C). The result is a spanning tree of
relative transformations between the unordered views used
to coarsely register them in a common coordinate basis
(Section 3). The registration is refined using multiview fine
registration (Module D) followed by the integration and
reconstruction of the views into a seamless 3D model
(Module E). To the best of our knowledge, our algorithm
(initially proposed in [30]) is the only automatic multiview
correspondence algorithm available. Note that our contri-
bution is in the area of multiview coarse registration and
should not be confused with multiview fine registration
algorithms (e.g., the work of Oishi et al. [35]), which
assumes that the views are coarsely registered and, hence,
one can easily find overlapping views and their amount of
overlap. Moreover, the work of Avidan et al. [2] is related to
multiview correspondence between 2D images as opposed
to range images.

Our second major contribution is in 3D object recognition.
Existing techniques have various limitations mainly in terms
of their applicability to free-form objects, accuracy, efficiency,
robustness to clutter and occlusions, and the discriminating
capability of the used feature representation. An excellent
survey of free-form object representation and recognition
techniques can be found in [6]. A brief survey is presented
here for completeness. Flynn and Jain [14] used CAD models
to build large databases for automatic 3D object recognition.

Recently, the use of scanned 3D models has become popular
due to the decreasing cost of 3D scanners. COSMOS [13]
requires the calculation of principal curvatures which are not
only sensitive to noise but also require the underlying surface
to be smooth and twice differentiable. Moreover, COSMOS
cannot be used for the recognition of occluded objects. The
splash representation [39] makes assumptions about the
shape of the objects and is also sensitive to noise and
occlusions. Recognition techniques based on matching
B-Spline curves such as [40], remain sensitive to the unsolved
knot problem. The B-Spline representation is not unique since
the location of the knots cannot be accurately calculated and is
not repeatable for a given object. SAI matching [17] is limited
to only those surfaces which are topologically equivalent to a
sphere and cannot differentiate between similar objects
having different scales. The derivation of point signatures
[10] is vulnerable to surface sampling and noise and,
therefore, may result in ambiguous representations [33].
CEGI-based techniques such as [24] cannot be applied to free-
form objects. The recognition based on HOT curves [23] relies
on the accurate localization of inflection points, which is
sensitive to noise. Johnson and Hebert proposed a recognition
algorithm based on a novel spin image representation [22].
However, their representation is sensitive to the resolution
and sampling of the models and scene. Moreover, spin
images have a low discriminating capability because they
map a 3D surface to a 2D histogram [34], which leads to many
ambiguous matches. An improvement to this technique [7]
overcomes the sensitivity of the spin images to resolution and
sampling. However, the problems of the low discriminating
capability of the representation and the inefficiency of the
algorithm remain unsolved. Most of the above techniques use
a one-to-one matching strategy resulting in a recognition time
that grows linearly with the size of the model library.
Recently, the spin image representation was used in a batch
RANSAC algorithm for rapid 3D vehicle recognition [37]. It
was also used for automatic clustering and classification of
3D vehicles [12], [21] in order to handle large databases and
classify unknown but similar vehicles. Some pairwise
correspondence techniques (e.g., [1], [8]) have also been
applied to 3D object recognition.

We present a fully automatic 3D model-based free-form
object recognition [31] and segmentation [32] algorithm based
on our robust multidimensional table representation
(which we refer to as tensors) [34] in order to overcome the
deficiencies of the existing algorithms. Fig. 1 shows the block
diagram of our complete algorithm, including the offline
3D modeling and the online recognition and segmentation
phases. The combination of the strengths of our representa-
tion [34] and the customized use of a 4D hash table for
matching constitutes the basic ingredients of this novel
algorithm. Our algorithm is fully automatic and requires no
user intervention at any stage, including the offline
3D modeling, the online object recognition, and scene
segmentation. Briefly, the online recognition and segmenta-
tion part of our algorithm proceeds as follows: The point
cloud of a scene is converted into a triangular mesh which is
decimated for performance reasons. Next, a pair of vertices is
randomly selected from this mesh to construct a tensor
(Module H). This tensor is then simultaneously matched with
the tensors of the 3D models in the library by casting votes to
the tuples (model number, tensor number) using a 4D hash
table (Module J). The tuples that receive fewer votes than a
threshold are discarded and a similarity measure is calculated
between the scene tensor and the tensors of the remaining

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1585

Fig. 1. Block diagram of our 3D model-based object recognition and
segmentation algorithm. The shaded blocks are exclusive to the
3D modeling algorithm, whereas the unshaded blocks constitute the
recognition and segmentation algorithm.

tuples. The tuple with the highest similarity is hypothesized
to be present in the scene. This hypothesis is verified by
transforming the 3D model to the scene (Module K). If the
model aligns accurately with an object in the scene, that object
is recognized and segmented (Module L). The segmented
region is removed from the scene and the above process is
repeated until the scene is completely segmented or no
further library objects are present in the scene. Experiments
were performed using a model library of 55 objects and
610 scenes and an overall recognition rate of 95 percent was
achieved. Our results indicate that our algorithm is indepen-
dent of the amount of clutter in the scene and can effectively
handle up to 82 percent occlusion. Experimental comparison
with the spin images [22] revealed that our algorithm is
superior in terms of accuracy and efficiency.

This paper is organized such that the different modules
of Fig. 1 are described in a sequential order except for
3D acquisition (Module A), which is outside the scope of
this paper.

2 TENSOR REPRESENTATION AND HASH TABLE

CONSTRUCTION (MODULE B)

The input views (or point clouds Fig. 2a) Vi (where V i is
an ni � 3 matrix of 3D coordinates) are converted into
triangular meshes Mi (i ¼ 1; . . . ; N) (Fig. 2b). Each Mi is

decimated [16], for performance reasons, to get M0
i (Fig. 2c).

Normals are then calculated for each vertex and triangular
face of M0

i. If Vi contain the entire object and completely
cover its surface, its approximate dimensions D can be
calculated using (1) [34].

D ¼ ½Dx;Dy;Dz� ¼ max
xyz

max
xyz
ðViPiÞ �min

xyz
ðViPiÞ

� �
; ð1Þ

where Pi is the rotation matrix that aligns Vi with its
principal axes. The function maxxyzðViÞ takes the maximum
values in each column of Vi. Tensors are then calculated for
all M0

i as described in Section 2.1 and a hash table is built as
described in Section 2.2.

2.1 Tensor Computation

The vertices of each M0
i are paired such that they satisfy a

distance and an angle constraint. The distance constraint
allows pairing of only those vertices whose mutual distance is
between dmin and dmax. If dmin and dmax are chosen too large,
there will be slim chances that both vertices of the pair will be
chosen from the overlapping region of the two views. If dmin
and dmax are too small, the resultant coordinate basis
(explained below) will be sensitive to noise. If dmax � dmin is
too small, very few vertices will satisfy this constraint and if
dmax � dmin is too large, too many vertices will satisfy this

1586 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 2. Illustration of the tensor computation. (c) Two points and their normals n1 and n2 (red) are used to define a 3D coordinate basis (blue). (d) and
(e) A 10� 10� 10 grid defined at the origin. (f) The surface area intersecting each bin of the grid is the value of the corresponding tensor element.
(Most figures in this paper, including this one, are best viewed in color.)

constraint. We defined dmin and dmax according to (2) on the
basis of our extensive experiments [34].

dmin ¼
meanðDx;Dy;DzÞ

6
dmax ¼

meanðDx;Dy;DzÞ
4

: ð2Þ

The angle constraint allows pairing of only those vertices
for which the angle �d between their normals is greater than
5 degrees. A single vertex is paired with the nearest three
vertices which satisfy the above constraints. These constraints
not only avoid theCn

2 combinatorial explosion of vertex pairs,
but also increase the chances that both vertices in a pair are
selected from the region of overlap of the two views.

