
Hardware/Software Partitioning of Operating Systems: Focus on Deadlock
Detection and Avoidance

Jaehwan John Lee
�

and Vincent John Mooney III*
* � �

Center for Research on Embedded Systems and Technology
*Associate Professor,

�
School of Electrical and Computer Engineering

*Adjunct Associate Professor, College of Computing
Georgia Institute of Technology, Atlanta, Georgia, U.S.A.�

jaehwan, mooney � @ece.gatech.edu

Abstract

As MultiProcessor System-on-a-Chip (MPSoC) designs be-
come more common, hardware/software codesign engineers
face new challenges involving operating system integration.
To speed up operating system/MPSoC codesign, this article
presents recent research in hardware/software partitioning of
a Real-Time Operating System (RTOS). After a brief overview
of the � hardware/software RTOS design framework, we focus
on new results in deadlock detection and avoidance. Among
various configured RTOS/MPSoC designs in this research, we
show an example where a system with the Deadlock Detection
hardware Unit (DDU) achieves a 46% speed-up of application
execution time over a system with deadlock detection in soft-
ware. Similarly, we show another example where a system with
the Deadlock Avoidance hardware Unit (DAU) not only auto-
matically avoids deadlock but also achieves a 44% speed-up
of application execution time over a system avoiding deadlock
in software; furthermore, in our example, the DAU only con-
sumes .005% of the MPSoC total chip area.

Keywords
Hardware/Software Partitioning, Real-Time Operating Sys-

tem, Deadlock Detection, Deadlock Avoidance

1 Introduction

Primitive operating systems were first introduced in the
1960s in order to relieve programmers of common tasks such
as those involving Input/Output (I/O). Gradually, schedul-
ing and management of multiple jobs/programs became the
purview of an Operating System (OS). Many fundamental ad-
vances, such as multithreading and multiprocessor support,
have propelled both large companies and small into the fore-
front of software design.

Recent trends in chip design press the need for more ad-
vanced operating systems for System-on-a-Chip (SoC). How-
ever, unlike earlier trends where the focus was on scientific

computing, today’s SoC designs tend to be driven more by the
needs of embedded computing. While it is hard to state exactly
what constitutes embedded computing, it is safe to say that
the needs of embedded computing form a superset of scientific
computing. For example, real-time behavior is critical in many
embedded platforms due to close interaction with non-humans,
e.g., rapidly moving mechanical parts. In fact, the Application-
Specific Integrated Circuits (ASICs) preceding SoC did not in-
tegrate multiple processors with custom hardware, but instead
were almost exclusively digital logic specialized to a particular
task and hence very timing predictable and exact. Therefore,
we predict that advances in operating systems for SoC focus-
ing on Real-Time Operating System (RTOS) design provide a
more natural evolution for chip design as well as being com-
patible with real-time systems.

Furthermore, thanks to the recent trends in the technologies
of MultiProcessor System-on-a-Chip (MPSoC) and reconfig-
urable chips, many hardware Intellectual Property (IP) cores
that implement software algorithms have been developed to
speed up computation and utilize low cost hardware. How-
ever, fully exploiting these innovative hardware IP cores have
had many difficulties such as interfacing IP cores to a specific
system, modifying IP cores to fulfill requirements of a system
under consideration, porting device drivers and finally integrat-
ing both IP cores and software seamlessly. Much work of in-
terfacing, modifying and/or porting IP cores and device drivers
has relied on human resources. Hardware/software codesign
frameworks can help reduce the burden on designers.

This article focuses on such research in the design of op-
erating systems, especially RTOSes. We have implemented
and upgraded the � hardware/software RTOS/MPSoC design
framework (shown in Figure 1). Since we have already de-
scribed our approach in [1, 2, 3, 4], in this article we first briefly
explain the � framework and then focus more on an exposi-
tion of deadlock issues. We believe deadlock issues are on the
horizon due to the rapid evolution in MPSoC technology and
the introduction of many innovative IP cores. We predict that
future MPSoC designs will have hundreds of processors and

1

Application

SoCDMMU

module top...

Top.v

#ifdef mutex..

user.h

gcc ...

Makefile

SoCDDU

SoCLC

Components

VCS or ModelSim

HW IP cores and

Library

HW

Excutable
Compile
Top.v

XRAY

Seamless CVE

SW

Excutable

Results

& Link
Compile
SW

int i,j,k;

#include "api.h"

Configured IP components

Description

GUI
(See Figures
3,4,5 and 6)

Hardware
Modules

Software
RTOS

IP

Info.

RTOS

Hardware

Hardware

Info.

Info.

RTOS

Software

Hardware

Compiled

Figure 1 The � hardware/software RTOS design framework.

resources (such as custom FFT hardware) all in a single chip;
thus, systems will handle much more functionality, enabling
a much higher level of concurrency and requiring many more
deadlines to be satisfied. As a result, we predict there will be
resource sharing problems among the many processors desir-
ing the resources, which may result in deadlock more often
than designers might realize.

The remainder of this article is organized as follows. Sec-
tion 2 first presents our target MPSoC architecture and then
explains the � hardware/software RTOS design framework ver-
sion 2.0 including a description of two hardware RTOS com-
ponents: a “lock” cache and a dynamic memory allocator.
Section 3 motivates deadlock issues and provides background
about deadlock problems. Section 4 focuses on new soft-
ware/hardware solutions to such deadlock problems. Section 5
addresses experimental setup and shows various comparison
results with applications that demonstrate how the � frame-
work could impact hardware/software partitioning in current
and future RTOS/MPSoC designs. Finally, Section 6 addresses
conclusions.

2 Hardware/software RTOS design

2.1 RTOS/MPSoC target

Figure 2 shows our primary target MPSoC consisting of
multiple processing elements with L1 caches, a large L2 mem-
ory, and multiple hardware IP components with essential inter-
faces such as a memory controller, an arbiter and a bus system.
The target also has a shared memory multiprocessor RTOS
(Atalanta [5] developed at the Georgia Institute of Technol-
ogy), which is small and configurable. The code of Atalanta
RTOS version 0.3 resides in shared memory, and all processing
elements (PEs) execute the same RTOS code and share kernel
structures as well as the states of all processes and resources.
Atalanta supports priority scheduling with priority inheritance
as well as round-robin; task management such as task creation,
suspension and resumption; various Inter Process Communica-

tion (IPC) primitives such as semaphores, mutexes, mailboxes,
queues and events; memory management; and interrupts. As
shown in Figure 2, hardware IP cores can be either integrated
into the reconfigurable logic or implemented as custom logic.
Besides, specialized IP cores such as DSP processors and wire-
less interface cores can also be integrated into the chip.

logic
reconfigurable

arbiter
memory

memory
controller

I/O buffers

multiple
DSP’s

wireless
interface

logic
IP cores

L1

L1 PE4

L1

L1

L1 PE1

PE2

PE3

PE5

PE: Processing Element, IP: Intellectual Property

custom

RTOS
HW/SW

L2 cache

memory

Figure 2 Future MPSoC.

2.2 The � Framework

The � hardware/software RTOS generation framework for
MPSoC (shown in Figure 1) was proposed to enable au-
tomatic generation of different mixes of predesigned hard-
ware/software RTOS components that fit the target MPSoC the
user is designing so that RTOS/MPSoC designers can decide
their critical decisions earlier in the design phase of their tar-
get product(s) [1, 2, 3, 4]. Thus, the � framework helps the
user explore which configuration is most suitable for the user’s
target and application or set of applications. In other words,
the � framework is specifically designed to provide a solution
to rapid RTOS/MPSoC (both hardware and software) design
space exploration so that the user can easily and quickly find
a few optimal RTOS/MPSoC architectures that are most suit-
able to his or her design goals. The � framework generates
a configured RTOS/MPSoC design that is simulatable on a
hardware/software cosimulation environment after the gener-
ated design is compiled. Hardware designs are described in a

2

Hardware Description Language (HDL) such as Verilog. Soft-
ware designs could be described in any language although we
have only used C in our designs.

From the initial implementation [1, 2, 3, 4], we have ex-
tended the � framework to include parameterized generators of
hardware IP components (i.e., automatically configurable to fit
a desired target architecture) as well as the generation of var-
ious types of bus systems. This section gives an overview of
parameterized generators for a customized RTOS/MPSoC de-
sign including a bus configurator, a dynamic memory manage-
ment unit generator and a custom “lock” cache generator, and
explains such available IP components briefly. Many low-level
details – e.g., details of the bus system generation – are not
repeated in this article but instead are available in referenced
works.

Figure 3 GUI of the � framework.

Figure 4 Bus system
configuration.

Figure 5 Bus subsystem
memory configuration.

Figure 3 shows graphical user interface for the � framework
version 2.0, which now integrates four parameterized genera-
tors we have and generates an RTOS/MPSoC system.

Here we summarize each generator briefly. For more in-
formation, please see specific references. When a user wants
to create his or her own specific bus system, the user clicks
“Bus configuration” (shown at the top right of Figure 3), which

brings up a pop-up window (shown in Figure 4), in which
the user specifies address and data bus widths as well as de-
tailed bus topology for each subsystem in subsequent windows
(shown in Figures 5 and 6) for a system with a hierarchical bus
structure. After the appropriate inputs are entered, the tool will
generate a user specified bus system with the specified hierar-
chy. Further details about bus system generation are described
in [7, 8, 9].

Figure 6 Bus subsystem configuration.

At the bottom of Figure 3, there are several options for
“Hardware RTOS Components”: the SoC Lock Cache (So-
CLC), multiple deadlock detection/avoidance solutions, and
the SoC Dynamic Memory Management Unit (SoCDMMU).
The details of these hardware RTOS components will be de-
scribed in Sections 2.3, 3 and 4.

In addition to selecting hardware RTOS components, the �
framework version 2.0 can also manipulate the size and type
of each RTOS component by use of input parameters. For in-
stance, when the user wants to include SoCLC, he or she can
also specify the number of small locks and the number of long
locks (equivalent to semaphores) according to the expected re-
quirements for his or her specific target (or goal). Detailed
parameterized SoCLC generation is discussed in [10, 11].

