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Abstract 

In many model-based object recognition systems, a synthesize-and-verify technique is used to evaluate the quality of hypotheses. 
This technique synthesizes images of hypothesized objects in hypothesized poses, and compares them against the input imagery, 
producing a matching score. In this paper, we examine the image synthesis process in the context of triangulation-based range finding. 
We motivate the use of synthetically shadowed range data for verification, present a simple algorithm for generation of shadowed 
range imagery, and demonstrate its usefulness in a set of experiments on real imagery. 
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1. Introduction 

A critical component of many three-dimensional 
object recognition systems is a mechanism to quantita- 
tively evaluate the goodness of a hypothesis, which often 

is composed of a number of bindings between geometric 
primitives from one of the models in the object database 
and compatible primitives in the scene whose contents 
are being identified. This verification task can involve 
synthesis of an image of the object in the hypothesis 
with a hypothesized pose; the numerical ‘goodness’ 
score is then computed by comparison between the real 
image under consideration and the synthetic image. 
Among the systems which employ this synthesize/ 
compare approach to verification are 3DP0 [ 11, BONSAI 
and recent variants [2,3], and the system developed by 
Hansen and Henderson [4]. These scores are used to 
identify the ‘best’ of the set of hypotheses under examina- 
tion; this best element is typically reported as the system’s 
decision on the identity of a component of the scene. In 
BONSAI and its descendants these scores are normal- 
ized; hence, in addition to the relative character of the 
score (higher scores reflect more confidence), an abso- 
lute connotation exists and can be used to (for example) 
establish a minimum score level below which no hypothe- 
sis will be deemed acceptable. 

Obviously, the sensing model used to produce the 
synthetic imagery in these systems must correspond 
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closely to the real sensor in use for verification to per- 
form reliably. Explicit attention to sensor models in 
object recognition systems has recently become a topic 
of interest, as evidenced by work on vision algorithm 
compilers incorporating sensor-specific visibility in pre- 
compiled recognition strategies [5,6]. The type of sensor, 
its configuration, the objects being viewed (in particular, 
their material properties), and ambient environmental 
conditions jointly define what can and cannot be seen in 
a typical view of the objects. For images obtained from 
a photometric stereo sensor, surface points must be visible 
to the intensity sensor as well as each illumination source. 
Similarly, only surface points which receive active illumi- 
nation and are visible to the intensity camera yield esti- 
mates of range in a light-stripe-based range finder. 

In this paper, we describe an algorithm for producing 
range images of objects described as polyhedral meshes 
of arbitrary density; these images will reflect the self- 
shadowing artifacts arising in light-stripe range finders. 
After describing the algorithm, we demonstrate the 
utility of such ‘realistic’ synthetic imaging on the verifi- 
cation stage of a CAD-model-based 3D object recogni- 
tion system. 

2. Motivation: rendering-based verification 

Consider a correspondence-based 3D object recogni- 
tion system which employs solid models of the objects 
to be recognized and range imagery as the sensing 
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Fig. 1. Real (a) and synthetic (b) range images of a polyhedral object (left), and segmentations (right). 

modality. Such systems build a set of correspondences 
(or bindings) between reliably-detectable entities (e.g. 
points, curves, or surfaces) in the scene and compatible 
entities in one of the object models in order to recognize 
that object. Many such systems employ a hypothesize- 
and-test approach to recognition, where a pose transfor- 
mation (which aligns the entities involved in the current 
set of bindings) is estimated and used to validate the 
bindings. It has often been observed (particularly in 
situations where there are a large number of entities 
in the scene) [2,7,8] that only a few bindings are necessary 
for estimation of pose, although the quality of the pose 
estimate is of course affected by the number of bindings 
used in its computation. 

