
Admission control for hard real-time connections in
ATM LANs

A.Raha, W.Zhao, S.Kamat and W.Jia

Abstract: A connection admission control (CAC) algorithm must efficiently determine if a new
connection can be admitted by venfying that its QoS requirements can be met without violating those
of previously admitted connections. In hard real-time systems, the QoS requirements are specified in
terms of end-to-end cell deadlines and no cell loss due to buffer overflow. To achieve these objectives
a CAC algorithm must account for the traffic characteristics of connections. Furthermore, arbitrary
topology of the network may lead to cyclic dependencies among various connections. An efficient
CAC algorithm is presented that addresses these issues. The algorithm uses a traffic descriptor called
the ‘maximum traffic rate function’ to effectively compute bounds on end-to-end delays of
connections and buffer requirements within the network. The work differs from most previous work
in that it does not require traffic restoration inside the network.

1 Introduction

We address the problem of admitting hard real-time (HRT)
connections in an ATM local area network. A hard real-
time connection specifies its quality of service (QoS) in
terms of a cell-transfer deadline and the requirement of no
cell loss due to buffer overflow. Connections supporting
distributed hard real-time applications such as supervisory
command and control systems used in manufacturing,
chemical processing, nuclear plants, telemedicine, warshps,
etc. can be characterised as HRT connections.

The problem of admitting a hard real-time connection in
an ATM network is as follows. Consider a network that
has already admitted a set of N hard real-time connections
{ M I , M2, ..., MN} with each connection receiving its
requested quality of service. Let a request for a new hard
real-time connection MN + 1 arrive. Now the network
must efficiently determine if MN + 1 can receive its
requested quality of service without violating the guaran-
tees already provided to connections {Mi , M2, ..., MN}.

A key issue in admission of hard real-time connections in
an ATM LAN is the derivation of delay bounds of connec-
tions. This is a challenging task. Arbitrary topology of
ATM networks along with statistical multiplexing of cells
belonging to different connections makes the derivation
complicated in comparision with other local area network.
Specifically, admitting a new connection perturbs the traffic

0 LEE, 2001
ZEE Proceehgs online no. 20010300
DOL lO.l049/ipcom:20010300
Paper fmt received 28th February 2000 and in revised form 23rd January 2001
A. Raha is with the Fujitsu Software Corporation, 3055 Orchard Drive, San
Jose, CA 95134, USA
W. Zhao is with the Department of Computer science, Texas A&M Univer-
sity, College Station, TX 77843-31 12, USA
S. Kamat is with the IBM T J. Watson Research Center, Yorktown Heights,
NY 105984704, USA
W. Jia is with the Department of Computer sclencq City University of Hong
Kong 83 Tat Chee Ave., Kowloon, Hong Kong

of some of the existing connections, necessitating a re-eval-
uation of the end-to-end cell delays of these connections.
Furthermore, arbitrary topology loops make the delay
analysis complicated [1, 21. Therefore determining delay
bounds has been the pivotal issue in the development of
real-time technology [3-6]. In general, obtaining delay
bounds in a LAN has been difficult due to the distributed
nature of the problem. There are roughly two approaches:
synthesis and decomposition.

With the synthesis approach, the entire network is con-
sidered as a single server. Such an approach gives reasona-
ble bounds only if one or few applications access the
network at a time. Therefore this approach has been
adopted only for small and simple networks such as 802.5
token ring [7, 81, DQDB [9], and FDDI [7, IO].

With the decomposition approach, the network is
decomposed into servers. Each ATM connection is viewed
as being served by a sequence of servers. The worst case
end-to-end cell delays are obtained by summing the upper
bounds of the delays suffered by a connection at each of
the servers [I, 2, 111. The advantage of the decomposition
approach is that it provides the basis for a general and
modular analysis of the network, similar to the analysis of
electrical circuits. We adopt the method of network decom-
position in the computation of the end-to-end cell delays.

To analyse the delay bounds at each server it is necessary
to have a description of a connection’s traffic at the input
of the server. Many traffic descriptors have been proposed
in the literature [l, 11, 121. To explicitlv model the traffic
characteristics of connections we adopt a maximum rate
function introduced in [Ill and used in [13]. Much of the
previous work [14-191 assumes the existence of additional
mechanisms within the network to tailor the connection
traffic so that the traffic at the input of each server adheres
to a specific traffic characterisation. The use of the maxi-
mum function to model traffic w i t h the network frees us
from this assumption.

