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A finite element–based nonlinear inversion scheme for mag-
netic resonance (MR) elastography is detailed. The algorithm
operates on small overlapping subzones of the total region of
interest, processed in a hierarchical order as determined by
progressive error minimization. This zoned approach allows for
a high degree of spatial discretization, taking advantage of the
data-rich environment afforded by the MR. The inversion tech-
nique is tested in simulation under high-noise conditions (15%
random noise applied to the displacement data) with both
complicated user-defined stiffness distributions and realistic
tissue geometries obtained by thresholding MR image slices. In
both cases the process has proved successful and has been
capable of discerning small inclusions near 4 mm in dia-
meter. Magn Reson Med 42:779–786, 1999. r 1999 Wiley-Liss,
Inc.
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The diagnostic value of tissue elasticity has long been
appreciated in a broad spectrum of medical applications,
and understanding of its importance continues to grow.
From pathology detection (1,2), to robotic surgery (3,4), to
the use of computational modeling during surgical proce-
dures (5–7), a demand for detailed and accurate tissue
elasticity information has been generated. Recent research
into the use of mechanical properties of biological tissue
for clinical decision making has moved away from direct
mechanical measurements (8,9) and turned toward various
medical imaging technologies to assess tissue behavior
under mechanical loads. The idea of ultrasound elastogra-
phy has been introduced (10–16) in which some form of
ultrasonic displacement measurement technique is used to
detect subsurface tissue motion. This displacement infor-
mation can then be correlated to the elastic property
distribution in the tissue with the aid of a model for tissue
motion as a function of shear or Young’s modulus (17–19).

Ultrasound’s inherent lack of lateral resolution and
limited axial resolution when compared with other clini-
cally available imaging modalities has motivated the devel-
opment of magnetic resonance (MR) elastography methods
(20–22). MR offers the potential of generating highly
resolved, three-dimensional (3D) information with relative
ease, as opposed to the considerable challenge associated
with obtaining equivalent data from ultrasound tech-
niques. However, given the availability of finely sampled

3D displacement fields, the task of developing a robust
algorithm capable of deducing elastic property distribu-
tions from these displacement images while maintaining
the refinement of the MR data remains.

Strategies for addressing the reconstruction problem
have varied widely to date. Chenevert et al. are investigat-
ing MR elastography through a quasistatic displacement
approach (23), whereas Raghavan and Yagle have devel-
oped an inversion technique based on a finite difference
formulation of the global elasticity equations (24). A collabo-
ration between Lewa and De Certaines has attempted to
determine the viscoelastic properties directly from MR
measurements (25). Manduca et al. have developed an
inversion scheme based on a local frequency estimation
that is correlated to a local elasticity value (26), and Sumi
and Nakayama have presented a method for numerically
integrating the two-dimensional (2D) stress-strain relations
to reconstruct a shear modulus distribution from strain
measurements (27).

In this report, we present a finite element–based method
for solving the elastography inversion problem by use of a
least-squares minimization of the difference between mea-
sured displacement data from the MR and computed
displacement solutions. Our approach is not unlike that
recently presented by Kallel and Bertrand for ultrasound
techniques (18), except that model-based optimization is
performed on small overlapping subzones of the total
tissue region of interest that are processed in an hierarchi-
cal order determined by progressive error minimization.
This is a significant shift in the conceptual framework for
property inversion that allows the recovery of an elasticity
distribution at the MR displacement measurement resolu-
tion. Property estimation at the MR pixel level is not
computationally viable as a single global minimization
problem; however, the subzone approach we have identi-
fied eliminates this limitation by recasting the image
reconstruction objective as a sum of minimizations rather
than a single minimization of sums. The results show that
the overlapping zone concept is robust with respect to
simulated measurement noise and that local minimization
of the least-squares match between the model and the MR
displacement data leads to high-quality global property
distribution images.