For the SoCDMMU IP component, the user can specify the
number of memory blocks (available for dynamic allocation in
the system) and other parameters, and then the GUI tool will
generate a user specified SoCDMMU. Details regarding pa-
rameterized SoCDMMU generation are addressed in [12, 13].

We briefly describe our new approach to an HDL top file
generation process in the following example.

Example 1 As shown in Figure 7, the GUI tool generates a Verilog
top file according to the description of a user specified system with
hardware IP components. For instance, a user selects a system hav-
ing three PEs and an SoCLC for eight small locks and eight long locks.
The generation process starts with a description of a system having
an SoCLC (i.e., LockCache description) in the description library. The
LockCache description lists modules necessary to build a system con-
taining an SoCLC, such as PEs, L2 memory, a memory controller, a
bus arbiter, an interrupt controller and an SoCLC. The Verilog top file
generator, which we call Archi gen, writes all instantiation code for each
module in the list of the LockCache description to a file. Archi gen also
includes multiple instantiation code of the same type IP with distinct
identification numbers since some modules such as PEs need to be
instantiated multiple times. Then, Archi gen writes necessary wires de-
scribed in the LockCache description, and then writes initialization rou-
tines necessary to execute simulation. Later by compiling Top.v, a spec-
ified target hardware architecture will be ready for exploration [2].

3

(iii) compile and instantiations

initial begin ... end;
...
wire bg_bar;
wire br_bar;

wire addr;

(ii) add wires and initial states

(i) instantiation code generation

hwlock soclc (addr, data, ...);
arbiter arb (br_bar, bg_bar);
cpu_mpc755 cpu1 (...);
clock clock_gen (SYSCLK);

Desc LockCache

...arbiter
memory controller
cpu_mpc755,

enddesc

Library
Description

...

wire data;

PEs 1,2,3
SoCLC

Arbiter1,2,3

Clock

Memory

Figure 7 Top file generation of the � framework.

2.3 Hardware RTOS components

This subsection briefly mentions two available hardware IP
components presented previously: SoCLC and SoCDMMU.

2.3.1 SoCLC

Synchronization has always been a critical issue in multipro-
cessor systems. As multiprocessors execute a multitasking ap-
plication on top of an RTOS, any important shared data struc-
ture, also called a Critical Section (CS), may be accessed for
inter-process communication and synchronization events oc-
curring among the tasks/processors in the system.

Previous work has shown that the System-on-a-Chip Lock
Cache (SoCLC [11, 14, 15]), which is a specialized custom
hardware unit realizing effective lock-based synchronization
for a multiprocessor shared-memory SoC as shown in Fig-
ure 8, reduces on-chip memory traffic, provides a fair and fast
lock hand-off, simplifies software, increases the real-time pre-
dictability of the system and improves performance as well.

Figure 8 SoCLC.

Akgul et al. extended the SoCLC mechanism with a prior-
ity inheritance support implemented in hardware [16]. Prior-
ity inheritance provides a higher level of real-time guarantees
for synchronizing application tasks. The authors present a so-
lution to the priority inversion problem in the context of an

MPSoC by integrating an immediate priority ceiling protocol
(IPCP) [17] implemented in hardware. The approach also pro-
vides higher performance and better predictability for real-time
applications running on an MPSoC.

Experimental results indicate that the SoCLC hardware
mechanism with priority inheritance achieves a 75% speed-up
in lock delay, a 79% speed-up in lock latency [16]. The cost in
terms of additional hardware area for the SoCLC with priority
inheritance is approximately 10,000 NAND2 gates (in TSMC
�
�����

chip fabrication technology).

2.3.2 SoCDMMU

The System-on-a-Chip Dynamic Memory Management Unit
(SoCDMMU) shown in Figure 9 is a hardware unit that al-
lows a fast and deterministic way to dynamically allocate/de-
allocate global (L2) memory among PEs [18]. The
SoCDMMU is able to convert the PE address (virtual address)
to a physical address. The memory mapped address or I/O port
to which the SoCDMMU is mapped is used to send commands
to the SoCDMMU (writing data to the port or memory-mapped
location) and to receive the results of the command execution
(reading from the port or memory-mapped location).

PE1
Address

Converter

Command 1/Status 1

PEn
Address

Converter

BASIC
SoCDMMU MUX

C
M

D

R
E

G

Request
SchedulerControl Unit

S
T

A
T

U
S

R

E
G

C

M
D

R

E
G

S

T
A

T
U

S

R
E

G

C
M

D

R
E

G

S
T

A
T

U
S

R

E
G

Command 2/Status 2

Command n/Status n

R
d

 1

W
r

1

R
d

 n

W
r

n

. . .

To Global
Memory Buses

PE
1
 Memory Bus

PE
2
 Memory Bus

PE
n
 Memory Bus

.

.

.

.

.

.

.

.

.

.

Figure 9 SoCDMMU.

As shown in [13, 18], the SoCDMMU achieves a 4.4X over-
all speed-up in memory management during the application
transition time when compared to conventional memory allo-
cation/deallocation techniques, i.e., malloc() and free(). The
SoCDMMU is synthesizable and has been integrated into a
system example including porting SoCDMMU functionality to
an RTOS (so that the user can access SoCDMMU functional-

4

ity using standard software memory management APIs) [18].
Also, the SoCDMMU-crossbar (Xbar) switch Generator (DX-
Gt [12]) can configure and optimize the SoCDMMU to suit
a specific system (e.g., for a particular memory configuration
and number of PEs). In this way, DX-Gt automates the cus-
tomization and the generation of the hardware memory man-
agement functionalities.

3 Background and prior work for deadlock

In this section we motivate the development of deadlock re-
lated software and hardware IP components and then introduce
definitions, assumptions and prior work related to our deadlock
research.

3.1 Motivation for the design of deadlock related
hardware components

In most current embedded systems in use today, deadlock is
not a critical issue due to the use of only a few (e.g., two or less)
processors and a couple of custom hardware resources (e.g., di-
rect memory access hardware plus a video decoder). However,
in the coming years future chips may have five to twenty (or
more) processors and ten to a hundred resources all in a single
chip. This is the way we predict MPSoC will rapidly evolve.
Even in the platform design area, Xilinx already has been able
to include multiple PowerPC processors in the Virtex-II Pro
FPGA [19]. Given current technology trends, we predict that
MPSoC designers and users are going to start facing deadlock
problems more and more often. That is, deadlock problems are
on the horizon.

How can we efficiently and timely cope with deadlock prob-
lems in such an MPSoC? Although MPSoC may produce dead-
lock problems, MPSoC architecture can also provide efficient
hardware solutions to deadlock.

We currently have a couple of solutions, the Deadlock De-
tection Unit (DDU) and the Deadlock Avoidance Unit (DAU),
that improve the reliability and correctness of applications run-
ning on an MPSoC under an RTOS. Of course, adding a cen-
tralized module on MPSoC may lead to a bottleneck. However,
since resource allocation and deallocation are preferably man-
aged by an operating system (which already implies some level
of centralized operation), adding hardware can potentially re-
duce the burden on software rather than becoming a bottleneck.

3.2 Background

3.2.1 Definitions

Definitions of deadlock, livelock and avoidance in our context
can be stated as follows.

Definition 1 A system has a deadlock if and only if the sys-
tem has a set of processes, each of which is blocked (e.g., pre-
empted), waiting for requirements that can never be satisfied.

Definition 2 Livelock is a situation where a request for a re-
source is repeatedly denied and possibly never accepted be-
cause of the unavailability of the resource, resulting in a stalled
process, while the resource is made available for other pro-
cess(es) which make progress.

Definition 3 Deadlock Avoidance is a way of dealing with
deadlock where resource usage is dynamically controlled not
to reach deadlock (i.e., on the fly, resource usage is controlled
to ensure that there can never be deadlock).

In addition, we define two kinds of deadlock: request dead-
lock (R-dl) and grant deadlock (G-dl).

Definition 4 For a given system, if a request from a process
directly causes the system to have a deadlock at that moment,
then we denote this case as request deadlock or R-dl.

A request deadlock (R-dl) example is described in Sec-
tion 5.4.3.

Definition 5 For a given system, if the grant of a resource to
a process directly causes the system to have a deadlock at that
moment, then we denote this case as grant deadlock or G-dl.

A grant deadlock (G-dl) example is described in Sec-
tion 5.4.1. Please note that we differentiate between R-dl
and G-dl because our deadlock avoidance algorithm in Sec-
tion 4.3.1 requires the distinction to be made. The distinction
is required because some actions can only be taken for either
R-dl or G-dl; e.g., for G-dl it turns out that perhaps deadlock
can be avoided by granting the released resource to a lower
priority process.

3.2.2 System model in view of deadlock

To address deadlock issues, we first show a modified MPSoC
from Figure 2 in the following example.

Example 2 A future Request-Grant MPSoC
We introduce the device shown in Figure 10 as a particular MPSoC
example. This MPSoC consists of four Processing Elements (PEs) and
four resources: a Video and Image capturing interface (VI), an MPEG
encoder/decoder, a DSP and a Wireless Interface (WI), which we refer
to as ��� , ��� , ��� and ��� , respectively, as shown in Figure 10(b). The
MPSoC also contains memory, a memory controller and a DAU. In the
figure, we assume that each PE has only one active process; i.e., each
process � � , � � , � � and � � , shown in Figure 10(b), runs on PE1, PE2,
PE3 and PE4, respectively. In the current state, resource � � is granted
to process �	� , which in turn requests �
� . In the meantime, �
� is granted
to � � , which requests � � , while � � is granted to process � � . The DAU
in Figure 10 receives all requests and releases, decides whether or not
the request or grant can cause a deadlock and then permits the request
or grant only if no deadlock results.

We consider this kind of request-grant system with many re-
sources and processes shown in Figure 10 as our system model
in view of deadlock. Based on our system model, we now in-
troduce some underlying assumptions related to our deadlock
research in such MPSoCs.

5

Wireless Interface (WI)

Memory Controller

(VI) (DSP) (WI)(MPEG)

q q

p p p p1 2 3 4

q q1 2 3 4

PEn: Processing Element n

(a) An SoC functional diagram (b) The corresponding RAG

B
U

S

PE3

PE2

PE1

PE4

Video Interface (VI)

DSP

MPEG

Memory

DAU

Figure 10 A practical MPSoC realization.