In this paper we design and analyse a connection admis-
sion control (CAC) algorithm that addresses these prob-
lems. Our algorithm has two important properties: it

217 IEE Proc.-Commun.. Vol. 148. No. 4, August 200I

explicitly models the trafic characterstics of connections in
the network, and it takes into account interaction of the
new connection’s trafic with that of the old ones and
addresses the possibility of cyclic dependencies among
those connections. We show that our algorithm is effective
and efficient. We demonstrate that there is a high probabil-
ity that a new connection be admitted in a normally loaded
system. Our experimental data also show that it takes a
relatively short time for the CAC algorithm to make the
admission decision, an essential feature for on-line use.

2 Preliminaries

We present the preliminary concepts and techniques
employed for deriving the wors-case end-to-end cell delay
of a connection. We also introduce some of the notations
and terminologies we use in the rest of this paper.

The worst-case end-to-end delay experienced by a cell is
obtained by summing the worst case delays a cell may
experience at every network component it traverses. The
methodology to compute these delays is based on the fol-
lowing three steps:
Network decomposition. The idea behmd this step is to
model the network as a set of servers that serve individual
connections [1, 111. Those servers that offer only constant
delays to a connection’s cells without changing the cell traf-
fic characteristics of a connection are considered separately
from those which offer variable delays to cells and hence
affect a connection’s trafic.
Connection-server gruph construction. As a consequence of
the previous step, each connection is represented as a path
in a graph whose nodes are servers which potentially affect
the connection’s trafic.
Indiuiduul server analysis. The objective of this step is to
compute the worst-case delay suffered by a connection and
characterise its traffic at the output of each of the servers
that offer a variable amount of delay to cells.

switch A

I

The following three subsections examine these steps in
detail.

2.7 Network decomposition
Ths step involves modeling the network as a collection of
servers. A server is an abstraction of a network component
that is traversed by a connection’s cells. In an ATM LAN,
hosts are connected to ATM switches and various ATM
switches are connected to each other using physical links.
Fig. 1 shows an ATM LAN consisting of five switches.
Thus, switches and communication links are two key com-
ponents in an ATM LAN. As shown in Fig. 1, a witch
itself consists of input ports, a switching fabric, and catput
ports. An ATM cell arrives at an input port of a swiich, is
transported by the switching fabric to an output port, and
transmitted along the physical link associated with the out-
put port. In the network decomposition step, we model the
input ports, the switching fabric, the output ports, arid the
physical links as servers serving ATM connections.

The servers are classified into two categories: constant
servers and variable servers. A constant server is the one
that offers a constant delay to each cell passing it but does
not by itself change the traffic flow characteristics of a
connection. For example physical links and the switchmg
fabric are constant delay line servers. The function of an
input port is to demultiplex the arriving cells based on the
information in the cell header. Ths is achieved in constant
time by the hardware associated with the input port. Thus
we can also model the input port of an ATM switch as a
constant demultiplexer server. We further assume that in
the high priority queue the cells are served on the first come
first serve (FCFS) basis.

As an example of network decomposition, consider the
ATM LAN shown in Fig. 1. Fig. 2 shows the same
network modeled as a collection of servers serving four
connections M, , M2, M3, and M4. Although this example
may not be representative of a typical ATM LAN, it is
used to illustrate important concepts discussed.

switch 0 -
switch switch

from host H2

switch
fabric fabric

from host H3 to host H8

.- I

switch D

I \ /
switch C

switch E

I from host H4
Fig. 1 ATM LAN withfive switches

218 IEE Proc -Cornmun.. Vol. 148, No. 4, August 2001

connection M4 switch A switch B
from host Hi
_ -

connection M2 connection M1
tohostH5

............

.

connection M2
from host H3

connection M4
to host H7

..........

switch D mux switch C

. - . ._ connection M1
connection M2
connection M3
connection M4

.................... _ _ _ - _ _ _ _
. - - - -

I ::‘: switch E

I , ,
, - * J constant delay line server

1 ; ; connectionM3 ‘r from host H4
Fig. 2 Example of nehvork decomposition

connection M2

’*. ; connection M1

...
I - - - _ C . - . - . - . - . - . - . - . - . - . - . - . - . - . - .

. .
‘(

tr-v - . . . - . ~ . _ . d !. i::::::t!o!P!-- ...
destination of
connection M1

4
source of

connection M3

Fig. 3 Connection-sewer graph comtruction

2.2 Connection-server graph construction
Introduction of a new connection into an ATM LAN may
affect the delays suffered by some of the previously admit-
ted connections. The purpose of connection-server graph
construction is to identify such interdependencies.