A 3D coordinate basis is then defined for each pair of
vertices as follows: The center of the line joining the vertices
makes the origin. The average of the normals of the two
vertices makes the z-axis. The cross product of the two
normals makes the x-axis and the cross product of the z-axis
and the x-axis makes the y-axis (see Fig. 2c). This coordinate
basis is used to define a 3D grid at the origin (Figs. 2d and
2e). The size of the grid determines the degree of locality of
the representation, whereas the size of each bin determines
the level of granularity at which the surface is represented.
The bin size was automatically derived as bs ¼ dmin

5 and the
grid size was selected as 103 on the basis of our pairwise
correspondence experiments [34].

Once the grid is defined, the surface area of intersection
of the mesh with each bin of the grid is recorded in a third
order tensor (Figs. 2d and 2e). Each element of the tensor is
equal to the surface area of the mesh intersecting the grid
bin (Fig. 2f) corresponding to that tensor element. Hodg-
man’s polygon clipping algorithm [15] is used to efficiently
find the area of intersection of a bin and the mesh. Our
tensor representation is simply a multidimensional table
whose entries correspond to the surface area of a local patch
of an object. Since most of the bins of the 3D grid are likely
to be empty (Fig. 2e), the resulting tensor will have many
zero elements. Therefore, the tensor is compressed to a
sparse form in order to cut down on memory utilization by
approximately 85 percent. The flow chart of the tensor
representation is given in Fig. 3. Note that the selection of
seed vertices (shaded block) is mainly performed to reduce
the number of possible vertex pairs when representing a
complete 3D model at high resolution (Section 4).

For reasons of efficiency in terms of time and memory, it
is desirable to represent each view with the minimum

number of required tensors nt. We found that a minimum of
nt ¼ 300 per view is required for correct pairwise corre-
spondences [34] as well as multiview correspondence (see
Section 5.2). Therefore, nt valid vertex pairs are randomly
selected to compute tensors.

2.2 Hash Table Construction

Multiview correspondence is highly dependent on the
efficiency of the used matching algorithm. Mamic and
Bennamoun [27] carried out a review of the different
matching approaches. These include hypothesis and test,
matching relational structures, pose clustering, interpreta-
tion trees, registration, and geometric hashing. Of these
approaches, geometric hashing [25] appears to be the most
efficient and appropriate due to the insensitivity of the
matching time to the number of views or models in the
database. However, geometric hashing, in its crude form, has
some drawbacks. First, the hash table must be built for all
combinations of four points of each view which has a
complexity of Oðn4NÞ (where n is the number of points per
view/model and N is the total number of views/models).
Second, the hash table is built with surface data points which
makes the matching process sensitive to the resolution and
surface sampling. We adopted a variant of the geometric
hashing for multiview tensor matching. In our variant, the
hash table is efficiently constructed from thentN tensors only
without going into the combinatorial explosion of the data
points. Moreover, the tensors represent local surface patches
of the views instead of data points. This makes the hash table
and, hence, the matching process independent of the
resolution and surface sampling of the views.

Once all the views have been represented with tensors,
these tensors are used to fill up a 4D hash table. Three
dimensions of the hash table correspond to the i; j; k indices
of the tensor elements, whereas the fourth dimension is
defined by the angle �d of the tensors. �d is quantized into
bins of ��d. The appropriate value for ��d was empirically
estimated and was found to be 5 degrees (Section 5). The
bins of the 4D hash table are filled up as follows: For each
tensor Tb of each view Ma (where a; b are index numbers),
the tuple ða; bÞ entry is made in all the bins of the hash table
corresponding to the i; j; k indices of the nonzero elements
of the tensor and the �d of the tensor. Fig. 4a shows the flow
chart of the hash table construction.

3 AUTOMATIC MULTIVIEW CORRESPONDENCE

(MODULE C)

We present two efficient variants of our automatic multi-
view correspondence algorithm, i.e., the connected graph
and the hypergraph algorithm. The first variant (Section 3.1)
makes a single multilevel spanning tree, whereas the second
(Section 3.2) variant makes disjoint and unilevel spanning
trees first and then connects them to form a multilevel
spanning tree hypergraph.

3.1 Connected Graph Algorithm

Fig. 5a shows the trace of the connected graph algorithm for
the 33 views of the Hasi (Fig. 7). This algorithm selects the
mesh MR with the maximum surface area as the root node to
initialize a spanning tree graph (Fig. 5a, Step 1). The tensors of
MR are then matched with the tensors of the remaining
meshes (nodes) in the search space (Fig. 5a). Details of the
matching process are given in Section 3.3. Matching tensors

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1587

Fig. 3. Flow chart of the tensor representation. The input is either a

range image or a 3D model.

are used to calculate the rigid transformation between their
respective nodes (see Section 3.4 for details). The node with
the matching tensor is removed from the search space and
connected to MR with an arc which represents the rigid
transformation between the two nodes. Once all the tensors of
MR have been matched (Fig. 5a, Step 2), another node is
selected from the spanning tree and its tensors are matched
with the tensors of the remaining nodes in the search space
(Fig. 5a, Step 3). This process continues until all the nodes
have been added to the spanning tree (Fig. 5a, Step 4). The
search space is reduced each time a new node is added to the
spanning tree. This provides further efficiency to the
algorithm.

3.2 Hypergraph Algorithm

The output of this algorithm is also a spanning tree. However,
the construction approach is different. Fig. 4b shows the flow
chart of the hypergraph algorithm, whereas Fig. 5b shows its
trace. This algorithm initially makes separate subgraphs
which are also spanning trees. Each subgraph is made by
selecting a root node and connecting other nodes to it by
matching the tensors of the root node with the tensors of the
remaining nodes in the search space. Details of the matching
process are given in Section 3.3. When all the tensors of a root

subgraph node have been matched with the remaining nodes
in the search space, another subgraph root node is selected
from the remaining nodes. Root nodes are selected on the
basis of maximum surface area. This process continues until
subgraphs have been constructed from all the nodes and there
are no more nodes in the search space (Fig. 5b, Step 3). Next, a
hypergraph is constructed from these subgraphs as follows:
The subgraph with the maximum number of nodes is selected
as the root subgraph and the tensors of its nodes are matched
with the tensors of the remaining subgraphs as described in
Section 3.3. Consequently, all subgraphs are connected to the
root subgraph by a single arc (shown bold in Fig. 5b, Step 4)
resulting in a hypergraph. Our experiments in Section 3.3
show that the hypergraph algorithm is more efficient.

3.3 Multiview Matching

To simultaneously match a tensor Tm of a model mesh/
node M0

m with the tensors of the remaining views, the i; j; k
indices of its nonzero elements and its �d (the angle between
the normals of the two vertices used to define Tm) are used to
cast votes to all the tuples (a; b) (where a and b are the index
numbers of a view and tensor respectively) present at the
corresponding index positions in the 4D hash table (Fig. 6a).
The tuples that receive fewer votes than half the number of

1588 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 5. (a) Trace of the connected graph and (b) hypergraph multiview correspondence algorithms for the 33 views of Hasi (Fig. 7). The root nodes

and the arcs joining two subgraphs (in the case of hypergraph algorithm) are drawn in bold.

Fig. 4. Flow chart of (a) the 4D hash table construction and (b) the hypergraph algorithm.

nonzero elements of Tm are dropped. Next, the correlation
coefficientCc is calculated between Tm and each tensor Ts of
all the remaining tuples using (3). Cc is calculated in the
region of overlap (i.e., the elements of Tm which have a
corresponding element in Ts) of the two tensors in order to
compensate for occlusions.

Cc ¼
nq
Pnq

i¼1 piqi �
Pnq

i¼1 pi
Pnq

i¼1 qiffi
nq
Pnq

i¼1 p
2
i � ð

Pnq
i¼1 piÞ

2
q ffi

nq
Pnq

i¼1 q
2
i � ð

Pnq
i¼1 qiÞ

2
q ;

ð3Þ

where pi and qi (i ¼ 1 . . .nq) are the respective elements of
Tm and Ts in their region of overlap. Tuples whose Cc < tc
(tc ¼ 0:5, on the basis of our extensive experiments [34]) are
discarded and the similarity measure S (4) of the remaining
tuples with Tm is calculated.