SUBZONE INVERSION

Our approach capitalizes on recent advances in model-
based image reconstruction of tissue properties whereby
the nonlinear relationship between the physical property
distribution to be determined and the measured tissue
response to an applied stimulus is preserved (28–30).
Specifically, we formulate the MR elastography image-
reconstruction problem as a constrained optimization task
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whose objective is to minimize the difference between a set
of measured displacement fields and those computed by a
model description in which the tissue property distribu-
tion is parameterized as a set of unknown coefficients. The
typical strategy is to define a single objective to be mini-
mized that is the sum of the squared differences between
measured and calculated quantities over the entire set of
tissue response observations that are available (31):

min F (E), [1a]

where

F (E ) 5 o
l51

N

(ul
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c)2 1 (vl
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c )2 [1b]

and ul
m and vl

m are the x and y vector components of the
measured displacement at location l, while ul

c and vl
c are

the calculated vector components at the same position, for
a total of N different locations. E is the M-dimensional
vector of elasticity parameters that is expanded on a
continuous basis set, f, to define the tissue property
distribution of the total region of interest, V.

This total problem domain, V, may be thought of as the
union of multiple ‘‘subzones,’’ Vz, of the total ROI, as
illustrated in Fig. 1, so that we may rewrite the global
functional, F (E), as a sum of locally defined functionals,

Fz(Ez), for the zth subzone. For Q subzones,

F (E) 5 o
z51

Q

Fz(Ez), [2]

where the minimization of the sum is replaced by the sum
of minimizations on the individual subzones:
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when each subzone consists of Nz tissue response observa-
tions and Mz tissue property parameters such that Nz 9 N
and Mz 9 M.

The advantages of this approach are severalfold. First,
the nonlinear minimization process occurs on only Mz

tissue property parameters using Nz observations at a time.
The significant reduction in the size of the inversion
problem is important because the least-squares approach
scales cubically in the number of optimization parameters
to be determined. Second, it maximizes the utilization of
the complete MR displacement data set and the concomi-
tant tissue property resolution that can be achieved. Assum-
ing that tissue displacements can be measured at the MR
pixel level, the total amount of tissue response data and
tissue property values that could be recovered in a single
minimization problem exceeds the computational re-
sources available today. By dividing the problem into
subzones, high-resolution (MR pixel-level) property maps
can be deduced that take full advantage of the high density
of tissue measurements that the MR technique provides.

Once defined on the subzone, the minimization problem
proceeds in standard fashion. Determination of the sub-
zone elastic properties requires differentiation of Fz in Eq.
[3b] with respect to each of the Mz property parameters
contained in Ez, which produces the nonlinear system
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FIG. 1. Schematic diagram of the subzone concept. V, total problem
domain; G, boundary; Vz, single subzone domain; Gz, single subzone
boundary.
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Solution of this equation set by Newton’s method leads to
iterative improvements in the elastic property profile such
that

Ez
(n11) 5 Ez

n 1 DEz, [5a]

where DEz is the property update vector determined from
the solution of the regularized matrix system

[(Hz
n 1 aI)] 5DEz6 5 52f z

n6 [5b]
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evaluated at the current property estimate denoted by
the superscript n. In Eq. (5b), a is a scalar regulari-
zation parameter added to the diagonal of H to facilitate
its inversion, because H is known to be poorly condi-
tioned. This parameter is scaled to the subzone prob-
lem at hand by use of the Levenberg-Marquardt approach
(32).

Solution of Eq. [5b] requires a vehicle for calculating the
subzone displacement field and its derivatives with re-
spect to each property parameter given the current estimate
of the property distribution on the subzone. Here, we
assume that the displacement field is described by the
partial differential equation governing time-harmonic, iso-
tropic, linearly elastic motion:

= · G=u 1 =(l 1 G)= · u 5 2 rv2u, [6a]

where u is the displacement vector, r is the tissue density
and G and l are Lamé’s constants

G 5
E

(2 1 2n)
[6b]

l 5
nE

(1 1 n)(1 2 2n)
[6c]

for Poisson’s Ratio, n, and Young’s modulus, E. For simplic-
ity, we consider r and n to be known constants, leaving G,
or equivalently E, as the elastic property parameter distri-
bution to be estimated from the displacement field. To
solve Eq. [6a], we use the finite element method as
summarized in the Appendix.