3.2.3 Assumptions

Assumption 1 In our system model, there exists a fixed num-
ber of resources.

Assumption 2 A resource can be released only by the process
holding it.

Assumption 3 The RTOS or other software provides a mech-
anism that can ask a process to release any resource(s) the
process currently holds.

3.3 Prior work in deadlock research

3.3.1 Overview of prior deadlock research

Researchers have put tremendous efforts into deadlock re-
search, three well-known areas of which are deadlock detec-
tion, prevention and avoidance [20, 21, 24, 31]. Among them,
deadlock detection provides more freedom for a system since
deadlock detection does not typically restrict the behavior of
a system, facilitating full concurrency. Deadlock detection,
however, usually requires a recovery once a deadlock is de-
tected. In contrast, deadlock prevention prevents a system
from reaching deadlock by typically restraining request orders
to resources in advance, implying restrictions on concurrency.
One such method is the priority ceiling protocol (PCP [17]),
which is only a solution for a single processor system, though.
Another method is the collective request method, which how-
ever tends to cause resource under-utilization as well as pro-
cess starvation. Deadlock avoidance, by contrast, generally sits
in-between; that is, deadlock avoidance normally gives more
freedom with less restrictions than deadlock prevention [31].
Deadlock avoidance essentially requires knowledge about the
maximum necessary resource requirements for all processes
in a system, which unfortunately makes the implementation
of deadlock avoidance difficult in real systems with dynamic
workloads.

3.3.2 Deadlock detection

All software deadlock detection algorithms known to the au-
thors to date have a run-time complexity of at least

���������
	
,

where
�

is the number of resources and
�

is the number of
processes. In 1970, Shoshani et al. proposed an

�����������	

run-time complexity detection algorithm [20], and about two
years later, Holt proposed an

����������	
algorithm to detect

a knot that tells whether deadlock exists or not [21]. Both of
the aforementioned algorithms (of Shoshani et al. and of Holt)
are based on a Resource Allocation Graph (RAG) representa-
tion. Leibfried proposed a method of describing a system state
using an adjacency matrix representation and a corresponding
scheme that detects deadlock with matrix multiplications but
with a run-time complexity of

��������	
[22]. Kim and Koh pro-

posed an algorithm with
����������	

time for “detection prepa-
ration”; thus an overall time for detecting deadlock (starting
from a system description that just came into existence, e.g.,
due to multiple grants and requests occurring within a particu-
lar time or clock cycle) of at least

����������	
[23].

3.3.3 Deadlock avoidance

A traditional well-known deadlock avoidance algorithm is the
Banker’s algorithm [24]. The algorithm requires each process
to declare the maximum requirement (claim) of each resource
it will ever need. In general, deadlock avoidance is more ex-
pensive than deadlock detection and may be impractical be-
cause of the following disadvantages: (i) an avoidance algo-
rithm must be executed for every request prior to granting a
resource, (ii) deadlock avoidance tends to restrict resource uti-
lization, which may degrade normal system performance, and
(iii) the maximum resource requirements (and thus requests)
might not be known in advance [24, 25].

In 1990, Belik proposed a deadlock avoidance tech-
nique [26] in which a path matrix representation is used to
detect a potential deadlock before the actual allocation of re-
sources. However, Belik’s method requires

����������	
time

complexity for updating the path matrix in releasing or allo-
cating a resource and thus an overall complexity for avoiding
deadlock of

����������	
, where

�
and
�

are the numbers of re-
sources and processes, respectively. Furthermore, Belik does
not mention any solution to livelock although livelock is a pos-
sible consequence of his deadlock avoidance algorithm.

4 New approaches to deadlock problems

In this section, we describe in detail deadlock related soft-
ware and hardware IP components, i.e., a parallel deadlock de-
tection algorithm, a deadlock avoidance algorithm, the Dead-
lock Detection hardware Unit (DDU) and the Deadlock Avoid-
ance hardware Unit (DAU).

6

4.1 Introduction

All of the algorithms referenced in Section 3 assume an exe-
cution paradigm of one instruction or operation at a time. With
a custom hardware implementation of a deadlock algorithm,
however, parallelism can be exploited.

Detection of deadlock is extremely important since any re-
quest for or grant of a resource might result in deadlock. In-
voking software deadlock detection on every resource alloca-
tion event would cost too much computational power; thus,
using a software implementation of deadlock detection and/or
avoidance would perhaps be impractical in terms of the perfor-
mance cost. A promising way of solving deadlock problems
with small compute power is to implement deadlock detection
and/or avoidance in hardware.

To handle this possibility, Parallel Deadlock Detection Al-
gorithm (PDDA) and its hardware implementation (DDU)
have been proposed [27]. Utilizing the DDU, a novel Deadlock
Avoidance Algorithm and its hardware implementation (DAU)
have recently been proposed [28].

The DDU has been proven to have a run-time complexity
of
������� � ����� ��	 	

using custom hardware [29]. The DDU ma-
nipulates a simple boolean representation of the types of each
edge: the request edge of a process requesting a resource, the
grant edge of a resource granted to a process, or no activity
(neither a request nor a grant) [29]. Not only that, but by im-
plementing PDDA with a small amount of hardware, the de-
signed deadlock detection unit hardly affects system perfor-
mance (and potentially has no negative impact whatsoever) yet
provides the basis for an enhanced deadlock detection method-
ology.

The disadvantages (i), (ii) and (iii) mentioned in Sec-
tion 3.3.3 unfortunately make the implementation of deadlock
avoidance difficult in real systems. Our novel approach to
mixing deadlock detection and avoidance (thus, not requiring
advanced, a priori knowledge of resource requirements) con-
tributes to easier adaptation of deadlock avoidance in an MP-
SoC by accommodating both maximum freedom (i.e., maxi-
mum concurrency of requests and grants depending on a par-
ticular execution trace) with the advantage of deadlock avoid-
ance.

The DAU avoids deadlock by not allowing any grant or re-
quest that leads to a deadlock. In case of livelock resulting
from attempts to avoid deadlock, the DAU asks one of the pro-
cesses involved in the livelock to release resource(s) so that the
livelock can also be resolved.

Although many deadlock avoidance approaches have been
introduced so far [24, 25, 26, 30], to the best of our knowledge,
there has been no prior work in a hardware implementation of
deadlock avoidance. The DAU not only provides a solution
to both deadlock and livelock but is also up to 312X faster
than an equivalent software solution (please see the details in
Section 5).

In the next few sections, we will further describe these new
approaches in more detail.

4.2 New deadlock detection methodology

4.2.1 Parallel Deadlock Detection Algorithm

Parallel Deadlock Detection Algorithm (PDDA) dramatically
reduces deadlock detection time by mapping a Resource Allo-
cation Graph (RAG [31], its state is denoted as ����� [29]) into
a matrix 	
��� that will have exactly the same request and grant
edges as the RAG has but with another notation for each edge.
We define a RAG matrix and a terminal reduction sequence
before introducing PDDA that exploits the terminal reduction
sequence.

Definition 6 The purpose of this definition is to define matri-
ces that correspond to graph � , system � � and state � ��� [29].
A RAG matrix 	 	 	 is a matrix mapped from a RAG � and rep-
resents an arbitrary system with processes and resources. A
system matrix 	 �	
�	 � is defined as a matrix representation of a
particular system � � , where the rows (fixed in size) of matrix	 � represent the fixed set � of resource nodes of � � , and the
columns (fixed in size) of matrix 	 � represent the fixed set �
of process nodes of � � . We denote another notation of this re-
lationship as 	������� for the sake of simplicity. A state matrix	
���	 ���	
��� is a matrix that represents a particular system state ����� ,
i.e., 	����������� . Edges � (consisting of request edges � and
grant edges � [29]) in system state ����� are mapped into the
corresponding array elements using the following rule:

Given ��������� �"! from ����� ,
	
���	 ���	
��� =

#$$
%
&(')' &*' � � � &*',+& ' & � � � & +- - &(.0/ -&213'4&51 � � � &516+

7988
: ,

for all rows ;=<?>@< � and for all columns ;=<�AB< � :&(.0/ ��C .,D@/ (or simply ‘g’),
if there exists a grant edge

�FE . �FG / 	IH �&(.0/ �?J /FKL. (or simply ‘r’),
if there exists a request edge

��G / �ME . 	BH �& .0/ �ON .0/ (‘0’ or a blank space), otherwise.
where

E . and
G / represent a process and a resource,

respectively.

Example 3 State Matrix Representation
The system state PRQ S shown on the upper half of Figure 11 can be
represented in the matrix form shown on the bottom half of Figure 11.

Based on a state matrix 	��� , instead of finding an exact
cycle (as other algorithms do, e.g., see Chapter 4 of [31]),
PDDA removes edges that have nothing to do with cycles; this
edge removal process is called a terminal reduction sequence.
After the terminal reduction sequence (e.g., using T edge re-
moval steps) removes all reducible edges (resulting in an “irre-
ducible” matrix 	 �FU �MV�W), if edges still exist, then deadlock(s)
exist. On the other hand, if 	 ��� has been completely reduced,
no deadlock exists. Intuitively, removing reducible edges cor-
responds to the best sequence of operations a particular process

7

2

6

5

4

6

5

1

P3

q

p
2

q

p

q

p
1

q

q

p

q
3

4
p

=ijγ

	 ���	
���	 ��� =

��� � ��� ��� ��	 ��
 ��� ��
� � � �� � �� 	 ��
 � � �� � � �� � �

Figure 11 Matrix representation example

can execute to help unblock other processes. Before describing
the terminal reduction sequence in detail, we define what we
mean by “terminal” in different uses.

Definition 7 A terminal row is a row J . (which corresponds
to resource

E .) of matrix 	��� such that either (i) all non-zero
entries � & . /�����ON , ; < A�� < � ! are request entries J /�� K . with
at least one request entry (i.e., one or more request entries and
no grant entry in the row) or (ii) one entry & .0/�� , ; < A�� < � ,
is a grant C .,D /�� with the rest of the entries � & . / , ;�< A=< � ,A ��?A � ! equal to zero.