S ¼ nqCc: ð4Þ

The remaining tuples are considered as potential
correspondences to the tensor Tm and are verified (details
in Section 3.4), starting from the tuple with the maximum
value of S. A pair of verified corresponding tuples (say,
Mm;Tm from the graph and Ms;Ts from the search space)
is used to calculate the rigid transformation between the
two meshes. The new mesh Ms is removed from the search
space and added to the graph by connecting it with an arc
to the mesh Mm. The arc represents the transformation (see
(5) and (6)) between the two meshes.

3.4 Correspondence Verification

Fig. 6b shows the flow chart of the correspondence verifica-
tion. A match between a tensor Tm of model view/node M0

m

and a tensor Ts of the scene view/node M0
s in the tuple is

verified as follows: First, M0
s is transformed to the coordinates

of M0
m to form M0

ms (7), using the rotation matrix R (5) and the
translation vector t (6).

R ¼ B>s Bm; ð5Þ
t ¼ Om �OsR; ð6Þ

M0
ms ¼M0

m [ðM0
sRþ tÞ: ð7Þ

Bm and Bs are the matrices of coordinate basis used to

define the model and scene tensors respectively. Om and Os

are their corresponding origins. In (7), M0
ms is the union of

the two meshes after the vertices of M0
s are rotated and

translated using R and t. The bounding dimensions D0ms of

M0
ms are then calculated using (8).

D0ms ¼ max
xyz
ðV0msPmsÞ �min

xyz
ðV0msPmsÞ: ð8Þ

In (8), V0ms is the matrix of the data points (or vertices) of

M0
ms and Pms is the rotation matrix that aligns V0ms along its

principal axes. The dimensions D of the object are then

subtracted from D0ms. If the maximum difference1 between

the two is less than a specified tolerance 3bs, Mm and Ms

are also registered (using R and t) and points on the two

meshes that are within a distance of 2dres (where dres is the

resolution of Mi and is equal to its mean edge length) are

turned into correspondences. If the number of correspon-

dences is more than nc, the transformation is refined with a

variant of the ICP algorithm [36] (nc ¼ minðnm;nsÞ
4 , where nm

and ns are the number of vertices of Mm and Ms,

respectively). Once again, pairs of points on the two meshes

that are within a distance of dres are turned into correspon-

dences. If the number of correspondences is more than 2nc,

the combined bounding dimensions Dms of Mm and Ms are

calculated in a similar way to (8). If max(D�Dms) is less

than 2dres, the algorithm proceeds to verify active sensor

space violation (see Section 7.3). If any of the above local

verification steps fail, the algorithm proceeds to verify the

next tuple with the highest value of S.
During the global verification, the combined bounding

dimensions DL of all the registered meshes in the current

spanning tree and the new mesh to be added are calculated

in a similar way to (1). If max(DL �DÞ < 4dres, the new

mesh is added to the spanning tree otherwise the algorithm

proceeds to test the next tuple with the highest value of S.

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1589

Fig. 6. Flow chart of (a) the multiview matching and (b) the correspondence verification.

1. The combined dimensions of two or more correctly aligned views
should not exceed the dimensions of the object.

4 GLOBAL REGISTRATION, INTEGRATION, AND

RECONSTRUCTION (MODULES D AND E)

The spanning tree is used to register all the views in the
coordinate basis of the root mesh MR by concatenating
transformations. To avoid the accumulation of registration
errors, which may result in seams between distant views of
the spanning tree, the registration is refined with a modified
version of Williams and Bennamoun’s global registration
algorithm [41]. Finally, the registered views are merged into
a seamless 3D model using VripPack (Volumetric Range
Image Processing Package) [38] which uses the volumetric
integration algorithm by Curless and Levoy [11] for
integration and the marching cubes algorithm [26] for
reconstruction.

5 THREE-DIMENSIONAL MODELING RESULTS

AND ANALYSIS

Fig. 7 shows some example models resulting from our

automatic 3D modeling algorithm. In the case of the Isis,

Hasi, Dinopet, and Hip, 33 unordered range images of each

object were fed to our connected graph algorithm and

hypergraph algorithm for multiview correspondence. Fig. 5

and Fig. 8 show the output graphs constructed by the two

variants of our algorithm in each case. Notice that the graphs

constructed by the connected graph algorithm have a

maximum of only four levels, starting from the root node
(e.g., node 19 in Fig. 8a) at level zero to the end nodes at level
four (e.g., node 15 in Fig. 8a). However, in the case of the Hip

using the hypergraph algorithm, the maximum number of
levels was five. The number of levels is low in either case, but
the hypergraph algorithm is more efficient. The advantages
of a small number of levels are twofold. First, the spanning
tree is quickly and efficiently constructed since the nodes are
quickly removed from the search space. Second, the registra-
tion errors are only accumulated through a small number of
branches. The following sections give a quantitative analysis
of our automatic multiview correspondence algorithm
according to four important criteria.

5.1 Robustness to the Feature Resolution of the
Views

We tested the performance of our multiview correspondence
algorithm with varying resolution of the meshes in order to
demonstrate its robustness. These experiments were per-
formed on the unordered views of five objects, namely, the
Angel, Bird, Frog, Pooh, and Teletubby (Fig. 7, second row).
There were 18 views each of the first four objects and 20 views
of the Teletubby. In each case, we reduced the resolution of the
meshes [16] and represented them with a constant number of
400 tensors per view. Next, we tested if our hypergraph
algorithm can automatically establish correspondences be-
tween the unordered views of individual objects. The results

1590 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 7. Three-dimensional modeling results of our algorithm. The noise and outlier points are the result of the propagated sensor errors.

Fig. 8. Output of our connected graph and hypergraph algorithm. The root nodes and the arcs joining two subgraphs are drawn in bold. Timing

information of the hypergraph algorithm is given for the Matlab implementation on a 2.4 GHz machine.(a) Isis (4.76 mim), (b) Dinopet (3.48 min), and

(c) Hip (6.21 min).

of our experiments were quantified on the basis of the number

of views/nodes correctly registered to the root node of the

root subgraph (Fig. 9, column one). Our results show that our

algorithm has 98 percent performance at a low resolution of

400 faces per view. The failures occur mainly due to

insufficient overlap (< 50 percent) between the views [34].

Below 400 faces, the performance of our algorithm degrades

gracefully. Note that the views which are not connected to the

root subgraph are connected among themselves, forming one

or more subgraphs. In such a case, only one arc per subgraph

is needed to register them to the solution hypergraph.

5.2 Robustness to the Required Number of Tensors
per View

It is desirable to represent each view with a minimum

number of tensors for computational efficiency. Therefore,

we investigated the minimum required number of tensors

per view for a successful multiview correspondence. We

performed this experiment on the same data set used in

Section 5.1 while keeping their resolution constant at

400 faces per view. The number of tensors per view nt
was varied from 100 to 400 and our hypergraph algorithm

was used to automatically register the views. Fig. 9 (column

two) shows the number of nodes correctly registered to the

root node of the root subgraph as a function of nt. Note that

our algorithm reaches 98 percent performance at only

400 tensors per view. Below this value, the performance of

our algorithm degrades gracefully.

5.3 Robustness to Noise

The range images of the five objects in Fig. 7, second row, were
acquired with the Minolta Vivid scanner and seemingly
contained some inherent noise as well as many outlier points
(see Fig. 7). Nonetheless, these views were still correctly
registered by our multiview correspondence algorithm. To
further test the robustness of our algorithm, we introduced
additional Gaussian noise in these range images along the
scanner viewing direction (Fig. 10). The spatial resolution of
the range images of the Angel was 1:4 cm, whereas that of the
remaining data set was 0:7 cm. The average size (mean D) of
the Angel was 120:7 cm, whereas that of the remaining objects
was 58:8 cm. Next, these views were converted into our
tensor representation at 400 faces per view and 400 tensors
per view. Our hypergraph algorithm was then used for
multiview correspondence between the unordered views of
each object. Fig. 9 (column three) shows the performance of
our algorithm as a function of increasing Gaussian noise.
Note that the performance of our algorithm is almost
unaffected by noise up to � ¼ 0:7. Any further increase in
the noise level degrades the performance of our algorithm;
however, the algorithm does not catastrophically fail.