The required derivatives are calculated by differentiat-
ing Eq. [6a] directly with respect to each property param-
eter, Ezj

for j 5 1, 2, . . . , Mz, and solving the resulting partial
differential equation in the derivative quantity of interest

on the same finite element discretization:
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which when rewritten in the form

= · G=u8j 1 =(l 1 G)= · u8j 5 2 rv2u8j 2 = ·
G
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=u
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Ezj

(l 1 G)= · u, [7b]

where u8j 5 u/Ezj
, has the identical form of Eq. [6a] in the

quantity u8j except for the occurrence of two additional
right-hand-side quantities expressed in terms of u. Because
Eq. [5b] is evaluated at the current property estimate, u can
be computed through Eq. [6a] leaving u8j as the only
unknown in Eq. [7b]. Evaluation of the terms expressing
the differentiation of the elastic property distribution with
respect to its parameterization, G/Ezj

, is facilitated by
expanding the elastic constants in the finite element basis
so that E 5 Sj51

Mz Ezj
fj. The finite element discretization of

Eq. [7b] is described in further detail in the Appendix.
In practice, the subzone inversion algorithm begins with

an initial estimate of the elastic property distribution, E 0,
defined over the entire problem space, V. From this
estimate, a global displacement field, uc, is computed from
Eq. [6a] with the finite element method based on known
displacement conditions from the MR data set, um, applied
along the global boundary, G. The squared error between
the resulting displacement solution and the measured MR
data is then calculated for each element. By using this error
metric, an hierarchical list of element centroids is gener-
ated in which the element order is based on a decreasing
squared-error contribution. A subzone domain, Vz, is then
formed about an element centroid in the list by including
all nearby elements whose centroids are within a user-
defined radial distance from the subzone center. Figure 2
shows an example of a simple global finite element mesh
with a close-up view of a single subzone that has been
extracted for illustrative purposes. Once the subzone has
been identified, a displacement field is calculated on the
subzone by using the latest property parameter estimate,
Ez

n, and the MR displacement information on the subzone
boundary, Gz, as the boundary conditions required for
finite element solution. The subzone property distribution
is iteratively updated with the inversion process embodied
in Eq. [5b] until a local convergence criterion between the
computed and measured displacements internal to the
subzone has been reached. At this point, the next element
centroid in the error contribution list having participated
in the fewest inversion operations is used to define another
subzone, and the process of local convergence in the
displacement field between computed and measured quan-
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tities is repeated. The zoning process continues until every
element in the global mesh has been iterated a minimum
number of times. The subzone solutions then end, another
global displacement field calculation is executed with the
latest property profile, and the zoning procedure begins
again. Figure 3 illustrates the overall image reconstruction
process.

RESULTS

Initial evaluations of the zoning algorithm have been
performed on various numerical simulations of the dis-
placement patterns generated in vibrating tissue. For these
experiments, synthetic data were produced with the finite
element method displacement calculation described in the
Appendix. The mesh geometries were developed from MR
images taken from actual patients, one being a modified
anatomically coronal breast slice and the other a coronal
brain image. For simplicity, we have assumed that the only
unknown elastic parameter is Young’s modulus, although
this is not an inherent limitation in our algorithmic ap-
proach per se. Values for tissue density and Poisson’s ratio
were prescribed as 1020 kg/cm3 and 0.49, respectively. The
small wavelengths that develop in soft tissue (a Young’s
modulus of 8000 Pa was used for the background tissue
value here) require that the planar MR image be divided
into a large number of elements to ensure that the wave
propagation is adequately well resolved. For example, the
mesh used for the breast geometry consisted of 16,555
nodes and 32,635 linear triangular elements, resolving the
tissue continuum to approximately 0.8 mm. The wave-
length of a 100-Hz shear wave in this case is 1.62 cm/cycle,
so this resolution provides approximately 18 or 19 nodes
per mechanical wavelength. For synthetic data production,
a spatial elasticity distribution is required. We have gener-
ated property distributions by thresholding MR images that
contain either an arbitrary, user-defined elasticity map, as
shown in Figure 4a, or one that follows tissue substruc-
tures that are identifiable in the MR image, as represented

FIG. 2. Illustration of the mesh-based subzone technique in which a
single subzone (a) has been extracted from a global finite element
mesh (b).

FIG. 3. Flowchart of the subzone inversion
algorithm.
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in Figure 5a. Before inversion, a certain percentage of
random noise is added to the synthetic data to simulate
signal degradation that will occur in practice. This noise is
generated by scaling the average displacement with a
random number up to a given percentage and adding or
subtracting that value from the original displacement at a
particular node. The noisy solution is then used by the
inversion algorithm described above as the measured data
set.