Definition 8 A terminal column is a column � / (which cor-
responds to process

G /) of matrix 	 ��� such that either (i) all
non-zero entries � &(.0/ �� N , ; < > < � ! are request entries
with at least one request entry (i.e., one or more request entries
and no grant entry in the column) or (ii) all non-zero entries� &(.0/ �� N , ;
< >
< � ! are grant entries with at least one
grant entry.

Definition 9 Given state matrix 	 ��� , function � � � 	 ��� 	 pro-
duces the on-set (i.e., true set) of all terminal rows.

Definition 10 Given state matrix 	��� , function ��� � 	
��� 	 pro-
duces the on-set of all terminal columns.

Definition 11 An edge that belongs to either a terminal row
or a terminal column is called a terminal edge.

The next definition defines one step of a terminal reduction
sequence.

Definition 12 A terminal reduction step � � � is a unary operator
� - 	 ���! " 	 � U �MV ' (i.e., 	 � U �MV ' �#� � 	 ���)), where � calcu-
lates all terminal edges and returns 	 � U �MV ' such that all the
terminal edges found are removed by setting the terminal en-
tries found to zero; thus, the next iteration 	 �FU �MV ' will start
with equal or fewer total edges as compared to 	 ��� .

Note that the removals of terminal edges in 	 ��� enable the
discovery of new terminal nodes in 	 � U �MV ' . Any new terminal
nodes that appear were connect nodes in 	 ��� that were con-
nected to terminal nodes in 	��� .

$&% ' (�) (+* (+, (.- (+/ (+0
1) 2 31 * 31 , 31 - 2 3 21 / 3 21 0 3 2

(a)

4 4 45�65�65�6

$&% 7 '98:) (�) (+* (+, (.- (+/ (+0
1) 2 31 *1 ,1 - 2 3 21 / 31 0

(b)

Figure 12 One terminal reduction step (;) example

Example 4 One Step of Terminal Reduction (;)
Figure 12 (b) shows a new matrix < Q>= S+? � after a matrix reduction

step ; ; ; , defined in Definition 12, is applied to < Q S shown in (a). In matrix< Q S , since � � and � � are terminal rows by Definition 7, all the edges
in their rows are terminal edges.Therefore, all the edges in rows � �
and � � can be removed. Likewise, � � , � � and �A@ are terminal columns
by Definition 8; hence, all edges in these columns can be removed,
resulting in matrix < Q>= S+? � .

Definition 13 A terminal reduction sequence B B B , applicable
to a matrix 	 ��� , is a sequence of T terminal reduction steps
� (recall that � is a terminal reduction step) such that (i)	 ���C " 	 �FU �MV ' "EDFDGDH " 	 �FU �MV�W ; (ii) 	 � U �MV5W is irreducible
(i.e., � � 	 �FU �MV�W 	 � 	 � U �MV�W); and (iii) � 	 �FU �MVJI � N
<LKNM T !
are all unique and reducible. A terminal reduction sequence
is called a complete reduction when the sequence of terminal
reduction steps corresponding to B results in 	 � U �MV5W such that
the irreducible state matrix 	�FU �MV�W contains all zero entries
(i.e., no edges). A terminal reduction sequence is called an in-
complete reduction when B returns 	 �FU �MV�W with at least one
non-zero entry (i.e., at least one edge).

We now introduce two algorithms, one being a terminal re-
duction sequence algorithm that implements the terminal re-
duction sequence B , the other being PDDA, which employs the
terminal reduction sequence algorithm.

Algorithm 1 is an implementation of the terminal reduction
sequence B B B shown in Definition 13. We summarize the
operation of Algorithm 1. Lines 2 and 3 of Algorithm 1
initialize two variables: iterator T and matrix 	 � /�O � that is
initially a copy of input matrix 	 ��� . Line 5 finds all terminal
rows, and line 6 finds all terminal columns. Line 7 checks
whether 	 � /�O � has more terminal edges, and, if no more
terminal edges exist, the current iteration ends. Lines 8 and 9
remove all terminal edges found at the current iteration. On
the whole, the terminal reduction step � � 	 ��� 	 of Definition 12
corresponds to lines 5-9 of Algorithm 1, which iterates until
the matrix 	 � /�O � becomes irreducible; this iteration process
implements the terminal reduction sequence B B B . Note that, in
hardware implementation, lines 5 and 6 of Algorithm 1 are
executed at the same time in parallel, as are lines 8 and 9.

8

Algorithm 1 Terminal Reduction Algorithm
1 � (< Q S) �
2 k = 0;
3 < Q������	� < Q S ;
4 while (1) �

/* parallel on */
5 calculate
 ��� < Q������� ; /* determine all terminal rows */
6 calculate
�� � < Q������� ; /* determine all terminal columns */

/* parallel off */
7 if ((
 � � < Q���������	���) and (
 � � < Q���������	���)) break;

/* if no more terminals */
/* parallel on */

8 for each terminal row ������
 ��� < Q������� ,
set all entries in row � � to zero;

9 for each terminal column � � ��
 � � < Q������� ,
set all entries in column � � to zero;

/* parallel off */
10 k = k + 1;
11
12 < Q>= S�?�! � < Q������ ;
13 return < Q>= S�?�! ;
14
Algorithm 2 Parallel Deadlock Detection Algorithm
(PDDA)
1 Deadlock Detect Matrix � P�Q S�"�
2 <$# % �'& (� #) � � (, where
3 % �+* �-,-,-, �/. and & �+* �-,0,1, �/2
4)3� � �4� , if 5 a request edge � � � � � � 6�87 � PRQ S9
5)3� � �4: , if 5 a grant edge � � � � � � ;�<7 � PRQ S�
6) � � �>= , otherwise.
7 < Q>= S�?�! �>� � < Q S� ; /* call Algorithm 1 */
8 if (< Q>= S�?�! �	� # ? () � /* matrix of all zeros */
9 return 0; /* no deadlock */
10 else �
11 return 1; /* deadlock detected */
12
13

We now summarize the operation of Algorithm 2. Lines 2-
6, given ����� , construct the corresponding matrix 	 ��� accord-
ing to Definition 6. Next, line 7 calls Algorithm 1 with ar-
gument 	��� . When Algorithm 1 is completed, lines 8-12 of
Algorithm 2 determine whether or not ����� has a deadlock by
considering returned matrix 	 �FU �MV�W : if 	 �FU �MV�W is empty, the
corresponding � ��� has no deadlock; otherwise, deadlock(s) ex-
ist. Finally, Algorithm 2 returns ‘1’ if the system state un-
der consideration has deadlock(s), or ‘0’ if no deadlock. Note
that Algorithm 2, which includes Algorithm 1, is referred to as
PDDA. Next, we present a simple example that shows opera-
tion results at each iteration of PDDA.

We have proven that PDDA detects deadlock if and only
if there exists a cycle in state ����� [29]. We have also proven
that our hardware implementation of Algorithm 1 completes its
computation in at most

� ��� � � ����� ��		@BA � ����� � � ����� ��	 	
steps, where

�
is the number of resources and

�
is the number

of processes [29].

4.2.2 Hardware implementation of PDDA: DDU

We here summarize the operation of PDDA in the hardware
point of view, i.e., how to parallelize PDDA to implement
in hardware (please see [29] for more information, which de-

scribes the sequence of DDU operations in great detail). As in-
troduced in the previous subsection, a given system state � ��� is
equivalently represented by a system state matrix 	 ��� (shown
in Equation 1) so that, based on 	 ��� , the DDU can perform
the sequence of operations shown in Algorithms 1 and 2 and
decide whether the given state has a deadlock or not.

	
���	 ���	
��� �
#$$$$
%
& 'M' � � � & ',/ � � � & ' +- - - - -& . ' � � � & . / � � � & . +- - - - -&513' � � � &21 / � � � &516+

798888
: �O	� /�O � (1)

where
�

is the number of resources and
�

is the number of
processes.

Each matrix element &*.0/ in 	 ��� represents one of the fol-
lowing: C .,D / (a grant edge), J /FKL. (a request edge) or N . / (no
edge). Since &(.0/ is ternary-valued, &(.0/ can be minimally de-
fined as a pair of two bits &(.0/ � � & � .0/ � & � . / 	 . If an entry &(.0/
is a grant edge C , bit & � .0/ is set to 0, and & � .0/ is set to 1; if an
entry & .0/ is a request edge J , bit & � .0/ is set to 1, and & � .0/ is
set to 0; otherwise, both bits & � .0/ and & � .0/ are set to 0. Hence,
an entry & .0/ can be only one of the following binary encod-
ings: 01 (a grant edge), 10 (a request edge) or 00 (no activity).
Thus, 	 � /�O � in line 3 of Algorithm 1 can be written as shown
in Equation 2.

	� /�O �	 � /�O �	
� /�O � �
#$$$$
%
� & � 'M' � & � ')' 	 � � �

� & � ',/ � & � ',/ 	 � � �
� & � ',+ � & � ',+ 	- - - - -

� & � . ' � & � . ' 	 � � �
� & � .0/ � & � .0/ 	 � � �

� & � . + � & � . + 	- - - - -
� & �13' � & � 13' 	 � � �

� & �1B/ � & � 1B/ 	 � � �
� & �1B+ � & � 1B+ 	

798888
:

(2)

Finding terminal rows and terminal columns, which corre-
sponds to lines 5 and 6 of Algorithm 1, requires three logical
operations performed in sequence: (i) Bit-Wise-Or (BWO), (ii)
eXclusive-OR (XOR), and (iii) OR. Two separate BWO oper-
ations, shown in Equation 3, take place through each row and
each column of 	 � /�O � , all in parallel at the same time at each
iteration in the DDU.

CED � �� /�O � �GF A � � & � � / � & � � / 	 �HF A � � 1I.KJ2' & � .0/ �
1I.0J5' & � .0/ 	

CLD � �� /�O � �MF > � � & �� . � & � � . 	 �HF > � � +I/'J5' & � . / �
+I/'J5' & � . / 	 (3)

where notation F means for all and notation
I

means Bit-
Wise-Or of elements.

Then, from the results of two BWO operations, the XOR
operations, shown in Equation 4, for each row and each column
occur all in parallel.