5.4 Robustness to the Number of Views

These experiments were performed on the views of the Isis,
Hasi, Dinopet, and Hip as the number of views was
comparatively large in their case. The views were converted
into our tensor representation at 400 faces per view and
300 tensors per view. The results are reported in Fig. 11. They
represent the total number of tensors that had to be matched
to register the views versus the number of input views. This

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1591

Fig. 9. (a) Individual and (b) combined performance of our multiview correspondence algorithm.

criterion was chosen in order to compare different variants of
our multiview correspondence algorithm with an exhaustive
search, in which case, the total number of tensor pairs � that
must be matched is given by � ¼ CN

2 n
2
t (where C stands for

combinations and nt is the number of tensors per view, nt ¼
300 in this experiment). All three variants of our multiview
correspondence algorithm show a significant improvement
compared to the exhaustive search. The hypergraph algo-
rithm, however, is the most efficient, with an average
improvement factor of 301.5 over the exhaustive search. The
improvement factor of the connected graph algorithm was
172.9, whereas that of the index table-based algorithm [29]
was only 12.4.

6 THE 3D MODEL REPRESENTATION AND MODEL

LIBRARY (MODULES F AND G)

The model library was built by reconstructing 3D models of
free-form objects from their partial views using our auto-
matic algorithm (Fig. 1). This library was then augmented by
available 3D models and CAD models, resulting in a model
library of 50 objects (Fig. 12). The use of CAD models becomes
mandatory when the object to be recognized is unavailable
for scanning. However, CAD models generally contain
internal details that are irrelevant to our recognition
algorithm. Therefore, we generated synthetic views of each
CAD model from 62 uniformly distributed viewing direc-
tions and merged them again using VripPack [38] to form a
seamless 3D model which was comprised of only the visible
(external) surface of the CAD model.

Each library model was aligned with its principal axes and
scaled so that its mean x; y; z dimension equals 100 mm. This
made the recognition task more challenging as it is relatively
difficult to differentiate between objects of the same size. Our
recognition algorithm is not scale invariant (alike the spin
images [22]) and can differentiate between similar objects
having different scales. To this point, all the 3D models were
uniformly sampled since their surfaces were reconstructed
with the marching cubes algorithm [26] (using VripPack [38]).
In most cases, a 3D model does not require the same high level
of detail throughout its surface. Therefore, the rescaled

models were decimated for performance reasons at a quadric
error of 0.1 [16]. As a result, the library models ended up with
different resolutions ranging from 1:4 to 3:0 mm.

The simplified 3D models were then represented with
tensors (Section 2.1). However, it was not feasible to construct
tensors using all the vertices of a model since the average
number of vertices per model was 8,000. Therefore, we
selected seed vertices on each model by decimating it once
more at a quadric error of 30 [16] to get a lower resolution
mesh and then selecting the nearest vertices of the original
3D model to the vertices of the lower resolution mesh. The
seed vertices are then paired according to the constraints
discussed in Section 2.1 as well as the following additional
constraints: An upper bound is placed on the angle�d between
the normals of a pair of vertices, i.e., 5o < �d < 60�, in order to
increase the chances of both vertices in any pair being visible
from a wide range of viewing directions.2 Moreover, while
calculating the tensors, only those triangular faces whose
normals make an angle of less than 90 degrees with the z-axis
are considered. This ensures that the triangular faces from the
back side of the 3D model (which are not visible from the
z-axis viewing direction) are not included in the tensor
computation. Finally, nt (the number of tensors per model) is
increased to 2,000 in the case of full 3D models because they
have more surface area compared to their single views.
Increasing the value ofnt also improves the online recognition
time. The size of each tensor was 15� 15� 15 and the size of
each bin was 5 mm. The size of the tensor was increased
to achieve higher discriminating capability required for
3D object recognition.

Fig. 12 shows our 3D model library,, which is diverse in the
sense that it contains a wide variety of 3D models, including
free-form objects (e.g., animals) and CAD objects (e.g.,
vehicles). Some models are very similar, e.g., 37 and 38.
Moreover, models 17, 19, and 31 have missing surfaces at their
bottoms because they were reconstructed from insufficient
views.

1592 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 11. Comparison of the exhaustive search and the three variants of our multiview correspondence algorithm. Note: The vertical scales are
logarithmic.

2. Pairing of a vertex from the front of the model to a vertex on its back,
for example, is not useful for recognition as these vertices are not visible
from any single viewing direction.

Fig. 10. Example views of the five objects after adding Gaussian noise with (a) � ¼ 0:7 cm and (b) � ¼ 1:4 cm.

7 THREE-DIMENSIONAL OBJECT RECOGNITION

ALGORITHM

7.1 Scene Representation (Module H)

The input to our 3D object recognition and segmentation
algorithm is a range image (point cloud) of a scene and the
output is the recognition and segmentation of library objects
in the scene. Fig. 13 shows the flow chart of the recognition
and segmentation algorithm. Module H of Fig. 13 shows the
flow chart of the scene representation. The input range
image is first converted into a triangular mesh Ms. Ms is
decimated at a quadric error of 0.1 [16] to get an optimal
mesh M0

s. M0
s is decimated [16] at a quadric error of 30 to get

a low resolution mesh M00
s . M00

s is used to select seed vertices
in M0

s which are then paired according to the distance and
angle constraints (Section 2.1) to get a list of valid vertex
pairs Lv. The same values of distance constraint (dmin to
dmax) and angle constraint (5o to 60o) must be used for the
pairing of vertices during offline 3D model representation
and during online representation of a scene. Next, a pair is
randomly selected from Lv and used to construct a tensor Ts

from M0
s (Section 2.1).

7.2 Matching (Module J)

A pair of vertices can be ordered in two ways each resulting

in a different coordinate basis. These coordinate bases are

rotated 180 degrees on their z-axis with respect to each

other. As a result, we calculate Ts for only one ordering of

the vertices and rotate Ts by 180 degrees on its z-axis to get

the tensor for the second ordering of the vertices. Each Ts is

matched with the model library using the multiview

matching scheme (Section 3.3). The result of each matching

is a list of candidate tuples (a, b) (where a and b are the

index numbers of a model and tensor, respectively) sorted

according to their degree of similarity S (4) with Ts. Each

candidate tuple is a hypothesis that model a is present in

the scene. The hypothesis is verified (Section 7.3) in a

hierarchical fashion, keeping the most expensive verifica-

tion step to the last. A confidence measure is calculated and

continuously updated at each verification step. For a

hypothesis to be finally accepted, it must pass each

individual verification step as well as maintain an overall

acceptable value of confidence.

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1593

Fig. 12. Three-dimensional model library.

7.3 Hypothesis Verification (Module K)

During the first verification step, model a from the library is
transformed to the scene mesh M0

s by aligning the
coordinate frame of its tensor b with the coordinate frame
of Ts (Section 3.4). This transformation is refined with the
ICP algorithm [4] and the surface match between the model
and the scene is verified. If the model aligns accurately with
a portion of the scene surface, the algorithm proceeds to the
next stage. Otherwise, the next tuple is selected for
verification. The accuracy of alignment � is calculated
according to (9).

� ¼ corresponding vertices of model with M0
s

total vertices of model
; ð9Þ

f1 ¼ �S: ð10Þ

In (9), a model vertex and M0
s vertex are considered

corresponding if their mutual distance is less than twice the
resolution of the model. In (10), f1 is the confidence measure
and S is the similarity value (4) between Ts and the tensor b.
The confidence value f1 of a hypothesis is proportional to the
similarity measure between the tensors and the accuracy of
alignment resulting from the tensors. A hypothesis is
allowed to proceed to the next verification step only if �
and f1 satisfy their respective minimum required thresholds.
Selecting a high threshold for � will reject a correct
hypothesis for objects which are highly occluded in the
scene, whereas a low value will allow many incorrect
hypotheses to proceed to the next verification step. In our
experiments, we selected two thresholds for �. For values of
� < t�1, all hypotheses were rejected and, for values of
� > t�2, all hypotheses were allowed to proceed to the next
step. Hypothesis with values of t�1 < � < t�2 were allowed to
proceed to next step only if f1 > tf1. We selected t�1 ¼ 0:15,
t�2 ¼ 0:3, and tf1 ¼ 20 on the basis of over 650 verification
trials using a labeled independent training set.