First, note that network decomposition allows us to view
each connection as a stream of cells served by a sequence of
constant and variable servers. For example, consider con-
nection M I from host 2 to host 8 (Fig. 2). M , traverses
seven delay line servers (four physical links and three
switching fabrics) and three demultiplexer servers (input
ports of three switches) all of which are constant servers.
M I also traverses three multiplexer servers (output ports of
three switches) which are variable servers. Recall that the
constant servers serving M I only add a fmed amount of
delay to M,’s cells without changing M,’s traffic character-

IEE PIOC -Commun , Vol 148, No 4, Auguyt 2001

I
- - - - - - I connection M4

destination of
connection M4

/

istics. Hence, their impact on M I can be accounted for by
simply subtracting the total delay suffered by M , at these
servers from M,’s end-to-end deadline. The same holds for
other connections. In the rest of the paper, we assume that
the deadlines of connections are modified in such a way. In
so doing, we eliminate all the constant servers from further
consideration and focus only on the variable servers in the
remainder of the paper. We will often omit the modifier
‘variable’ when referring to variable servers to avoid repeti-
tion.

Now we can view a connection as being served by a
sequence of variable servers only. Let K be the total
number of network components modelled as variable
servers. In the example shown in Fig. 2, K equals 9. Each
of these servers is given a unique identity, an integer rang-
ing from 1 to K. A connection-server graph is constructed

219

as a labelled, directed graph with the servers as its nodes. A
directed edge is introduced from server m to server n if
there is a connection served by server m followed by server
n. The edge is labelled by the connection that uses the
servers in immediate sequence. Fig. 3 shows the connec-
tion-server graph corresponding to the svstem shown in
Fig. 2. The sources and destinations of connections are also
shown in the connection-server graph to facilitate the later
discussion of our CAC algorithm.

We denote the sequence of servers serving connection kfi

(1)
where Ki is the total number of servers serving connection
Mi, and s(i, I] the identity of the jth server in the path of
connection Mi. For example, from Fig. 3 we see that H I ,
the sequence of servers for connection M I , is <3, 5, 6>.
Clearly, Hi, the sequence of servers serving Mi, must be a
valid directed path in the connection-server graph. If server
x is one of the servers in Hi, such that x = s(i, k), k # Ki,
then function next,@) is defined as

next,{x) will be used in our CAC algorithm.

2.3 Individual server analysis
The construction of the connection-server graph captured
the dependencies among the servers. Next we need to
examine how delays at individual servers can be computed.
T h s is the main objective of the server analysis step. We
assume that time is normalised in terms of the cell trans-
mission time in the ATM network. That is, time is consid-
ered a discrete quantity with the cell transmission time
taken as unit time.

We need some notations to facilitate the discussion. Let
d,, be the worst-case delay experienced by a cell of Mi at
server s. We let d,,, = 0 i f s does not belong to Mi‘s connec-
tion path specified by Hi. Let d(n) be a vector

bY
H, = (s (i , l), s (i , 2)) . . . , s (Z , j) , . . . , s(Z, Ki))

nezt;(z) = s (i , k + 1) (2)

+
d (n) = (d l , d 2 , . . . ,d ; , . . . , d n) (3)

where d, is the worst-case end-to-end delay experienced by
a cell of connection Mi. We will compute di as

K.

2.3.7 Traffic descriptor: From the connection-server
graph we can determine all the connections that share a
network server. Hence the delay at every server can be
obtained if input traffic patterns of all the connections shar-
ing the server are known. The traffic pattern of a connec-
tion at a point in the network is characterised by a traffic
descriptor [2]. Due to multiplexing at ATM switches the
traffic pattern of a connection at any point in the network
need not be the same as that at its source [l, 11, 121.

We use the maximum rate function. T(Z) as our traffic
descriptor. T(Z) specifies the maximum arrival rate of cells
in any interval of length Z. Equivalently, at most E(Z) cells
belonging to the connection may arrive in an interval of
length I.

A connection’s actual traffic pattern may differ from that
implied by the traffic descriptor used to describe the con-
nection’s traffic. The maximum rate function specifies the
worst case behaviour of the traffic. This information is nec-
essary for us to derive bounds on the delays suffered by a
connection’s cells and on the queue lengths at servers.