Once a pose estimate is available, many recognition 
techniques invoke a verification procedure to evaluate 

the goodness of existing bindings in the hypothesis, and 
perhaps acquire additional bindings [2]. Most systems 
apply the estimated pose to the geometric primitives 
composing the hypothesized model. In some systems, 
the scene is then searched for these transformed entities. 
In others (including the system used in this paper), the 
transformed model entities are then used to generate 
a synthetic image of the object using the same view spe- 
cification and resolution as that of the input imagery, 
producing a synthetic image which is ‘registered’ in 3D 
with the input image. The quality of the hypothesis is 
then calculated by comparisons on a pixel-by-pixel 
basis between the input and synthesized images. 

For the remainder of this paper, we will assume that 
range imagery is used and our attention will focus on the 
generation of imagery that exhibits artifacts similar to 
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those inherent in a triangulation-based range finder. The 
two most common techniques for rendering synthetic 

range imagery from 3D model descriptions are poly- 

gon rendering (in essence retaining the Z-buffer of a 
polygon scan-converter) and ray-casting. Since we have 
high-quality polyhedral approximations to all of our 
object models, we will employ scan-conversion here, 
since this rendering method is generally faster than 
even first-hit ray tracing. 

3. Scan-conversion range rendering 

Algorithms for scan-converting polygons (2D or 3D) 
into an image buffer are already well-known in the com- 
puter graphics community [9, lo], and do not need detailed 
explanation here. What is atypical about the use of poly- 
gon scan-conversion for range image synthesis is the 
absence of a ‘visible’ intensity buffer. The depth buffer 
(used to cache the frontmost surface’s depth at each 
pixel location) contains a range image after the algorithm 
is complete. We also need to identify the visible polygon 
at each pixel. Hence, the output of the scan converter is 
a range image and a corresponding segmentation image. 

3.1. Rendering triangulation shadowing 

Polygon scan-conversion produces excellent range 
data for polyhedra and objects with curved surfaces 
(the density of the polyhedral approximation of curved 
surfaces determines the faithfulness of the synthetic 
range data); indeed, the data is unrealistically good 
when compared with images taken from triangulation- 
based range finders. Fig. 1 shows real (part (a)) and 
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Fig. 2. Triangulation range sensing geometry. 

z axis 

Fig. 3. Configuration of image planes for synthetic triangulation 

shadowing. 

synthetic (part (b)) range and segmentation images of 
a polyhderal object. The real range image (Fig. la, left) 
contains a substantial amount of shadowing. Indeed, one 
face of the object has been obscured entirely. The images 
in Fig. l(b) were synthesized by the BONSAI/IF1 object 
recognition system [3] from a ‘correct’ hypothesis of 
identity for three of the surfaces extracted from the 
input data. 

The discrepancy between these two images is due 
almost entirely to the triangulation shadowing effect: 
at some locations, object surfaces were either actively 
illuminated but not visible to the intensity sensor, or 
visible to the sensor but not illuminated. In our experi- 
ence, the former effect is most prevalent.’ Fig. 2 shows 
the placement of the light source and intensity sensor 
in the range finding system used to produce our images. 
The angle 0 (7r/4 in our system), along with the geometry 
of the scene, determines the degree of shadowing present 
in images of the scene. 

To simulate the effects of shadowing in a polygon- 
based renderer, a second rendering step is required; this 
additional step places the view direction parallel to the 
camera’s optical axis. A subsequent scan-conversion of 
the object using this view direction yields an additional 
range and label image, which we call the shadow buffer 
range and label images. This second rendering is 

’ The triangulation shadowing effect can be exploited for background 

pixel removal; if the object being imaged is placed on a light-absorbing 
surface (e.g. black felt), the laser stripe on that surface will not be seen 
by the camera and that pixels will be considered ‘shadowed’. 
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Input: polyhedral object (a set of polygons) 9 = {P,} 
Input: angle 8 between camera axis and z axis of range image (see Fig. 2) 
Output: range image W = { (.Xl,,yl,, z(i), (i, j) E [0 N, - 11 x 0. Nr - 11) 

(N, and NC are the number of rows and columns in the image, respectively) 
Output: label image Y = {Iii, (iJ) E [O.. N, - l] x [O.. NC - 11) 

Allocate W, Y, and temporary images W,s and 9,r to hold the range and label images rendered from the camera’s viewpoint. 
Scan-convert 9 into B and Y. 
Form 8’ = R.,(B)9 using the same image plane specifications as used for 9’. 