The second and third steps verify if the active space of
the sensor is violated by the transformed model [10]. Two

types of active space violations can occur: First, when part
of the model is transformed into a region of the scene where
the sensor does not detect any surface even though that
region is visible to the sensor; second, when part of the
model is transformed into the space between the sensor and
a detected surface of the scene. The first type of active space
violation can occur when the model is misaligned with the
scene and in the presence of sensor errors (e.g., failure of the
sensor to detect black surfaces, a common problem with
structured light-based sensors). However, the severity of
this error is generally high in the case of a misaligned
model. The second type of violation, however, can only
occur due to a misaligned model. A misaligned model is an
indication that the hypothesis is incorrect and should
therefore be rejected. The following paragraphs give the
details of the second and third verification steps.

The second verification step proceeds as follows: The
transformation resulting from the first step is used to align the
model to the high resolution scene Ms. Next, all the model
vertices that are not visible to the sensor are removed. Such
vertices include those which fall outside the field of view of
the sensor and those which are self-occluded or occluded by
other objects. The registration between the remaining model
vertices and Ms is refined with ICP [4] and the alignment �2

between the two is calculated using (11).

�2 ¼
corresponding vertices of model with Ms

total visible vertices of model
: ð11Þ

Ideally, �2 should be equal to 1:0 for a correct hypothesis
since every visible model vertex should find a correspond-
ing vertex in the scene. In practice, �2 varies between 0.8
and 1.0 for a correct hypothesis. A low value of �2 indicates
that the hypothesis is incorrect. However, a high value does
not guarantee that the hypothesis is correct. Therefore, if
�2 < 0:8, the hypothesis is rejected. Otherwise, the visible
vertices of the model and the vertices of Ms are mapped to
the sensor’s retinal plane (e.g., the xy plane by eliminating

1594 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 13. Flow chart of the 3D object recognition and segmentation algorithm. Modules H, J, K, and L of Fig. 1 have been expanded in this flow chart.

their z components, in case of an orthographic sensor).
Next, the 2D distances between the model vertices and their
respective nearest scene vertices are calculated. These
distances are sorted and the longest n1 distances are used
to calculate the active space violation measure � using (12).

� ¼ 1

2n1ds

Xn
i¼n�n1

di; ð12Þ

f2 ¼
�2

�
: ð13Þ

In (12), n is the number of remaining (visible) vertices of
the model, n1 ¼ roundðn=10Þ, ds is the resolution of the
scene, and di is the distance of the ith vertex of the model
from its nearest vertex in the scene. Division by ds is
performed to make � scale independent and, hence, a
constant threshold can be selected for it. The value of � is
high when the active space of the sensor is violated by the
transformed model. In (13), f2 is the new confidence
measure. The hypothesis is allowed to proceed to the next
verification step only if � < 1:0 and f2 > 1:0.

The final verification step proceeds as follows: The
model and Ms are placed in a z-buffer and the number of
vertices of the model that lie in the space between the sensor
and Ms are calculated. Ideally, no model vertex should
come in between the sensor and the scene for a correct
hypothesis. However, due to sensor errors few vertices may
still be found. We selected a conservative threshold of 30 for
this verification step. A hypothesis was finally accepted if
fewer than 30 vertices of the model were found between the
sensor and the scene. Otherwise, it was rejected. If the
hypothesis fails verification, the next tuple with the highest
value of S is selected for verification. If none of the
hypotheses (tuples) can pass all the verification steps,
another pair of vertices is randomly selected from Lv to
compute a tensor and the whole process of matching is
repeated (see Fig. 13, Module K).

7.4 Recognition and Segmentation (Module L)

An accepted hypothesis (tuple) results in the identification,
pose estimation, and segmentation of the library object (a of
the tuple) in the scene Ms. These recognition and segmenta-
tion results are saved. The vertices corresponding to the
3D model are removed from the decimated mesh of the scene
(M0

s) as well as from the list of valid vertex pairsLv, which not
only improves the efficiency of the algorithm but also
increases the odds for the recognition of the remaining scene
objects.

After the recognition and segmentation of an object from
the scene, another vertex pair is randomly selected from the
remaining list of valid vertex pairs Lv to compute a tensor
and the matching process is repeated. This process con-
tinues until the complete scene has been segmented or no
further library objects are present in the scene. There are two
stopping conditions for the algorithm: first, when all the
vertex pairs in Lv have been tested; second, when no library
object is recognized after consecutively matching V number
of tensors (V was set to 50 in all our experiments). In this
case, the algorithm stops only if no hypothesis can make it to
the computation of confidence measure f2. Otherwise, the
hypothesis with the maximum value of f2 is accepted and
the algorithm proceeds.

Note that, after the recognition and segmentation of one or
more objects in the scene, further tensors Ts are calculated

using the segmented scenes so that the vertices, as well as the
surface meshes of the recognized objects, are not reconsid-
ered. However, during the active space violation tests, the
original unsegmented scene Ms is taken into consideration.

8 THREE-DIMENSIONAL OBJECT RECOGNITION

AND SEGMENTATION RESULTS

We performed our experiments on synthetic and real data.
Results using synthetic data are presented in Sections 8.1 to
8.3. Results using real data and comparison with the spin
image recognition [22] are presented in Section 8.4.

8.1 Scenes with a Single Object and No Clutter

In the first experiment, a single view of each library object
(Fig. 12) was used for its recognition. The scenes contained
only self-occlusions and no clutter. This experiment was
repeated for 10 different views (range images) of each
library object, resulting in 500 recognition trials. Ten views
of each model were synthetically generated using VripPack
[38]. Each time, a model was rendered from an arbitrary
viewing direction and its visible surface was reconstructed
on a volumetric grid using the marching cubes algorithm
[26]. This resulted in a completely different triangular mesh
of the model’s visible surface. Note that some of these views
suffered from a high level of self-occlusion. The confusion
matrix of these 500 recognition trials is reported in Fig. 14.
The darkness of each pixel (number of times recognized) is
written on its top unless it is 10 or zero. There were no True
Negatives (TN) in this experiment since every scene
contained a library object. As a result, False Negatives
(FN) were calculated using (14).

FN ¼ Recognition Trials� TP� FP: ð14Þ

The overall recognition (TP True Positive) rate was
95 percent. The FP rate was 1.2 percent and the FN rate was
3.8 percent. Notice that the lowest number of TPs occurred
for models 21 and 28. Both of these models have complex
details causing a lot of discontinuities in their meshes,
which was the main reason for their high FN rate. The
seven FP are: Models 2, 20, 25, 45, 46, 38, 40 recognized as
models 36, 25, 45, 25, 20, 37, 41, respectively. Notice that

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1595

Fig. 14. Confusion matrix of 10 recognition trials per object. Recognition

rate (TP) was 95 percent. FP = 1.2 percent and FN = 3.8 percent.

every object (under high self-occlusion) was confused with
another closely resembling object, e.g., 38 was confused
with 37 which is visually similar especially when viewed
from the top.

8.2 Scenes with Multiple Objects in the Presence of
Clutter and Occlusions

In this experiment, we placed 3D models from the library of
Fig. 12 with other nonlibrary models using Scanalyze [38] and
reconstructed the visible surface of the scene from a single
viewing direction using the approach described in Section 8.1,
only this time, there were multiple 3D models (including
library and nonlibrary models) occluding each other and
causing clutter. The scene was then fed to our algorithm for
the recognition and segmentation of library objects. Note that,
in each trial, our recognition algorithm had to recognize any
of the 50 library objects in a scene. This also included multiple
occurrences of a particular library object. No prior knowledge
was provided to the algorithm regarding which library
objects were present in a scene. The purpose of our tests, as
opposed to the spin images recognition [22] (see Section 8.4
for details), was not to detect the presence or absence of a
prespecified object in a scene. Rather, it was to identify all
objects that are present in a scene without any prior
knowledge.