For connection Mi, we denote the maximum rate func-
tion at the input of server s (s = 1, 2, ..., K) , by ri,JZ). How-

220

ever, if server s does not belong to H,, M,‘s connection
path, then VZ, r,,(Z) = 0. At M,‘s source, its maximum rate
function is given by T,s(l,l)(Z) which is assumed to be speci-
fied by the requesting application during the connection
set-up procedure. Note that (rJ+l)(Z) , the maximum rate
function for M, at the input of server s(i,j + l), is the same
as the one at the output of server s(i,j]. In Section 2.3 3 we
will present a method for computing the maximum rate
function of a connection at the output of a server.

2.3.2 Delay and queue length bounds: Now con-
sider an FCFS server s. Assume that the maximum rate
function traffic descriptors of all the connections at the
input to server s are known. Then the following result from
[l, 201 can be used to find the worst-case delay experienced
by a cell and the maximum queue length at server s.

Theorem 1. Consider connection M I that traverses server s.
dl,s the worst-case delay experienced by connection M,, and
q,, the maximum queue length at server s, are given by

where Ls is the length of the longest busy interval at server
s and is given by

L, = min(1) xrm,s(l) 5 1) (6)
m

Theorem 1 can be proved by applying theorem 4.1 given in
[31.

2.3.3 Derivation of internal traffic descr,;ptor:
Recall that connection Mi passes through a sequence of
servers that is given by Hi = <s(i, l), s(i, 2), ..., s(i, I] , ...,
s(i, ICi)>. Assume that di,s(i,2), ... di,s(i,k), the worst-case
delays suffered by Mi at the first k (k < Ki) servers in its
connection path are known. Then the upper bounds ton Ti,,
(i ,k+l)(Z) , the maximum rate function values for connection
Mi at the output of server s(i, k) are given by the following
theorem:
Theorem 2

where c,,k is given by

‘%,k = dz ,s (z , l) (8)
l < l < k

The proof of theorem 2 is given in the Appendix (Section
8.1).

Theorem 2 gives an upper bound on a connection’s max-
i” rate function at the input of server s(i, k + 1) in
terms of the parameters of the source traffic. Theorem 2 is
a generalisation of theorem 2.1 in [3], where the maximum
rate function at the output of an FCFS server was obtained
in terms of the parameters of traffic at the input to the
server. Th~s is useful in practice. Most often, sources in
hard real-time systems generate regular traffic (e.g. peri-
odic) for which r(Z) can be described by a closed-form
expression. Thus, theorem 2 facilitates efficient cornputa-
tion of maximum traffic-rate functions inside the network,
making an efficient CAC algorithm feasible. Our perform-
ance results will also demonstrate that the delay bounds
computed by using eqns. 5 and 7 are reasonable in that the
CAC algorithm has a high probability of connection
admission for normal loads.

IEE Proc -Commun , Vol 148, No 4, Aups t 2001

3 Connection admission control algorithm

We will first elucidate some fundamental requirements of a
connection admission control (CAC) algorithm for hard
real-time (HRT) systems. Then we present an efficient
CAC algorithm for HRT systems and establish its proper-
ties.

3.7 Requirements
Any connection aQmission control algorithm has to satisfy
the following two properties:
Property 1: A CAC algorithm must be correct in the sense
that if the new HRT connection is admitted then the end-
to-end cells delays of all connections (the existing and the
newly admitted ones) must be no more than their deadlines
and there must be no buffer overflow.
Property 2: The algorithm must terminate. In other words,
the connection admission algorithm must either admit the
new connection,or reject it within a bounded time. Further-
more, the time taken by the CAC algorithm has a direct
impact on the time required for connection establishment.
Therefore it is desirable to have an efficient CAC algorithm
that takes a short time to make an admission decision.

To formalise the property we introduce the following
notations and conventions:

Let a(,) be a vector of size n. (We explicitly specify the
size of the vector; this is to avoid the confusion of the
number of connections considered. Hqwyer, when the
context is clear we omit this specification). d*(n) represents
the end-to-end delays associated with n connections, that is

+
d*(n) = (d ; , d ; , . . . , dz, . . . , d:) (9)

where dr is a random variable that denotes the end-to-end
delay of a cell belonging to Mi.

Let a(,) be a vector of size n. a(,) represents the end-to-
end.deadlines associated with n connections. That is

q n) = (0 1 , Dz, . . . ,D,, 3 . . , Dn) (10)
where D, is the deadline associated with M,.