(R,,(B) denotes a transformation that rotates the object by an angle of B about the y-axis). 
Scan-convert 8’ into %,Y and Y,Y. 
FOR EACH pixel (i. j) 

Compute [x’y’z’] = R,.(-0)[q,y,, z(,]. 
Compute (i’,,j’), the image row and column number closest to (x’, y’) in 9,. 
IF /,,,i)~ # L,,, /,, + 0, i.e. mark pixel (i,,j) as shadowed. 

END FOR 

END 

Fig. 4. Triangulation shadowing algorithm. 

performed with the same pixel spacing and resolution as 
the first (only the view direction is different). Fig. 3 illus- 
trates the configuration of the two image buffers. To 
determine whether a particular range pixel in the output 
image is shadowed, its 3D coordinates are transformed 
into shadow buffer coordinates, and the corresponding 
labels (surface indices) are examined. If these surface 
labels do not agree, then the face in the shadow buffer 
occludes the face in the range buffer, and the pixel is 
marked as a shadow pixel. If the labels agree, the pixel 
is visible, and its label is not modified. Fig. 4 contains 
a pseudocode version of this algorithm. 

Fig. 5 shows the effect of shadowing on the synthetic 
range and segmentation images of the hypothesis in 
Fig. l(b). Note the close correspondence between the 
synthetic image and the original input image (Fig. l(a)). 
The missing pixels at segment edges are an artifact of 
the process which checks for identical label values at 
corresponding pixels in the two range images; near 

edges, rounding can place a pixel into either of the 
segments defining the edge. A postfiltering operation 
could be applied to assign labels to these ‘missing’ pixels 
but their presence has a minimal effect on the scores 
calculated below and the filtering operation would 
consume processing time. For that reason, the missing 
pixels along edges are ignored in subsequent processing. 

4. Verification with ‘realistic’ range data 

Our primary motivation for incorporating shadowing 
into synthetic range image generation is twofold. 

1 During model-building (the ‘compile-time’ phase of 
a typical model-based recognition system), synthetic 
range images (and accompanying segmentations) 
of object models are generated to accumulate lists of 
visible surface areas for different views of the objects. 

range label 

Fig. 5. Synthetic image of a polyhedron with simulated triangulation shadowing. 
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2. 

It is important for the images used in this estimation 
step to be as representative as possible of the true 
sensor. 

When performing object recognition (the ‘run-time’ 
phase), hypothesis verification employs synthetic 
imagery of the hypothesized object and pixel-by- 
pixel comparison between the input and synthetic 
images. Synthetic imagery should reflect the sensor’s 
properties in order for the matching ‘scores’ to be 
accurate. 

We now present a verification example which demon- 
strates the utility of synthetic range shadowing in 
separating correct hypotheses from incorrect. The verifi- 
cation system in use was originally developed for the 
BONSAI CAD-based vision system [2], adapted for use 
with a recognition system based on invariant feature 

indexing [3], and is summarized as follows. Synthetic 
range and segmentation images of the hypothesized 
model in the hypothesized pose are generated and used 

to produce the six matching scores sl,. . .,s6, each 
between zero and one. The overall matching score for a 

hypothesis is 

S= fr~i. 
i=l 

The subscores were determined empirically based on a 
large set of experiments with real range data, and 
attempt to capture the several different ways that 
hypotheses and the resultant images can be considered 