Fig. 15 illustrates the recognition of a single library object
each in two different scenes. In each case, the object is
occluded by nonlibrary objects. Fig. 16 shows the trace of
our 3D object recognition and segmentation algorithm. The
scenes in Fig. 16 contain four library objects. Each time an
object is recognized in the scene, its 3D model from the
library is registered to the scene and its relevant surface is
segmented and removed, hence reducing the amount of
clutter in the scene. Notice that the segmentation by
recognition is very accurate and is also capable of segment-
ing discontinuous surfaces belonging to the same object
(Fig. 16f). Once all the library objects have been recognized,
their complete models are placed at their appropriate pose
in the original scene (Figs. 16k and 16l).

Fig. 17 shows additional recognition and segmentation
results. In Fig. 17d, object 37 and 38 were correctly
recognized despite their high similarity. In Fig. 17b, object 1
is present four times, out of which three have been
correctly recognized. This shows that our algorithm can
differentiate between multiple instances of the same object
in the scene.3 Some of the objects are correctly recognized
despite being highly occluded, for example, Fig. 17e
object 4, Fig. 17a object 17, and Fig. 17c object 11. Object 2
could not be correctly recognized in Figs. 17c and 17f

because of its high level of occlusion (87 percent accroding
to (15)).

We tested 60 synthetic scenes containing multiple objects
causing clutter and occlusions, and quantized the recogni-
tion results based on the level of occlusion and clutter for
each object. For comparison reasons, we defined occlusion
according to Johnson and Hebert’s formula4 [22] as given in
(15). However, a more appropriate definition was used for
clutter, as given in (16).

occlusion ¼ 1�model surface patch area in scene

total model surface area
; ð15Þ

clutter ¼ 1�model surface patch area in scene

total surface area of scene
: ð16Þ

Since our algorithm can also segment the recognized
models from the scene, the value of occlusion and clutter was
automatically calculated for correctly recognized objects.
Those objects which could not be automatically recognized,
due to a high value of occlusion were manually segmented in
order to calculate their occlusion and clutter values. Note that
false positives can occur on library or nonlibrary objects. In
eithercase,we calculate theocclusion of the falselyrecognized
object using (15). The results of the recognition trials on
60 cluttered scenes are compiled in Figs. 18a and 18b with
respect to occlusion and clutter, respectively. From Fig. 18a, it
is clear that our algorithm has an average recognition rate
(true positives) of 95 percent with up to 78 percent occlusion.
For higher than 78 percent occlusions, the recognition rate
drops rapidly. The small rise in the false positives occurred as
a result of similarities between certain models in the presence
of occlusions. For example, model 38 was confused with 37
and model 40 was confused with 41. These false positives are
not unexpected as these models are highly similar and it is
hard to differentiate between them from certain viewpoints.
From the behavior of the false positives curve, one can
conclude that the false positives rate is a function of both
occlusions and similarities between the library objects. At
lower levels of occlusion, objects with high similarities can
also be differentiated. Objects with low similarities, on the
other hand, can be differentiated even at greater levels of
occlusions. The false negatives in Fig. 18a start occurring at
72 percent occlusion and rapidly grow beyond 78 percent
occlusion. Note that there are no false negatives below
72 percent occlusion.

The performance of our recognition algorithm with
respect to clutter (Fig. 18b) indicates that our algorithm is

1596 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 15. Recognition of single occluded objects in cluttered scenes. The recognized objects have been superimposed by their 3D models (4 and 9)
from the library.

3. The same scene was tested with the spin images algorithm [22] which
could detect only a single occurrence of the object.

4. The occlusion reported in Fig. 18a, Fig. 19b, and [22] should be

normalized to occlusion�50
0:5 to measure occlusion relative to the maximally

possible visible surface area of an object.

basically independent of the amount of clutter present in the
scene. The drop in the recognition rate beyond 90 percent
clutter was mainly because all the objects which fell into this
category were highly occluded.

8.3 Efficiency with Respect to Time

The time required by our algorithm for the recognition and
segmentation of a cluttered scene is a function of many
variables, including the size of the scene, the number of
objects in the scene, the number of tensors matched before an
object is recognized, and, finally, to some extent, the shape of
the objects. If a scene contains objects which have local surface
patches that are similar in 3D to the local surface patches of
many library objects, their tensors would result in compara-
tively more candidate tuples which must be verified. This
does not result in false positives but only adds a little to the
computation time. In our experiments, the average time taken
by a Matlab implementation of our algorithm to recognize
and segment a single object in a cluttered scene was less than
2 minutes on a 2.4 GHz Pentium IV machine with 1 GB
memory. We believe that this time will be significantly
reduced with a C++ implementation.

The performance of our algorithm was tested by varying
the library size and keeping the remaining parameters
constant, i.e., each time the same scene was used and a
single tensor was matched. Fig. 18c shows the recognition
and segmentation time measured on a real clock for a single
library object in a cluttered scene (Fig. 17b) versus the

library size. The recognition time is not affected since our
algorithm uses a hash table to perform a simultaneous one-
to-many matching rather than a one-to-one matching (in
which case, the matching time is linear with respect to the
number of library models). Note that the recognition time of
the final system may still slightly increase since a large
number of candidate tensors need to be kept until the
verification stage. An unavoidable consequence of an
extremely large library size is that the chances of tensors
from different objects being nearly similar are likely to
increase causing collisions in the hash table. Therefore, as
the hash table gets denser, the recognition time will begin to
increase, though sublinearly with the library size.

8.4 Tests on Real Data and Comparison with Spin
Image Recognition

We compared the performance of our algorithm with the spin
image recognition algorithm [22] using real data acquired
with the Minolta Vivid 910 scanner, which has a resolution of
640� 480. The library of Fig. 12 was augmented by five more
models of real objects increasing the library size to 55 models.
Fig. 19a shows the 2D images of the five objects and their
3D models. We intentionally scanned the rhino from
insufficient viewpoints5 so that its 3D model contains large
holesafter reconstruction.Thiswasdone totest the robustness

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1597

Fig. 16. Trace of our recognition algorithm. The objects (no. 1, 4, 26, and 35) are recognized one by one and segmented and finally superimposed by
their complete 3D models (green) in (k). The recognized scene is shown from a different angle in (l).

5. The rhino was scanned from the sides and front only. It was not
scanned from the top, bottom, and back.

of our algorithm and the spin images algorithm [22] to
incomplete 3D models. As a consequence of insufficient
scanning, the views of the rhino were required to be manually
registered as they did not have sufficient overlap. However,
the remaining four objects were scanned from sufficient
viewpoints and their 3D models were constructed using our
automatic 3D modeling algorithm. All five models were then
represented with tensors and added to the model library as
described in Section 4. The hash table was also updated
accordingly. The ability of our system to learn and add new
models without any major modification to the overall model
library is a great advantage.

Next, 50 real scenes were generated by randomly placing
four or five of the real objects together in a scene. Each scene
was scanned from a single viewing direction by the Minolta
scanner generating a dense point cloud and was fed to our
algorithm for recognition and segmentation. Note that these
scenes only contained the five real objects, but our algorithm

was effectively trying to identify any of the 55 library objects
during recognition. Fig. 20 shows six example scenes and
their corresponding recognition results. As expected, our
recognition and segmentation algorithm performs equally
well on real data. Note that the tight placement of the objects
has resulted in complex scenes and yet the recognition and
segmentation are quite accurate.