For the breast case, an elasticity distribution was created
that provided challenging inclusion geometries as well as a
variety of inclusion stiffnesses. The background tissue
stiffness was assigned a Young’s modulus of 8000 Pa,
which is believed to be at the lower end of actual soft tissue
values (8,9,33). Inclusion stiffness ranges were determined
as multiples (23 for object 1, 53 for object 2 and 103 for
object 3 in Fig. 4a) of the background stiffness to test the
contrast resolution of the numerical algorithm. The stiffest
of the inclusions (object 3 in Fig. 4a) is roughly 4 mm in
diameter, representing a very small tumor within the
tissue. Once the stiffness information has been formulated
for the forward problem, boundary conditions of 100 Hz

and 10 µm sinusoidal displacements are applied and the
displacement solution is generated, shown here as x and y
displacement magnitudes in Fig. 4b and c, respectively.
Note the complex nature of this displacement pattern. For
the small wavelengths expected in soft tissue, these com-
plex displacement fields could lead to difficulties in
generating property distributions based on direct interpre-
tation of the displacement or strain image. The property
inversion shown in Fig. 4d was generated by using syn-
thetic data with 15% added noise with an initial guess of a
uniform Young’s modulus of 7000 Pa. The inversion pro-
cess consisted of 18 sweeps over the entire space, each
sweep involving roughly 1000 subzones of approximately
150 elements and 100 nodes each to ensure that every node
was operated on at least once.

To demonstrate the ability of the algorithm to process
realistic geometries generated from MR images, an elastic-
ity distribution was reconstructed on a mesh generated
from a coronal brain slice with two simulated inclusions as
shown in Fig. 5a. To ensure accurate resolution, this mesh
consisted of 19,446 nodes and 38,332 linear triangular
elements. For this tissue, a background Young’s modulus of

FIG. 4. Breast elasticity problem consisting of an artificial property distribution containing three heterogeneities of increasing contrast with the
background. a: Exact Young’s modulus distribution (kPa), which includes three heterogeneities, designated as objects 1, 2, and 3. b: Synthetic
x-direction displacement magnitude [µm]. c: Synthetic y-direction displacement magnitude [µm]. d: Reconstructed Young’s modulus
distribution (kPa) in the presence of 15% measurement noise.
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8000 Pa was used (33), representing the white matter,
while the gray matter was assumed to be twice as stiff. The
larger inclusion (designated as object 1 in Fig. 5a) measures
approximately 1 cm and was assigned a stiffness five times
that of the white matter, whereas the smaller inclusion
(designated as object 2 in Fig. 5a) is roughly 4 mm in
diameter and was specified as being an order of magnitude
stiffer than white matter. The inversion process was com-
pleted in six global sweeps of 1240 subzones on average,
with approximately 164 elements and 100 nodes in each
zone. Figure 5b shows the recovered property distribution
in the presence of 15% added noise; which compares very
favorably with the exact distribution contained in Fig. 5a.
A small degree of spatial filtering was found to be helpful
in achieving a convergent solution in this case of high
noise (34). This technique works to average the local
property value at node i with the values at its immediately
adjacent nodes so that Ei

new 5 (1 2 u)Ei
old 1 u/Ni Sj51

Ni Ej
old,

where Ni is the number of neighbor nodes connected to

node i. For the inversion shown in Fig. 5b, a value of 0.2
was used for u. Note that no spatial filtering was used (i.e.,
u 5 0) during the inversion shown in Fig. 4d.

CONCLUSIONS

The image reconstructions presented in Figs. 4 and 5 show
that the zoned inversion scheme is able to generate accu-
rate Young’s modulus distribution images on the basis of
displacement information obtained in the presence of high
noise (up to 15%). The zoned inversion method also allows
for a high degree of parameter discretization, taking full
advantage of the data-rich nature of an MR displacement
image. This high resolution allowed the inversion routine
to discern hard inclusions as small as 4 mm in diameter
during simulation. Although there are additional complexi-
ties associated with the inversion of actual MR data, these
promising simulation results suggest that the subzone
technique should provide a powerful framework for recov-
ering elasticity distributions with MR elastography. Specifi-
cally, it provides a computationally viable approach that
capitalizes on the MR measurement density to yield high-
resolution (pixel-level) tissue property maps. The complex
nature of the displacement fields that develop in soft tissue
makes an imaging algorithm that exploits modeling con-
cepts essential. Use of the finite element method allows the
incorporation of tissue mechanics into the analysis of
measured displacement patterns so that the complicated
waveforms inherent in multidimensional elastic systems
may be taken into account.