N � � �� /�O � �GF A �PO � / �GF A � � & � � /;Q & � � / 	N � � �� /�O � �HF > �PO � . �HF > � � & �� . Q & � � . 	 (4)

9

where Q denotes eXclusive-OR.
Next, the OR operation, shown in Equation 5, produces a ter-

mination condition (i.e., the reducibility test of matrix 	 � /�O � ,
which corresponds to line 7 in Algorithm 1) at each iteration.
That is, the termination condition represents whether a current
matrix is further reducible or not. If � � /�O � equals ‘1,’ mean-
ing that more terminal edge(s) exist, the iterations continue. If
the current matrix 	 � /�O � is irreducible (i.e., it has no terminal
edges), � � /�O � will become ‘0’; thus, further iterations would ac-
complish nothing. This irreducibility condition can be written
as

� � /�O � � �'O����4O�� 	 � � +I/'J2' O � / �
1I.KJ5' O � . 	 � (5)

Before finishing PDDA, one more important process re-
mains: deadlock detection, which requires two more parallel
logic operations. Equation 6 represents the existence of con-
nect nodes in each column and in each row, respectively, in-
volved in cycle(s).

����� �� /�O � �HF A �
	 � / �HF A � � & � � /�� & � � / 	���� �� /�O � �MF > ��	 � . �GF > � � & �� .�� & � � . 	 (6)

where � denotes Bit-Wise-And of elements.
Finally, Equation 7 produces the result of deadlock detec-

tion, which corresponds to lines 8-12 of Algorithm 2.

� � /�O � � ��	 � ��	 � 	 � � +I/'J5' 	 � / �
1I.KJ5' 	 � . 	 when � � /�O � �ON

(7)

4.2.3 Architecture of the Deadlock Detection Unit

The DDU consists of three parts as shown in Figure 13: matrix
cells, weight cells and a decide cell. Part 1 is the system state
matrix 	
��� consisting of an array of matrix cells & . / . Part 2
consists of two weight vectors: (i) one column weight vector
below the matrix cells and (ii) one row weight vector on the
right side of matrix cells. The column weight vector is ex-
pressed as follows:

D � ���� � ' � � DGDGD � � / DGDFD � � +�� (8)

where
�

is the number of processes, and F A � � � / (each column
weight cell) is a pair

�'O � / ��	 � / 	 , representing whether the corre-
sponding process node is a terminal node

� ; � N 	 , a connect node� N � ; 	 , or neither
� N � N 	 . The row weight vector is expressed as

follows:

D � ��� � � ' � � DFDGD � � . DGDGD � � 1���� (9)

where
�

is the number of resources, and F > � � � . (each row
weight cell) is a pair

�/O � . ��	 � . 	 , representing whether the cor-
responding resource node is a terminal node, a connect node,
or neither. Part 3 is one decide cell

� � /�O � at the bottom right
corner of the DDU.

Figure 13 shows the architecture of the DDU for three pro-
cesses and three resources. This DDU example has nine matrix

��
��

�
!"

#$
%&

decide
cell

cell

cell
matrix

cell
weight

cell
weight

cell
weight

weight
cell

weight
cell

weight
cell

matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

matrix

cell

Figure 13 DDU architecture

cells (
A�� A

) for all edge elements of 	 ��� , six weight cells (three
for column processing and three for row processing), and one
decide cell for making the decision of deadlock.

4.2.4 Synthesis Result of the DDU

We used the Synopsys Design Compiler (DC) to synthesize
the DDU with a N � A � � standard cell library from AMIS [32].
Table 1 shows the synthesis results of five types of DDUs cus-
tomized according to the number of processes and resources in
an SoC. The fourth column, denoted “worst case # iterations,”
represents the number of worst case number of iterations for
the corresponding DDU.

processes lines of area in terms worst case' Verilog of two-input # iterations
resources NAND gates

2 ' 3 49 186 2
5 ' 5 73 364 6
7 ' 7 102 455 10

10 ' 10 162 622 16
50 ' 50 2682 14142 96

TABLE 1 SYNTHESIS RESULTS OF DDU

Please note that a system example using the DDU, includ-
ing quantitative performance results, will be presented in Sec-
tion 5.3.

4.3 New deadlock avoidance methodology

In our new approach to deadlock avoidance, we utilize the
parallel deadlock detection algorithm (PDDA) and DDU. Un-
like the DDU, we have thought that it would be very helpful if
there were a hardware unit that not only detects deadlock but
also avoids possible deadlock within a few clock cycles and
with a small amount of hardware.

The Deadlock Avoidance Unit (DAU), if employed, tracks
all requests and releases of resources. In other words, the DAU

10

receives, interprets and executes commands from processes;
then it returns DAU processing results back to processes. The
DAU avoids deadlock by not allowing any grant or request that
leads to a deadlock.

4.3.1 New deadlock avoidance algorithm

Algorithm 3 shows our deadlock avoidance approach. We ini-
tially considered two other deadlock avoidance approaches but
found Algorithm 3 to be better because it resolves livelock
more actively and efficiently than two other approaches [28].

Let us proceed to describe Algorithm 3 step by step. When
a process requests a resource from the DAU (line 2 of Algo-
rithm 3), the DAU checks for the availability of the resource
requested (line 3). If the resource is available (i.e., no one is
using it), the resource will be granted to the requester immedi-
ately (line 4). If the resource is not available, the DAU checks
the possibility of request deadlock (R-dl) (line 5). If a request
would cause request deadlock (R-dl) (line 5) – note that the
DAU tracks all requests and releases – the DAU compares the
priority of the requester with that of the current owner of the
requested resource. If the priority of the requester is higher
than that of the current owner of the resource (line 6), the DAU
makes the request be pending for the requester (line 7), and
then the DAU asks the owner of the resource to give up the re-
source so that the higher priority process can proceed (line 8,
the current owner may need time to finish or checkpoint its
current processing). On the other hand, if the priority of the re-
quester is lower than that of the owner of the resource (line 9),
the DAU asks the requester to give up the resource(s) that the
requester already has but is most likely not using yet (since all
needed resources are not yet granted, line 10).

Algorithm 3 Deadlock Avoidance Algorithm (DAA)

DAA (event) �
1 case (event) �
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 if the priority of the requester greater than that of the owner
7 make the request be pending
8 ask the current owner of the resource to release the resource
9 else
10 ask the requester to give up resource(s)
11 end-if
12 else
13 make the request be pending
14 end-if
15 break

16 a release:
17 if any process is waiting for the released resource
18 if the grant of the resource would cause grant deadlock
19 grant the resource to a lower priority process waiting
20 else
21 grant the resource to the highest priority process waiting
22 end-if
23 else
24 make the resource become available
25 end-if
26 � end-case

�

When the DAU receives a resource release command from

a process (line 16) and any process is waiting for the resource
(line 17), before actually granting the released resource to one
of the requesters, the DAU temporarily marks a grant of the
resource to the highest priority process (on its internal matrix).
Then, to check potential grant deadlock, the DAU executes its
deadlock detection algorithm. If the temporary grant does not
cause grant deadlock (G-dl) (line 20), it becomes a fixed grant;
thus the resource is granted to the highest priority requester
(line 21). On the other hand, if the temporary grant causes G-
dl (line 18), the temporary grant will be undone; then, because
the released resource cannot be granted to the highest priority
requester because of G-dl, the DAU tries to grant the resource
to a lower priority requester (line 19). The DAU continues
checking all processes to see if the released resource can be
granted to a process without the involvement of deadlock. As
a result, resources can be effectively exploited.

4.3.2 Architecture of the DAU

status

commandcell access

address

registers

registers

DAA

Logic

(deadlock detection unit)
(deadlock avoidance algorithm)

(Algorithm 3)

decoder
address

control
and

data

done

deadlock

start

reset

(matrix)

DDU

*DDU
*DAA

Figure 14 DAU architecture.

Figure 14 illustrates the DAU, implemented in Verilog HDL.
The DAU consists of four parts: a Deadlock Detection Unit
(DDU [27]), command registers, status registers and a unit
implementing Algorithm 3 with a finite state machine. The
command registers receive request and release commands from
each PE. The processing results of the DAU are stored into sta-
tus registers read by all PEs. While a command register con-
tains a release or request of a resource, a status register contains
the information of done, busy, successful, pending, give-up,
which-process, which-resource, livelock as well as G-dl and R-
dl. The DAA logic mainly controls the DAU behavior, i.e.,
interprets and executes commands (requests or releases) from
PEs, and returns processing results back to PEs via status reg-
isters.

4.3.3 Synthesis results of the DAU

We used the Synopsys Design Compiler (DC) [33] to synthe-
size the DAU for five processes and five resources with the
QualCore Logic .25

�
m standard cell library [34]. The Syn-

thesis result is shown in Table 2. The “Total Area” column
denotes the area in units equivalent to a minimum-sized two-
input NAND gate in the library, and “# steps” means the worst
case number of steps. In case where an MPSoC contains

11

four PowerPC 755 PEs (1.7M gates each) and 16MB mem-
ory (33.5M gates), the area overhead in the MPSoC due to the
DAU is about .005%.

Module Lines Total # Steps # Steps
Name of Area in in

Verilog Detection Avoidance

DDU 5x5 203 364 6 –
Others in Figure 14 344 1472 – 8

Total 547 1836(.005%) – ���������
	���
MPSoC 40.344M –

TABLE 2 SYNTHESIS RESULTS OF THE DAU.

4.4 Integrating DDU and DAU into the
�

framework.

In Figure 3, for deadlock hardware components, after a user
selects either the Deadlock Detection Unit (DDU) or the Dead-
lock Avoidance Unit (DAU), the GUI tool generates a deadlock
IP component with a designated type and a specific size ac-
cording to the number of tasks and resources specified in the
Target Architecture window (see upper left of Figure 3).

5 Experimentation and results

In this section, we first explain the detailed base MPSoC
for experimentation and various configured RTOS/MPSoCes.
Then, we demonstrate performance comparisons among the
RTOS/MPSoC systems with applications.