For comparison, we tested the same 50 real scenes on the
spin image recognition algorithm [22] (code available at [28]).
For this purpose, the model library was processed to make the
resolution of all the models equal. Moreover, recognition
without compression was used so that the spin images
algorithm can operate at its peak performance in terms of
recognition rate [22]. After compiling the results, we observed
that the spin images algorithm completely failed to recognize
the rhino (Fig. 19a) in any of the 50 scenes. This was possibly
because the 3D model of the rhino contained large holes due
to insufficient scanning. These holes, however, did not cause

1598 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 17. Recognition and segmentation results of our algorithm on six scenes containing clutter and occlusions.

any problem for our recognition algorithm as the rhino was
correctly recognized in 24 out of 28 scenes (the rhino was
more than 85 percent occluded in the four scenes where it
could not be recognized). Therefore, we excluded the rhino
from the recognition results of both algorithms and per-
formed their quantitative comparison using the remaining
results. Fig. 19b shows the recognition rates of the two
algorithms as a function of occlusion. Our algorithm outper-
forms the spin images by maintaining a higher recognition
rate as the amount of occlusion increases. The average
recognition rate of our algorithm was 96.6 percent and that
of the spin images was 87.8 percent with up to 84 percent
occlusion. The recognition rates versus clutter are not
reported as both algorithms are independent of the amount
of clutter in scenes (Fig. 18b and [22]).

It is important to point out that, in [22], the spin images
algorithm was searching for a single known object at a time6

(see [22] Section 4.2). Therefore, the experiments in [22] can be
termed as target detection, which is a much simpler task
compared to recognition. Note that the recognition rate of our
algorithm reported in Fig. 19b is higher than the target
detection rate of the spin images reported in [22] as well.
Another important point to note is that the recognition results
of our algorithm are based on matching a maximum of
250 tensors per scene whereas those reported for the spin

images (Fig. 19b) are based on matching an average of
4,000 spin images per scene. The average recognition time per
scene of the spin images [22] was approximately 480 minutes,
whereas that of our algorithm (including the segmentation of
the scene) was less than 6 minutes on the same machine (using
the same real scenes) despite the fact that the spin images
algorithm was implemented in C++ and our algorithm was
implemented in Matlab. The recognition time of the spin
images linearly increases with the library size [22], whereas
our algorithm’s recognition time is comparatively less
sensitive to the library size (Section 8.3).

9 CONCLUSION

We presented a fully automatic 3D model-based free-form
object recognition and segmentation algorithm. Our major
contribution in the offline 3D modeling phase is a multiview
correspondence algorithm which automatically registers
unordered views of an object with OðNÞ complexity. We
demonstrated the robustness of this algorithm to numerous
important criteria. Our major contribution in the online phase
is an efficient algorithm for automatic 3D object recognition
and segmentation in the presence of clutter and occlusions.
Experiments were performed on synthetic and real data and
an overall recognition rate of 95 percent was achieved.
Comparison with the spin image recognition algorithm [22]
revealed that our algorithm is superior both in terms of
recognition rate and efficiency. We also demonstrated that

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1599

Fig. 18. Recognition rate of our algorithm versus (a) occlusion and (b) clutter. (c) Recognition time of our algorithm based on matching a single tensor
from the scene versus the number of models in the library.

Fig. 19. (a) Two-dimensional images of real objects (first row) and their corresponding 3D models (second row). (b) Recognition rate versus
occlusion (on 50 real scenes) showing that our algorithm performed better than the spin images [22].

6. This was confirmed through communication with A.E. Johnson,
author in [22].

our algorithm’s recognition time is not sensitive to the size of
the model library as opposed to the spin images [22].

ACKNOWLEDGMENTS

The authors would like to acknowledge: CMU for providing
range data (model 23 and 30 of Fig. 12), 3D model (13), the
mesh reduction, and the spin image recognition code;
Stanford University for providing 3D models (8, 9, 10, and
14), VripPack and Scanalyze softwares; the OSU for provid-
ing range data (model 17, 19, 31, and 44) [5]; Universität
Stuttgart for providing range data (model 1 to 7, 11, 12, 15, 20,
and 22); Cyberware for providing 3D models (16, 17, and 24);
and Princeton University for providing 3D models (21, 25 to
29, 32 to 43, 45 to 50). They would also like to thank Ashley
Chew for his help in executing the spin images code and Mark
Walters for providing access to the Minolta scanner. They are
also grateful to A.E. Johnson for responding to their queries
regarding the spin images. This research is sponsored by ARC
grant DP0344338.

REFERENCES

[1] A.P. Ashbrook, R.B. Fisher, C. Robertson, and N. Werghi, “Finding
Surface Correspondence for Object Recognition and Registration
Using Pairwise Geometric Histograms,” Int’l J. Pattern Recognition
and Artificial Intelligence, vol. 2, pp. 674-686, 1998.

[2] S. Avidan, Y. Moses, and Y. Moses, “Probabilistic Multi-View
Correspondence in a Distributed Setting with No Central Server,”
Proc. European Conf. Computer Vision, vol. 4, pp. 428-441, 2004.

[3] P. Besl, Machine Vision for Three-Dimensional Scenes. pp. 25-71,
Academic Press, 1990.

[4] P.J. Besl and N.D. McKay, “Reconstruction of Real-World Objects
via Simultaneous Registration and Robust Combination of Multi-
ple Range Images,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239-256, Feb. 1992.

[5] R.J. Campbell and P.J. Flynn, “A WWW-Accessible 3D Image and
Model Database for Computer Vision Research,” Empirical
Evaluation Methods in Computer Vision, pp. 148-154, 1998.

[6] R.J. Campbell and P.J. Flynn, “A Survey of Free-Form Object
Representation and Recognition Techniques,” Computer Vision and
Understanding, vol. 81, no. 2, pp. 166-210, 2001.

[7] O. Carmichael, D. Huber, and M. Hebert, “Large Data Sets and
Confusing Scenes in 3-D Surface Matching and Recognition,” Proc.
Int’l Conf. 3-D Digital Imaging and Modeling, pp. 358-367, 1999.

[8] C. Chen, Y. Hung, and J. Cheng, “RANSAC-Based DARCES: A
New Approach to Fast Automatic Registration of Partially
Overlapping Range Images,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 21, no. 11, pp. 1229-1234, Nov. 1991.

[9] C.S. Chua and R. Jarvis, “3D Free-Form Surface Registration and
Object Recognition,” Int’l J. Computer Vision, vol. 17, pp. 77-99, 1996.

[10] C.S. Chua and R. Jarvis, “Point Signatures: A New Representation
for 3D Object Recognition,” Int’l J. Computer Vision, vol. 25, no. 1,
pp. 63-85, 1997.

[11] B. Curless and M. Levoy, “A Volumetric Method for Building
Complex Models from Range Images,” Proc. SIGGRAPH Conf.,
pp. 303-312, 1996.

[12] R. Donamukkala, D. Huber, A. Kapuria, and M. Hebert,
“Automatic Class Selection and Prototyping for 3-D Object
Classification,” Proc. Int’l Conf. 3-D Digital Imaging and Modeling,
pp. 64-71, 2005.

[13] C. Dorai and A.K. Jain, “COSMOS: A Representation Scheme for
3D Free-Form Objects,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 10, pp. 1115-1130, Oct. 1997.

1600 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 20. Recognition results of our algorithm on six real scenes. These scenes do not have any background due of the limited range of the Minolta

scanner. All objects are correctly recognized except for the chicken in (d) and the chef in (e).

[14] P.J. Flynn and A.K. Jain, “CAD-Based Computer Vision: From
CAD Models to Relational Graphs,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 13, no. 2, pp. 114-132, Feb. 1991.

[15] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics-
Principles and Practice. Addison-Wesley, 1990.

[16] M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. SIGGRAPH Conf., pp. 209-216, 1997.

[17] M. Hebert, K. Ikeuchi, and H. Delingette, “A Spherical Representa-
tion for Recognition of Free-Form Surfaces,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 17, no. 7, pp. 681-690, July 1995.

[18] G. Hetzel, B. Leibe, P. Levi, and B. Schiele, “3D Object Recognition
from Range Images Using Local Feature Histograms,” Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 394-399,
2001.

[19] K. Higuchi, M. Hebert, and K. Ikeuchi, “Building 3-D Models from
Unregistered Range Images,” Proc. IEEE Int’l Conf. Robotics and
Automation, vol. 3, pp. 2248-2253, 1994.