‘close’ to an input image: 

s1 measures discrepancies in the depth at each pixel. 
Define Nt as the number of pixels in the input range 
image within 0.1 inch of the predicted value,* and N 7 
as the number of pixels where the predicted value 
is larger (i.e., closer to the sensor) than the sensed 
value. Intuitively, we would like NT to be large and 
N; to be small. sI is defined as N:/(NT + N;). If 
the predicted depth is further from the sensor than 
the measured depth, sl is not affected as this could 
be caused by occlusion. 
s2 is a product of subscores, each calculated from 
observed overlaps between segments in the input and 
synthetic segmentation images. For each pair of seg- 
ment labels (i,j), let ti/ be the number of locations 
in the label images where surface i in the real image 
coincided with label j in the synthetic image. If 
the hypothesis under consideration does indeed con- 
tain a correspondence between model surface j and 

scene surface i, the subscore for (i, j) is tt/(NM, Ns,), 
where NM and Ns, are the number of pixels with 
the appropriate label in the synthetic and real 

* 0.1 was an experimentally determined value and depends most 
critically on sensor noise. 

segmentation images, respectively. If (S,, Mj) is not 

present in the current hypothesis, the contribution to 
s2 is 1 - ri/(NM, Ns,). Hence, these subscores reward 
large correct overlaps and small incorrect overlaps, 
and penalize missing or large incorrect overlaps 
between segments in the two segmentation images. 
s3 is a global overlap score, which is simply the sum 
of the ‘correct’ overlap populations divided by the 
sum of all overlap populations. Unlike s2, this 
overlap score is not penalized by small ‘incorrectly- 
overlapping’ regions. 
s4 measures the proximity of the estimated areas of 
segments in the synthetic range image to the corres- 
ponding areas in the input range image. Let (S;, Mj) be 
a binding in the current hypothesis, and As, and AM, 

be the estimated areas of S; and Mj, respectively.’ 
If the ratio 

AS. r=l 

is less than 1 .O, the contribution of that binding to s4 is 
r. If 1 < r < 2, the contribution to s4 is 1 - r. If r > 2, 
the hypothesis is rejected. The final value of s4 is the 
product of the individual contributions from each 

binding. 
s5 summarizes the closeness between the number of 
valid (nonzero) pixels in the input and synthetic seg- 
mentations. If N, is the number of valid pixels in the 
input segmentation and N,Y is the number of valid 
pixels in the synthetic segmentation, then 

N, 
K 

if N; < Ivy 

ss = NS if 1 <Ni<2 
N, N.7 

0 if:>2 
s 

The last clause in the conditional form for s5 discards 
hypotheses where the predicted image of the hypothe- 
sized model occupies more than twice as many pixels 
in the synthetic segmentation as the object in the input 
image. 
s6 measures the number of times in the segmentation 
images where an invalid pixel in one corresponds to a 
valid pixel in the other. Let No be the number of pixel 
locations where the synthetic segmentation has a valid 
pixel but the input segmentation does not, and Nt be 
the number of locations where the input segmentation 
is valid but not the synthetic segmentation. Then 

s6 = (Ni - No)(N~ - NI 1 

3 Segment areas are measured by accumulating the areas of small 

triangles formed from 2 x 2 pixel blocks in the range image which 

share the segment label. 
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(4 (b) (c) 

Fig. 6. Input segmentation, (a) a synthetic segment image with no shadowing, (b) and a synthetic label image with shadowing, (c) for a correct 

hypothesis of identity and pose. Segments 4 and 6 in part (a) lie along object edges. 