5.1 Base MPSoC for experimentation

Prior to inclusion of any hardware RTOS components, all
configured RTOS/MPSoC for experimental simulations pre-
sented in this article have so called a base system consisting
of four Motorola MPC755s and four resources implemented
in Verilog HDL as introduced in Section 3.2.2 (note that PE
cores are typically provided by simulation tool vendors such as
processor support packages from Seamless CVE [35]). Each
MPC755 has separate instruction and data L1 caches each of
size 32KB. Four resources are a video interface (VI) device,
a DSP, an IDCT unit and a wireless interface (WI) device.
These four resources have timers, interrupt generators and in-
put/output ports that are necessary to support our simulations.
The base system also has a bus arbiter, a clock driver, a mem-
ory controller and a 16MB of shared memory. The master
clock period of the bus system is 10 ns (100 MHz). Code
for each MPC755 runs on an instruction-accurate (not cycle-
accurate) MPC755 simulator provided by Seamless CVE [35].

The experimental simulations were carried out using Seam-
less Co-Verification Environment (CVE) [35] aided by Syn-
opsys VCS [36] for Verilog HDL simulation and XRAY [37]
for software debugging. We have used Atalanta RTOS version
0.3 [5], a shared-memory multiprocessor RTOS, introduced in
Section 2.1.

5.2 Configured RTOS/MPSoCes for experimenta-
tion

Using the
�

hardware/software RTOS design framework, we
have configured various RTOS/MPSoC systems as shown in
Table 3. All RTOS/MPSoC systems are generated primarily
based on the base MPSoC described in the previous section.

System Configured components on top of essential pure
software RTOS

RTOS1 PDDA (i.e., Algorithms 1 and 2) in software (Sec-
tion 4.2.1)

RTOS2 DDU in hardware (Sections 4.2.2 and 4.2.3)
RTOS3 DAA (i.e., Algorithm 3) in software (Sec-

tion 4.3.1)
RTOS4 DAU in hardware (Section 4.3.2)
RTOS5 Pure RTOS with priority inheritance support (Sec-

tion 2.1)
RTOS6 SoCLC with immediate priority ceiling protocol

in hardware (Section 2.3.1)
RTOS7 SoCDMMU in hardware (Section 2.3.2)

TABLE 3 CONFIGURED RTOS/MPSOCES

5.3 Execution time comparison between RTOS1 and
RTOS2

In this experiment, we wanted to identify the difference in
an application executing using the DDU versus PDDA in soft-
ware. In RTOS2, the MPSoC has a DDU for five processes and
five resources. We devised an application example inspired
by the Jini lookup service system [39], in which client appli-
cations can request services through intermediate layers (i.e.,
lookup, discovery and admission). Since the MPSoC, intro-
duced in Section 5.1, has multiple processes and multiple re-
sources, and Assumptions 1-3 in Section 3.2.3 can also easily
be satisfied during the normal execution of the application, a
deadlock is possible in such a system. Thus, this is an exam-
ple of a practical application that can benefit from the DDU. In
this experiment, we invoked one process on each PE and prior-
itized all processes, ��� being the highest and ��� being the low-
est. The video frame we use for the experiment is a test frame
whose size is 64 by 64 pixels. The IDCT processing time of
the test frame takes approximately 23,600 clock cycles.

We show a sequence of requests and grants that finally leads
to a deadlock as shown in Table 4 and Figure 15. Process ��� ,
running on PE1, requests both the IDCT and the VI at time � � ,
which are then granted to � � . After that, � � starts receiving a
video stream through the VI and does IDCT processing. At
time ��� , process ��� , running on PE3, needs and requests the
IDCT and the WI to simultaneously convert a frame to an im-
age and send the image through the WI. However, only the WI
is granted to ��� since the IDCT is unavailable. At time ��� , ���
running on PE2 also requests the IDCT and WI hardware units,
which are not available for � � . When the IDCT is released by

12

G ' at time A�� , the IDCT is granted to
G since

G has a higher
priority than

G � . This last grant will lead to a deadlock in the
SoC.

Time Number Events
��� ���

The application starts.��� �	�
��
requests IDCT and VI; IDCT and VI are

granted to

��

immediately.�� ��
��
requests IDCT and WI; WI is granted to

��
im-

mediately.��� ���
�
requests IDCT and WI. Both

�
and

��
wait

IDCT.��� ���
IDCT is released by

 �
.��� ���

IDCT is granted to

since

has a higher prior-
ity than

 �
.

TABLE 4 A SEQUENCE OF REQUESTS AND GRANTS

t1 t1 t t t t t22 33 5

t4

(VI) (DSP) (WI) (VI) (DSP) (WI)

p p p p p p p p

q q q q q q q q2 3 4

1 2 3 1 2 3 4

4321

4

1

(IDCT) (IDCT)

Figure 15 Events RAG

With the above scenario, we measured both the deadlock
detection time

�
and the application execution time from the

application start (A��) until the detection of a deadlock in two
cases: using (i) the DDU and (ii) PDDA in software. Note
that the RTOS initialization time was excluded (i.e., the RTOS
is assumed to be fully operational at time A��). Table 5 shows
that (i) in average the DDU achieved a 1408X speed-up over
the software implementation of PDDA and that (ii) the DDU
gave a 46% speed-up of application execution time over PDDA
in software. The application invoked deadlock detection 10
times. Please note that the example application has not yet
finished because of deadlock and that the algorithm run-time
does not include the run-time of application programming in-
terfaces. Note also that a different case where deadlock does
not occur so early would of course not show a 46% speed-
up, but instead would show a potentially far lower percentage
speed-up; nonetheless, for critical situations where early dead-
lock detection is crucial, our approach can help significantly.

Method of Algorithm Application
Speedup&

Implementation Run Time* Run Time*

DDU(hardware) 1.3 27714
� � � ����������� ������� � ���! #"

PDDA in software 1830 40523

*The time unit is a bus clock, and the values are averaged. &The speed-up is
calculated according to the formula by Hennessy and Patterson [40].

TABLE 5 DEADLOCK DETECTION TIME AND APPLICATION EXECUTION

TIME

5.4 Execution time comparison between RTOS3 and
RTOS4

In this experiment, we wanted to identify the difference in an
application executing using the DAU versus DAA in software.
In RTOS4, the MPSoC has a DAU for five processes and five
resources.

5.4.1 Application example I

We show a sequence of requests and grants that would lead to
grant deadlock (G-dl) as shown in Figure 16 and Table 6. Re-
call that there is no constraint on the ordering of the resource
usage. That is, when a process requests a resource and the re-
source is available, it is granted immediately to the requesting
process. At time A ' , process

G ' , running on PE1, requests both
VI and IDCT, which are then granted to

G ' . After that,
G ' starts

receiving a video stream through VI and does IDCT process-
ing. At time A , process

G � , running on PE3, requests IDCT
and WI to convert a frame to an image and to send the image
through WI. However, only WI is granted to

G � since IDCT
is unavailable. At time A � , G running on PE2 also requests
IDCT and WI, which are not available for

G . When IDCT is
released by

G ' at time A�� , IDCT would typically (assuming the
DAU is not used) be granted to

G since
G has a priority higher

than
G � ; thus, the system would typically end up in deadlock.

However, the DAU checks the potential G-dl and then avoids
the G-dl by granting IDCT to

G � even though
G � has a priority

lower than
G . Then,

G � uses and releases IDCT and WI at timeA�$. After that, IDCT and WI are granted to
G at time A�% , which

finishes its job at time A�& .

t1 t1 5t

t4

(VI) (WI)

q q q q1 2 3 4

p p p p1 2 3 4

(IDCT) (FFT)

t t t t22 33

(VI) (WI)

q q q1 2 3 4

p p p p1 2 3 4

q
(IDCT) (FFT)

t4

(VI) (WI)

q q q q1 2 3 4

p p p p1 2 3 4

(IDCT) (FFT)

Figure 16 Events RAG (grant deadlock).

With the above scenario, we wanted to measure two figures,
the average execution time of deadlock avoidance algorithms
and the total execution time of the application in two cases:
(i) using the DAU versus (ii) using DAA (Algorithm 3) in soft-
ware.

5.4.2 Experimental result I

Table 7 shows that the DAU achieves a 312X speed-up of the
average algorithm execution time and gives a 37% speed-up of
application execution time over avoiding deadlock with DAA
in software. Note that during the run-time of the application,
the deadlock avoidance algorithms (DAU or DAA) were in-
voked 12 times, respectively (since every request and release
invokes one of the algorithms).

13

Time EventsA � The application starts.A ' �
� requests � � and � � , which are granted to �

� imme-
diately.A �
� requests ��� and � � ; only � � is granted to �

� since ���
is not available.A � �
� also requests � � and � � .A � � � and ��� are released by �

� .A�� Then, the DAU tries to grant ��� to �
� since �

� has a
priority higher than �

� . However, the DAU detects po-
tential G-dl. Thus, the DAU grants � � to �

� , which
does not lead to a deadlock.A�$ ��� and � � are used and released by �

� .A % � � and � � are granted to �
� .A�& �

� finishes its job, and the application ends.

TABLE 6 A SEQUENCE OF REQUESTS AND GRANTS THAT COULD LEAD

TO GRANT DEADLOCK (G-DL).

Method of Algorithm Application
Speedup

Implementation Run Time* Run Time*

DAU(hardware) 7 34791
� ����� � ��� � ������ � ����� ���
		"

DAA in software 2188 47704

*The time unit is a bus clock, and the values are averaged.

TABLE 7 EXECUTION TIME COMPARISON (G-DL).