[20] D. Huber and M. Hebert, “3D Modeling Using a Statistical Sensor
Model and Stochastic Search,” Proc. IEEE Int’l Conf. Computer
Vision and Pattern Recognition, pp. 858-865, 2003.

[21] D. Huber, A. Kapuria, R. Donamukkala, and M. Hebert, “Parts-
Based 3D Object Recognition,” Proc. IEEE Int’l Conf. Computer
Vision and Pattern Recognition, vol. 2, pp. 82-89, 2004.

[22] A.E. Johnson and M. Hebert, “Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 21, no. 5, pp. 674-686, May 1999.

[23] T. Joshi, J. Ponce, B. Vijayakumar, and D. Kriegman, “Hot Curves
for Modeling and Recognition of Smooth Curved 3D Objects,”
Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,
pp. 876-880, 1994.

[24] S.B. Kang and K. Ikeuchi, “The Complex EGI: A New Representa-
tion for 3D Pose Determination,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 15, pp. 707-721, 1993.

[25] Y. Lamdan and H. Wolfson, “Geometric Hashing: A General and
Efficient Model-Based Recognitin Scheme,” Proc. IEEE Int’l Conf.
Computer Vision, pp. 238-249, 1988.

[26] W. Lorensen and H. Cline, “A High Resolution 3D Surface
Construction Algorithm,” Proc. SIGGRAPH Conf., pp. 163-169, 1987.

[27] G. Mamic and M. Bennamoun, “Representation and Recognition of
Free-Form Objects,” Digital Signal Processing, vol. 12, pp. 47-76, 2002.

[28] “Mesh Tool Box,” Vision and Mobile Robotics Laboratory, Carnegie
Mellon Univ., http://www-2.cs.cmu.edu/~vmr/software/mesh
toolbox/downloads.html, 2004.

[29] A.S. Mian, M. Bennamoun, and R.A. Owens, “From Unordered
Range Images to 3D Models: A Fully Automatic Multiview
Correspondence Algorithm,” Theory and Practice of Computer
Graphics, pp. 162-166, 2004.

[30] A.S. Mian, M. Bennamoun, and R.A. Owens, “Automatic Multiview
Coarse Registration of Range Images for 3D Modeling,” Proc. IEEE
Conf. Cybernetics and Intelligent Systems, vol. 1, pp. 158-163, 2004.

[31] A.S. Mian, M. Bennamoun, and R.A. Owens, “A Novel Algorithm
for Automatic 3D Model-Based Free-Form Object Recognition,”
Proc. IEEE Int’l Conf. Systems, Man, and Cybernetics, vol. 7, pp. 6348-
6353, 2004.

[32] A.S. Mian, M. Bennamoun, and R.A. Owens, “3D Recognition and
Segmentation of Objects in Cluttered Scenes,” Proc. IEEE Workshop
Applications of Computer Vision, vol. 1, pp. 8-13, 2005.

[33] A.S. Mian, M. Bennamoun, and R.A. Owens, “Automatic
Correspondence for 3D Modeling: An Extensive Review,” Int’l J.
Shape Modeling, 2005.

[34] A.S. Mian, M. Bennamoun, and R.A. Owens, “A Novel Repre-
sentation and Feature Matching Algorithm for Automatic Pair-
wise Registration of Range Images,” Int’l J. Computer Vision,
vol. 66, no. 1, pp. 19-40, 2006.

[35] T. Oishi, R. Sagawa, A. Nakazawa, R. Kurazume, and K. Ikeuchi,
“Parallel Alignment of a Large Number of Range Images,” Proc.
Int’l Conf. 3-D Digital Imaging and Modeling, pp. 195-202, 2003.

[36] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP
Algorithm,” Proc. Int’l Conf. 3-D Digital Imaging and Modeling,
pp. 145-152, 2001.

[37] Y. Shan, B. Matei, H.S. Sawhney, R. Kumar, D. Huber, and M.
Hebert, “Linear Model Hashing and Batch RANSAC for Rapid
and Accurate Object Recognition,” Proc. IEEE Int’l Conf. Computer
Vision and Pattern Recognition, vol. 2, pp. 121-128, 2004.

[38] “Software Packages,” Stanford Computer Graphics Laboratory,
http://graphics.stanford.edu/software/, 2005.

[39] F. Stein and G. Medioni, “Structural Indexing: Efficient 3-D Object
Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 125-145, Feb. 1992.

[40] J. Wand and F.S. Cohen, “Part II: 3-D Object Recognition and
Shape Estimation from Image Contours Using B-Splines, Shape
Invariant Matching, and Neural Network,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, no. 1, pp. 13-23, Jan. 1994.

[41] J. Williams and M. Bennamoun, “Simultaneous Registration of
Multiple Corresponding Point Sets,” Computer Vision and Under-
standing, vol. 81, no. 1, pp. 117-142, 2001.

[42] J.V. Wyngaerd, L.V. Gool, R. Koth, and M. Proesmans, “Invariant-
Based Registration of Surface Patches,” Proc. IEEE Int’l Conf.
Computer Vision, vol. 1, pp. 301-306, 1999.

Ajmal S. Mian received the BE degree in
avionics from the College of Aeronautical En-
gineering, NED University, Pakistan in 1993. He
worked on a number of engineering and R&D
projects related to radar data processing, com-
munication jamming, and antijamming techni-
ques before he was nominated for a masters
degree. He received the MS degree in informa-
tion security from the National University of
Sciences and Technology, Pakistan, in 2003

and was awarded a PhD scholarship. He received the PhD degree in
computer science from The University of Western Australia in 2006. He
is currently a research fellow at the School of Computer Science and
Software Engineering at The University of Western Australia. His
research interests include computer vision, pattern recognition, multi-
modal biometrics, and information security.

Mohammed Bennamoun received the MSc
degree from Queen’s University, Kingston, Ca-
nada, in the area of control theory, and the PhD
degree from Queen’s/QUT in Brisbane, Austra-
lia, in the area of computer vision. He lectured in
robotics at Queen’s, and then joined QUT in
1993 as an associate lecturer. He then became
a lecturer in 1996 and a senior lecturer in 1998 at
QUT. In January 2003, he joined the School of
Computer Science and Software Engineering at

The University of Western Australia as an associate professor. He was
also the director of a research center from 1998-2002. He is the
coauthor of the book Object Recognition: Fundamentals and Case
Studies (Springer-Verlag, 2001). He has published more than 100 journal
and conference publications. He served as a guest editor for a couple of
special issues in international journals, such as the International Journal
of Pattern Recognition and Artificial Intelligence. He was selected to give
conference tutorials at the European Conference on Computer Vision
2002 and the International Conference on Acoustics Speech and Signal
Processing (ICASSP) in 2003. He organized several special sessions
for conferences; the latest was for the IEEE International Conference in
Image Processing (ICIP) held in Singapore in 2004. He also contributed
in the organization of many local and international conferences. His
areas of interest include control theory, robotics, obstacle avoidance,
object recognition, artificial neural networks, signal/image processing,
and computer vision.

Robyn Owens received the BSc (Hons) degree
in mathematics from the University of Western
Australia (UWA) in 1974 before going to Oxford
University to complete the MSc degree (1976)
and the PhD degree (1980), also in mathe-
matics. She spent three years in Paris at
l’Université de Paris-Sud, Orsay, continuing
research in mathematical analysis before return-
ing to UWA in 1982 to work as a research
mathematician on the Automated Sheep Shear-

ing Project. Since then, she has lectured in the Mathematics Department
and, in 1986, joined the Department of Computer Science and Software
Engineering after a six month visiting lectureship at the University of
California, Berkeley. She is currently the dean of Graduate Studies at
UWA. Her recent work has been on feature detection in visual images
and shape measurement and representation.

MIAN ET AL.: THREE-DIMENSIONAL MODEL-BASED OBJECT RECOGNITION AND SEGMENTATION IN CLUTTERED SCENES 1601

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