The finite element inversion process also provides some
important avenues for dealing with noisy data and more
complicated physical models. The iterative inversion
scheme detailed here is amenable to a total variation
minimization process, which can be useful in reducing the
effects of noise degradation (35). Work is also under way to
incorporate a Maxwellian damping term into the inversion
process so that tissue-damping effects can be both ac-
counted for and measured in the same manner that Young’s
modulus is recovered with the algorithm detailed here.
Furthermore, the process should be adaptable to modeling
transient motion rather than using a steady-state assump-
tion if steady-state data sets cannot be obtained from the
MR. In summary, this zoned finite element inversion
technique provides a powerful method for deriving highly
resolved Young’s modulus distribution information in a
way that is robust in the presence of high noise and
adaptable to a variety of modifications that could improve
its performance in the future.

APPENDIX

Here we describe the finite element formulation of the
forward and inverse problems in more detail. The govern-
ing equation of linear elasticity, Eq. [6a], is cast in terms of
the Cauchy stress tensor, T, which leads more readily to the
2D plane stress or plane strain conditions assumed for the
forward and inverse solutions presented.

FIG. 5. Brain elasticity problem consisting of a property distribution
derived from white/gray matter segmentation of a coronal MR image.
a: Exact Young’s modulus distribution (kPa) of the white/gray matter
background with two artificially placed stiff anomalies designated as
objects 1 and 2. b: Reconstructed Young’s modulus distribution (kPa)
in the presence of 15% measurement noise.
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The Forward Problem

If steady-state harmonic motion is assumed, the real valued
displacement vector solution can be represented as the real
part of a complex-valued, spatially varying displacement
phasor multiplied by the complex exponential

u(x, y, t) 5 Re5u(x, y)eivt6, [8]

where spatial coordinates x and y and complex displace-
ment components u and v define

u(x, y) 5 5
u

v 6 . [9]

In stress tensor notation, the harmonic equilibrium condi-
tion will then be (36)

= · T 5 2 rv2u 1 F, [10]

making use of the complex harmonic inertia, r2u/t2 5 2 rv2

ueivt, and including any additional body forces F that may
be present. The stress tensor T can be defined as

T 5 ı̂tx 1 ĵty 1 k̂tz

tx 5 ı̂sx 1 ĵtxy 1 k̂txz

ty 5 ı̂tyx 1 ĵsy 1 k̂tyz

tz 5 ı̂tzx 1 ĵtzy 1 k̂sz,

and for 2D plane strain or plane stress assumptions the
stress-strain relations for elastic solids can be written in the
matrix form

5
sx
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txy
6 5 E · E1 3

1 E2 0
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0 0
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with

E1 5
1 2 n

(1 1 n)(1 2 2n)
(plane strain) or

1

1 2 n2
(plane stress)

E2 5
n

1 2 n
(plane strain) or n (plane stress)

G 5
1

2(1 1 n)
,

where E is Young’s modulus.

To facilitate the solution of this set of equations
for complicated geometries containing realistic property
distributions, a finite element discretization method
is adopted where û, the approximate solution to the
displacement magnitude u, is expanded on a set of locally
active, spatially varying Lagrangian basis functions, fj, so
that

û 5 o
j51

N

uj fj, and v̂ 5 o
j51

N

vj fj, [12]

where uj and vj are the approximate x and y di-
rected displacements at the jth of N nodes. Developing a
Galerkin weak form of Eq. [10] generates the system of
equations

[A] 5
û
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and the column vectors of unknown nodal displacements
and right-hand-side forcing being written as

5
û

v̂ 6 5 5û6 5 5û1, v̂1, û2, v̂2, . . . , ûN, v̂N6
T, [15]

and

bi 5 5
x̂ · [rT · n̂fids 2 GFfiH]

ŷ · [rT · n̂fids 2 GFfiH] 6 [16]

for i and j running from 1 to N.

The Inverse Problem

For the inversion problem, the basis set used to expand the
parameterized elasticity solution is taken to be the same
finite element basis set used to expand the displacement
solution û. The calculation of the u/E terms needed to
generate the Hessian matrix and the right-hand-side vector
f in Eq. [5b] is then achieved directly by the differentiation
of Eq. [13], the discretized version of Eq. [10], with respect
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to E, leading to

û

Ek
5 2[A]21
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· û, [17]

where A/Ek has terms
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