5.4.3 Application example II

We show a sequence of requests and grants that would lead to
request deadlock (R-dl) as shown in Figure 17. In this exam-
ple, we assume the following. (i) Process

G ' requires resourcesE ' (VI) and
E (IDCT) to complete its job. (ii) Process

G re-
quires resources

E (IDCT) and
E � (DSP). (iii) Process

G � re-
quires resources

E � (DSP) and
E ' (VI). The detailed sequence

is shown in Table 8. At time A ' , process
G ' requests and ac-

quires
E ' . At time A , process

G requests and acquires
E . At

time A � , process
G � requests and acquires

E � . After that, at timeA�� , process
G requests

E � ; since
E � was already granted to

G � ,
and since the request does not cause R-dl, the request becomes
pending. At time A�� , process

G � requests
E ' ; since

E ' was al-
ready granted to

G ' , and since the request does not cause R-dl,
this request also becomes pending. At time A $, when processG ' requests

E , request deadlock (R-dl) would occur. However,
the DAU detects the potential R-dl and then avoids the R-dl by
asking

G to give up resource
E since

G ' has a priority higher
than

G , which is the current owner of
E . As a result, at timeA�% ,

G gives up and releases
E , which is going to be granted toG ' (of course,

G has to request
E again). After using

E ' andE , G ' releases
E ' and

E at time A�& . While
E ' is going to be

granted to
G � , E is going to be granted to

G . Thus,
G � uses

E '
and

E � and then releases
E ' and

E � at time A�� ; E � is granted toG , which then uses
E and

E � and finishes its job at time A ' � .
We similarly measured two figures, the average execution

time of deadlock avoidance algorithms and the total execution
time of the application in two cases: (i) exploiting the DAU

t1 2t 3t

t6 5tt4

(VI) (DSP) (WI) (VI) (DSP) (WI)

p p p p p p p p1

1

2 3 4 1 2 3 4

q q q q q q q q2 3 4 1 2 3 4

(IDCT) (IDCT)

Figure 17 Events RAG (request deadlock).

Time EventsA � The application starts.A ' �
� requests � � ; � � is granted to �

� .A �
� requests ��� ; ��� is granted to �

� .A � �
� requests � � ; � � is granted to �

� .A�� �
� requests � � , which becomes pending.A � �
� requests � � , which also becomes pending.A $ �
� requests � � , which is about to lead to R-dl. How-

ever, the DAU detects the possibility of R-dl. Thus, the
DAU asks � � to give up resource � � .A�% �
� releases ��� , which is granted to �

� . A moment later,
�
� requests ��� again.A & � � uses and releases � � and � � . Then, while � � is

granted to � � , � � is granted to � � .A � �
� uses and releases � � and � � , which are granted to

�
� .A ' � � � finishes its job, and the application ends.

TABLE 8 A SEQUENCE OF REQUESTS AND GRANTS THAT WOULD LEAD

TO REQUEST DEADLOCK (R-DL).

and (ii) using DAA in software.

5.4.4 Experimental result II

Table 9 demonstrates that the DAU achieves a 294X speed-
up of the average algorithm execution time and gives a 44%
speed-up of application execution time over avoiding deadlock
with DAA in software. Note that during the run-time of the
application, the deadlock avoidance algorithms were invoked
14 times, respectively.

Method of Algorithm Application
Speedup

Implementation Run Time* Run Time*

DAU(hardware) 7.14 38508 ���� �������� � ������ � ��� � �!� "
DAA in software 2102 55627

*The time unit is a bus clock, and the values are averaged.

TABLE 9 EXECUTION TIME COMPARISON (R-DL).

5.5 Execution time comparison between RTOS5 and
RTOS6

This section presents the performance comparison between
SoCLC (please see Section 2.3.1 for more detail) with Im-
mediate Priority Ceiling Protocol (IPCP [17]) versus Atalanta

14

MPC755 MPC755 MPC755 MPC755

 Atalanta-RTOS
 priority inheritance

protocol

Application Tasks

spin-lock

MPC755 MPC755 MPC755 MPC755

 Atalanta-RTOS

Application Tasks

Interrupt
Handler

SoCLC

(a) (b)

 16 MB Global Shared Memory 16 MB Global Shared Memory

Figure 18 RTOS5 versus RTOS6.

RTOS with Priority Inheritance Protocol (AtalantaPI). Fig-
ure 18 depicts the two configured hardware/software architec-
tures that we compare. The first RTOS/MPSoC architecture
(Figure 18 (a)) comprises four MPC755 processors in hard-
ware and the user-level application tasks plus RTOS5. The exe-
cutable Atalanta RTOS includes the priority inheritance proto-
col and the spin-lock mechanism for lock-based synchroniza-
tion of long critical sections (CSes) and short CSes. The sec-
ond architecture (Figure 18 (b)), on the other hand, comprises
four MPC755 processors, RTOS6 (i.e., the SoCLC in hard-
ware plus the Atalanta RTOS in software) and the user-level
application tasks. That is, the Atalanta RTOS of the second
architecture utilizes the priority inheritance protocol (which is
part of the lock-based long CS synchronization) and the lock-
based short CS synchronization facility that are implemented
as part of the SoCLC in hardware. The tasks in this comparison
represent a robot control application and an MPEG decoder.
Figure 19 illustrates the algorithmic model of the robot control
application.

Start

Object_Recognition

Avoid_Obstacle

Reached target? End

Move

no

yes

Display
Robot_Trajectory

Record_Data

task1

task2

task3

task4

Figure 19 Robot example.

The first task detects the obstacles over the path via a sensor
operation and then computes the coordinates of the next path to
be taken by the robot to avoid a collision with the obstacle. As
seen from Figure 19, Object Recognition and Avoid Obstacle
parts of the model have been assigned to A���> T ' , which is the
highest priority task with critical hard real-time requirements.
The worst case response time (WCRT) of A���> T ' is 250

�
s;

missing the deadline of A���> T ' causes instability in the sensor
function and tracking to fail. Also seen in Figure 19, A���> T
handles the movement of the robot according to the position
information already determined by A���> T ' . ����> T is the sec-
ond highest priority task with firm real-time requirements and
has a response time of 300

�
s. Missing the deadline of A���> T

causes the speed of the robot to decrease and/or gouging or
breakage. ����>�T � and A���>�T � , on the other hand, have relatively
soft timing requirements and are responsible for the robot tra-
jectory display and recording. The WCRT of A���> T � and A���> T �
are 300

�
s and 600

�
s, respectively. Finally, the MPEG decoder

task, A���> T � , is the lowest priority task in the system and has a
soft timing requirement.

In the simulations, these five tasks execute as follows: A���> T '
runs on PE1 and it has a priority of 1 (highest priority task),A���> T is the second priority task with priority 2 and it runs
on PE2, A���> T � also runs on PE2 with priority 3, A���>�T � runs
on PE3 and A���> T � runs on PE4. Figure 20 shows the execu-
tion traces of A���>�T ' , A���> T and A���>�T � . As seen in Figure 20,
during the time that A���> T ' is waiting for A���>�T � to release the
lock, A���> T ' (highest priority task) is prevented from having
unbounded blocking. Because, with IPCP, A���> T � ’s priority is
raised to the ceiling priority immediately after acquiring the
lock. Therefore, when A���> T (whose priority is higher thanA���> T �) arrives, A���>�T cannot preempt A���> T � , so A���> T � runs on
PE2 until A���> T � completes the CS and releases the lock.

For performance comparison, the lock latency, lock delay
and overall execution times for both architectures shown in
Figure 18 were measured. The first architecture does not in-
clude SoCLC, and is named as the “RTOS5” case; the second
architecture includes SoCLC, and is named as the “RTOS6”
case. As seen from Table 10, RTOS6 (the SoCLC with the
priority inheritance implemented in hardware) achieves a 79%

15

task 1

task

task

PE 1

PE 2

PE 2

2

3

Figure 20
�� % � � inherits & � %
�
� ’s priority during the time that & � %

�
�

executes its CS. After completing CS, & � %
�
� yields the PE2 to & � %

�
� .

speed-up (i.e., 1.79X) in the lock latency, a 75% speed-up (i.e.,
1.75X) in the lock delay and a 43% speed-up (i.e., 1.43X) in
the overall execution time when compared to RTOS5 (Atalanta
RTOS with the priority inheritance software implementation).

(time in clock cycles) RTOS5 RTOS6 Speedup

Lock Latency 570 318 1.79 X
Lock Delay 6701 3834 1.75 X

Overall Execution 112170 78226 1.43 X

TABLE 10 SIMULATION RESULTS OF THE ROBOT APPLICATION.

Please note that we assume three cycles of the system bus
clock (including bus arbitration) are needed to access the first
word in the 16 MB global memory (if the transaction is a burst
transaction, the successive words of the burst are accessed each
in one clock cycle).

5.6 Execution time comparison between RTOS5 and
RTOS7

This section demonstrates the performance comparison be-
tween RTOS5 and RTOS7. For the performance comparison,
several benchmarks taken from the SPLASH-2 application
suite have been used: Blocked LU Decomposition (LU), Com-
plex 1D FFT (FFT) and Integer Radix Sort (RADIX) [41, 42].

The selected benchmarks source files were modified to re-
place all the static memory arrays by arrays that are dynam-
ically allocated at run time and deallocated upon completion.
In this way, the benchmarks could be dynamically downloaded
and run on a handheld device, which is the kind of ability the
SoCDMMU research focuses on.

Table 11 shows the execution time of the benchmarks in
clock cycles and the total number of cycles consumed in
memory management when the benchmarks use a conven-
tional memory allocation/deallocation techniques (glibc [43,
44] malloc() and free()).

Table 12 shows the same information introduced in Table 11
but with the benchmarks using the SoCDMMU for memory

allocation/deallocation. Also, Table 12 shows the reduction
in the memory management execution time due to using the
SoCDMMU instead of using glibc malloc() and free() func-
tions. This reduction in the memory management execution
time yields speed-ups in the benchmark execution time. As
we can see in Table 12, using the SoCDMMU tends to speed
up the application execution time and this speed-up is almost
equal to the percentage of time consumed by conventional soft-
ware memory management techniques.

Total Memory % of time
Benchmark exe. time management used for memory

(cycles) time (cycles) management

LU 318307 31512 9.90%
FFT 375988 101998 27.13%

RADIX 694333 141491 20.38%

TABLE 11 EXECUTION TIME OF SOME SPLASH-2 BENCHMARKS USING

glibc malloc() AND free().

Bench- Total Memory % of time % Reduction % Reduction
mark Time mgmt. used for in time used in

(cycles) time memory to manage benchmark
(cycles) mgmt. memory exe. time

LU 288271 1476 0.51% 95.31% 9.44%
FFT 276941 2951 1.07% 97.10% 26.34%

RADIX 558347 5505 0.99% 96.10% 19.59%

TABLE 12 EXECUTION TIME OF SOME SPLASH-2 BENCHMARKS USING

THE SOCDMMU.