We have not yet conducted a thorough analysis of 
the sensitivity of these scores to small perturbations 
in the pose estimate. However, the sensitivity can be 
characterized informally as follows. The depth discre- 
pancy matching score (si) is most sensitive to errors in 
the rotation component of pose. The threshold value 
(0.1 inch in our experiments) can be increased to relax 
the restrictiveness of the classification as ‘close’ or ‘not 
close’ in depth at each pixel, at the cost of inflating the 
score for synthetic images from incorrect hypotheses, 
which often contain bands of pixels which meet the 
‘close’ criterion essentially by accident. In addition, 
errors in the z component of the translation portion of 
the pose estimate can also affect sl. The remaining 
scores are not as sensitive to small perturbations in 
translation or rotation, since they are based on either 
the overlap and correspondence between labels in the 
real and synthetic segmentations, or the presence or 
absence of valid pixels in the two images. The effect of 
a perturbation is to depress the scores through mis- 
matches of edges between segments or between a seg- 
ment and the (invalid) background pixels neighboring 
it. An experimental or theoretical study of the extent of 

this effect remains to be conducted. 
In Fig. 6, we show segmentation (segment label) 

images generated from a data-driven segmentation 
procedure applied to the image in Fig. 1, and two label 
images generated from correct hypotheses of object 
identity and pose (the hypotheses were obtained from 
the invariant feature indexing system described in [5]). 
Obviously, one of the hypothesis images was generated 
without shadowing, and one incorporates shadowing 
closely approximating that of the original range sensor. 

What effect does shadowing have on the hypothesis 
scores si described above? In the context of this example, 

l s, rose from 0.868 (unshadowed image) to 0.885 
(shadowed image). Both NT and N; dropped slightly 
due to the shadowing, but the fractional decrease in 
N; was larger. 

l s2 rose from 0.359 (unshadowed) to 0.497 (shadowed). 
Since shadowing completely removed the model 
segment labeled 1 in Fig. 6(b), and the segment-wise 
overlap fractions remained in the neighborhood of 
0.8 in both images, the lack of a pair of matching 
segments inflated the product of matches. 

l s3 rose from 0,848 to 0.857. This small increase reflects 
only some small edge effects (perhaps caused by 
slightly different pose estimates). 

l s4 rose from 0.357 to 0.622. This dramatic jump 
occurred because predicted and observed segment 
areas were much closer when the shadow image was 
used. This reinforces our visual impression that our 
shadowing algorithm reproduces the shadowing arti- 
facts in triangulation sensing. 

l s5 rose from 0.324 to 0.862; since the synthetic shadow- 
ing procedure produces segments much closer in size 
and shape to those observed in the scene, the Ni and N, 
values are closer, making the ratio closer to 1.0. 

l sb rose from 0.338 to 0.804. Since shadowing produces 
fewer valid pixels, and the pixels rendered invalid by 
shadowing do correspond to truly hidden pixels in 
the input range data, this increase is expectable. 

To summarize this experiment, the introduction of 
shadowing into the synthetic images generated for veri- 
fication has a measurable effect on the matching scores. 
The final score for a correct hypothesis with unshadowed 
synthetic imagery was 0.0103. When shadowing was 
added to these images and the scores recomputed, the 

final score was 0.162. 

5. Experiments 

We conducted a set of verification experiments with 
the proposed method for generating shadowed range 
data. Five real range images of thirteen different 3D 
objects (a total of 65 images) were segmented and given 
to the invariant feature indexing system for object 
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Statistics for improvement of matching scores in experiments with real range data 

471 

Model name # views correct/ # average score standard average score standard increase 
used incorrect hypotheses (no shadowing) deviation (shadowing) deviation (percent) 

adapter 

agpart2 

bigwye 

block1 

block2 

block4 

box2inch 

column1 

column2 

curvblock 

grnblk3 

hump 

taper011 

Average 

5 

2 

5 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 
incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 

incorrect 

correct 333 (total) 45.60E-3 17.89E-3 52.62E-3 21.67E-3 15 

incorrect 8048 (total) 811.9E-6 2.240E-3 963.2E-6 2.515E-3 19 

5 

48 

10 

15 

16 

441 

4 

69 

18 

13 

114 

865 

68 

1216 

3 

60 

51 

4618 

21 

523 

17 

170 

6 

0 

10.32E-3 0 31.76E-3 0 207 
784.0E-6 1.335E-3 1.233E-3 2.949E-3 57 
571.OE-6 0 2.269E-3 0 297 
lOl.OE-6 88.OOE-6 l.l31E-5 1.939E-3 1017 