6 Conclusion

This article presents a methodology of hardware/software
partitioning of operating systems with the � hardware/software
RTOS/MPSoC codesign framework that has been used to con-
figure and generate simulatable RTOS/MPSoC designs having
both appropriate hardware and software interfaces as well as
system architecture. The � framework is specifically designed
to help RTOS/MPSoC designers very easily and quickly ex-
plore their design space with available hardware and software
modules so that they can efficiently search and discover a cou-
ple of optimal solutions matched to the specifications and re-
quirements of their design before an actual implementation.

We have configured, generated and simulated various
RTOS/MPSoC systems with available hardware/software
RTOS components such as System-on-a-Chip Lock Cache
(SoCLC), SoC Dynamic Memory Management Unit (SoCD-
MMU), Deadlock Detection Unit (DDU), Deadlock Avoid-
ance Unit (DAU), and equivalent software modules, respec-
tively. From the simulations using Seamless CVE from Men-
tor Graphics, we show that our methodology is a viable ap-
proach to rapid hardware/software partitioning of operating
systems. In addition, we demonstrated the following with
experiments. (i) An RTOS/MPSoC system with the DDU

16

achieved about a 1400X speed-up of the deadlock detection
time and a 46% speed-up of an application execution time over
an RTOS/MPSoC system with a deadlock detection method in
software. (ii) A system with the DAU reduced the deadlock
avoidance time by 99% (about 300X) and an application exe-
cution time by 44% as compared to a system with a deadlock
avoidance algorithm in software. (iii) A system with the So-
CLC shows about a 75% speed-up in the lock handling and a
43% speed-up in the overall execution time when compared
to a system implemented priority inheritance and lock han-
dling in software. (iv) A system with the SoCDMMU reduced
about 20% of time used for memory management and execu-
tion times of benchmarks 9.44% or more over a system without
the SoCDMMU.

Acknowledgements

This research is funded by NSF under INT-9973120, CCR-
9984808 and CCR-0082164. We would like to acknowledge
donations received from Denali, HP, Intel, QualCore, Mentor
Graphics, National Semiconductor, Sun and Synopsys.

References

[1] J. Lee, K. Ryu and V. Mooney, “A framework for au-
tomatic generation of configuration files for a custom
RTOS,” Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms
(ERSA’02), pp. 31-37, June 2002.

[2] J. Lee, V. Mooney, A. Daleby, K. Ingstrom, T. Klevin and
L. Lindh, “A comparison of the RTU hardware RTOS
with a hardware/software RTOS,” Proceedings of the
Asia and South Pacific Design Automation Conference
(ASPDAC 2003), pp.683-688, Jan. 2003.

[3] V. Mooney and D. Blough, “A hardware-software real-
time operating system framework for SOCs,” IEEE De-
sign and Test of Computers, pp. 44-51, Nov.-Dec. 2002.

[4] V. Mooney, “Hardware/software partitioning of operating
systems,” in the book Embedded Software for SoC, edited
by A. Jerraya, S. Yoo, D. Verkest and N. Wehn, published
by Kluwer Academic Publishers, Boston, MA, USA, pp.
187-206, Sep. 2003.

[5] D. Sun, D. Blough and V. Mooney, “Atalanta: A
new multiprocessor RTOS kernel for system-on-a-
chip applications,” Tech. Rep. GIT-CC-02-19, Col-
lege of Computing, Georgia Tech, Atlanta, GA, 2002,
http://www.coc.gatech.edu/research/pubs.html.

[6] J. Lee, “Hardware/software deadlock avoidance for mul-
tiprocessor multiresource system-on-a-chip,” Ph.D. the-
sis, School of ECE, Georgia Institute of Technology, At-
lanta, GA, Fall 2004.

[7] K. Ryu and V. Mooney, “Automated bus generation for
multiprocessor SoC Design,” Proceedings of the Design
Automation and Test in Europe Conference (DATE’03),
pp. 282-287, March 2003.

[8] K. Ryu and V. Mooney, “Automated bus generation for
multiprocessor SoC design,” to be published in IEEE
Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 23(11), pp. 1531-1549, Nov. 2004.

[9] K. Ryu, “Automatic generation of bus systems,” Ph.D.
Thesis, School of ECE, Georgia Institute of Technology,
Atlanta, GA, USA, Summer 2004.

[10] B. Akgul and V. Mooney, “PARLAK: Parametrized Lock
Cache generator,” Proceedings of the Design Automation
and Test in Europe Conference (DATE’03), pp. 1138-
1139, March 2003.

[11] B. Akgul, “The System-on-a-Chip Lock Cache,” Ph.D.
Thesis, School of ECE, Georgia Institute of Technology,
Atlanta, GA, USA, Spring 2004.

[12] M. Shalan, E. Shin and V. Mooney, “DX-Gt: Memory
management and crossbar switch generator for multipro-
cessor system-on-a-chip,” Proceedings of the 11th Work-
shop on Synthesis And System Integration of Mixed In-
formation technologies (SASIMI’03), pp. 357-364, April
2003.

[13] M. Shalan, “Dynamic memory management for embed-
ded real-time multiprocessor system-on-a-chip,” Ph.D.
Thesis, School of ECE, Georgia Institute of Technology,
Atlanta, GA, USA, Fall 2003.

[14] B. Akgul, J. Lee and V. Mooney, “A System-on-a-Chip
Lock Cache with task preemption support ,” Proceedings
of the International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES’01),
pp. 149-157, Nov. 2001.

[15] B. Akgul and V. Mooney, “The System-on-a-Chip Lock
Cache,” Trans. on Design Automation for Embedded Sys-
tems, 7(1-2), pp. 139-174, Sep. 2002.

[16] B. Akgul, V. Mooney, H. Thane and P. Kuacharoen,
“Hardware support for priority inheritance,” Proceedings
of the IEEE Real-Time Systems Symposium (RTSS’03),
pp.246-254, Dec. 2003.

[17] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheri-
tance protocols: An approach to real-time synchroniza-
tion,” IEEE Trans. on Computers, 39(9), pp. 1175–1185,
Sep. 1990.

[18] M. Shalan and V. Mooney, “Hardware support for real-
time embedded multiprocessor system-on-a-chip mem-
ory management,” Proceedings of the Tenth Inter-
national Symposium on Hardware/Software Codesign
(CODES’02), pp. 79-84, May 2002.

17

[19] Xilinx, http://www.xilinx.com/.

[20] A. Shoshani and E. Coffman Jr., “Detection, Prevention
and recovery from deadlocks in multiprocess, multiple
resource systems,” 4th Annual Princeton Conf. on Infor-
mation Sciences and System, March 1970.

[21] R. Holt, “Some deadlock properties of computer sys-
tems,” ACM Computing surveys, pp. 179–196, Sep. 1972.

[22] T. Leibfried Jr., “A deadlock detection and recovery al-
gorithm using the formalism of a directed graph matrix,”
Operation Systems Review, 23(2), pp. 45-55, April 1989.

[23] J. Kim and K. Koh, “An O(1) time deadlock detection
scheme in single unit and single request multiprocess sys-
tem,” IEEE TENCON ’91, vol 2, pp. 219-223, Aug. 1991.

[24] E. Dijkstra, “Cooperating sequential processes,” Tech.
Rep. EWD-123, Technological University, Eindhoven,
The Netherlands, Sep. 1965.

[25] E. Coffman, M. Elphick and A. Shoshani, “System dead-
locks,” ACM Computing Surveys, pp. 67–78, June 1971.

[26] F. Belik, “An efficient deadlock avoidance technique,”
IEEE Trans. on Computers, 39(7), pp. 882–888, July
1990.

[27] P. Shiu, Y. Tan and V. Mooney, “A novel parallel deadlock
detection algorithm and architecture,” Proceedings of
the 9th International Symposium on Hardware/Software
Codesign (CODES’01), pp. 30-36, April 2001.

[28] J. Lee and V. Mooney, “A novel deadlock avoidance algo-
rithm and its hardware implementation,” Proceedings of
the 12th International Conference on Hardware/Software
Codesign and System Synthesis (CODES/ISSS’04),
pp.200–205, Sep. 2004.

[29] J. Lee and V. Mooney, “An O(min(m,n)) parallel dead-
lock detection algorithm,” Tech. Rep. GIT-CC-03-41,
College of Computing, Georgia Tech, Atlanta, GA, Sep.
2003, http://www.coc.gatech.edu/research/pubs.html.

[30] N. Gebraeel and M. Lawley, “Deadlock detection, pre-
vention and avoidance for automated tool sharing sys-
tems,” IEEE Trans. on Robotics and Automation, 17(3)
pp. 342–356, June 2001.

[31] M. Maekawa, A. Oldhoeft and R. Oldehoeft, Operat-
ing Systems - Advanced Concepts, Benjamin/Cummings
Publishing Company, Menlo Park, CA, 1987.

[32] AMI Semiconductor, http://www.amis.com.

[33] Design Compiler,
http://www.synopsys.com/products/logic/logic.html.

[34] QualCore Logic. http://www.qualcorelogic.com/.

[35] Mentor Graphics, Hardware/Software Co-Verification:
Seamless, http://www.mentor.com/seamless/.

[36] Synopsys, VCS Verilog Simulator,
http://www.synopsys.com/products/simulation/simulation.html.

[37] Mentor Graphics, XRAY Debugger,
http://www.mentor.com/xray/.

[38] ModelSim HDL Simulator, http://www.model.com/.

[39] S. Morgan, “Jini to the rescue,” IEEE Spectrum, April
2000.

[40] J. Hennessy and D. Patterson, Computer architecture -
a quantitative approach. Morgan Kaufmann Publisher,
Inc., San Francisco, CA, 1996.

[41] Stanford University, Stanford Parallel Applica-
tions for Shared Memory (SPLASH). http://www-
flash.stanford.edu/apps/SPLASH/.

[42] S. Woo, M. Ohara, E. Torrie, J. Singh and A. Gupta, “The
SPLASH-2 programs: characterization and methodolog-
ical considerations,” Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pp. 24–36,
June 1995.

[43] The Free Software Foundation, The GNU project, the
GCC compiler. http://gcc.gnu.org/.

[44] The Free Software Foundation, The
GNU project, the GNU C library.
http://www.gnu.org/software/libc/manual/.

18