1.609E-3 1.094E-3 3.928E-3 1.513E-3 144 
193.0E-6 447.OE-6 624.0E-6 1.445E-3 223 
61.56E-3 35.59E-3 69.81E-3 40.39E-3 13 

1.546E-3 4.059E-3 I .626E-3 4.176E-3 5 
lO.l4E-3 3.315E-3 52.66E-3 14.19E-3 420 
2.889E-3 4.668E-3 3.236E-3 5.178E-3 12 

40.79E-3 15.67E-3 41.97E-3 12.53E-3 3 
1.627E-3 1.259E-3 1.760E-3 1.294E-3 8 

87.18E-3 26.83E-3 89.60E-5 27.57E-3 3 
2.217E-3 3.014E-3 2.509E-3 3.268E-3 13 

15.406-3 6.899E-3 27.46E-3 15.45E-3 78 
1.439E-3 2.907E-3 1.895E-3 3.486E-3 32 

32.21 E-3 0 59.68E-3 0 85 
3.695E-3 1 l.l3E-3 3.988E-5 11.66E-3 8 

14.21E-3 16.28E-3 19.14E-3 20.28E-3 35 
170.OE-6 1.353E-3 171.OE-6 1.399E-3 1 

59.44E-3 3 1.92E-3 75.55E-3 37.32E-3 27 

825.0E-6 3.339E-3 800.OE-3 3.060E-3 -3 

4.801E-3 1.205E-3 7.102E-3 4.458E-3 48 

2.851E-3 6.039E-5 4.626E-3 11.63E-3 62 

24.4OE-3 108.OE-6 45.16E-3 99.00E-6 85 

N/A N/A N/A N/A N/A 

recognition described in [3]. Of these images, 12 gener- 
ated either no hypotheses (because of an insufficient 
number of features or mis-estimation of feature attri- 
butes), or a list containing no correct hypotheses; these 
images were ignored in further testing. Of the 54 remain- 
ing images, we measured the net increase in matching 
score obtained from synthetic shadowing. Table 1 
shows the average net increase in matching scores for 
both correct and incorrect hypotheses on a model-by- 
model basis and for the entire set of images. The average 
scores in each line of the table are weighted by the num- 
ber of correct or incorrect hypotheses returned by the 
system; the summary line is likewise a weighted sum of 
averages for each model. For five of these 65 experi- 
ments, the top-ranked hypothesis was incorrect when 
verification did not employ the shadowing procedure, 
but correct when shadowing was incorporated. These 
results demonstrate that shadowing does increase the 
matching scores for both correct and incorrect hypoth- 
eses in most cases. These increases are quite large in some 
situations. In effect, the technique helps to differentiate 
correct hypotheses from incorrect ones, and as such is a 
valuable addition to a model-based object recognition 
system. 

6. Conclusions and future work 

We have motivated the use of synthetically ‘shadowed’ 
range data in the verification step of model-based object 
recognition and presented a simple algorithm for gener- 
ating such imagery. Experiments on real data indicate 
that shadowing raises the numerical scores calculated 

from verification of correct hypotheses without a major 
effect on the scores of incorrect hypotheses. There are 
certainly additional sources of error in synthetically 
generated range data that reduces their ability to be 
compared with the real images they are expected to be 
verified against; misregistration (arising from poor pose 
estimates) and sensor noise (typically contaminating the z 
or depth coordinate of the range image) are both notable 
effects that this system does not take into account. It can 
be argued that these two effects either cannot be modeled 
well for the purposes of synthesis and verification, or that 
the verification step is not the correct place to remedy 
them. 

In future research, we will conduct a more thorough set 
of experiments with both real and synthetic input imagery, 
and integrate the synthetic shadowing technique into our 
existing object recognition software environment. 
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