Let a*(@ be a vector size K. a*(@ represents the queue
lengths, that is

+
Q * (K) = (9.; , d I . . . ,9.: , f . . , 9.; 1 (1 1)

where qs* is a random variable that denotes the queue
length at server s.

Let Z(K) be a vector size K. J(@ represents the buffer
capacities of the server s. That is

4

B (K) = (&,&, . . . , B,, . . . , B K) (12)
where B, denotes the buffer capacity at server s.

Given two vectors ?(n) = (X,, X2, ..., X,) and ?(n) = (Y,,
Y2, ..., Yn) of the same size, we say that

(13) 2 5 ? if (Vz, 1 5 i 5 n, X , 5 K)
and

2 < Y' if ((2 5 9) and (3 , l 5 z 5 n, X , < E))

In terms of these notations the correctness property can be
stated as follows: if the new connection MN + 1 is admitted
then

(14)

4

d * (N + 1) 5 h (N + 1) (15)

IEE Proc -Commun , Vol 148. No 4, August 2001

and

(16)
+
q*(K) L &(A)

where N is the number of connections that have previously
been admitted into the system.

3.2 Motivation
We know that once a new connection is admitted its traffic
can perturb the traffic of existing connections. Th~s pertur-
bation is not limited to the connections that share a server
with the new connection but may spread to other connec-
tions in the system. Thus, to make it correct a CAC algo-
rithm must take into account the extent of such
perturbation and re-evaluate the delays and queue lengths
affected by the perturbation.

Given the network decomposition methodology, a
straightforward approach to solving the problem is to iden-
tify all the servers impacted by the new connection. Then
all the servers impacted by admitting the new connection
can be re-analysed.

However, there is an inherent problem in such an
approach. Consider the system presented in Fig. 2. Let
{M,, M2, M3} be the connections that already exist in the
system and M4 be the new request. The connection-server
graph in Fig. 3 shows the situation in whch M4 has been
admitted.

There is a cyclic dependency in the connection-server
graph. For example, M4 shares server 3 with MI, hence
affecting M,'s traffic. Since M , later shares server 5 with
M2, the behaviour of server 5 and connection M2 may be
impacted by the introduction of M4. Furthermore, M2
shares server 7 with M3 and M , shares server 1 with M4
itself, forming a dependency loop!

With such a dependency loop one cannot analyse the
impacted servers in a simple sequential manner. Our CAC
algorithm is an iterative procedure. During the iterations it
explicitly and cyclically traces and analyses those servers
impacted.

In general, a system with such cyclic dependency may
not be stable in the sense that the delays and queue lengths
may not be bounded. This has created a great deal of diffi-
culty in analysis [I, 21. Particularly, when an iterative
method is used to analyse the system one may run into
such risk as the procedure may not converge, violating the
termination requirement. We are dealing with hard real-
time systems which have stringent dead line and buffer
requirements. Our CAC algorithm exploits the restrictions
imposed bv hard real-time systems to solve the convergence
problem in a potentially unstable system.

3.3 Important data structures
Before we present the CAC algorithm, we discuss some
important data structures used in the algorithm. We
assume that the network management system, which
invokes the CAC algorithm. maintains the following data
structures:
dM is a matrix used by the management system to store the
current value of the upper bounds on the cell delays experi-
enced by connections at servers in the ATM LAN.
Formally, for 1 s s s K,

where d,,s is defined in eqn. 5.
a(@ = (ql, q2, ..., qk), a vector used by the management
system to store the upper bound on the queue size at eve,ry
server in the network. The default initial value of a(K, is 0 .
B(N> = (01, D2, ..., DN), which is defined in eqn. 10.
B(K) = (B1, B2, ..., BK), which is defined in eqn. 12.

'

dMc,s = dz,s (17)

22 1

The input traffic vector ?(N> = (qs(l,,)(a ~ 2 , ~ (2 , 1) 0 , ..:,
rN,s(N,I) where for i = 1, ..., N, r;,s(i,l)(l) presents the maxi-
mum rate function of connection Mi at the source.

Once a new connection admission request arrives, the
new connection (MN + 1) presents the following informa-
tion to the system:

ETNcl = <s(N + 1, l), ..., s(N + 1, i.e. the connec-
tion path of MN + 1

DN+l, the cell transfer deadline of connection MN+l.
rN+l,$N+l,l)(Q the maximum rate function of connection

MN+I at the source.
The network management system p5sses dM, q(K), 6 0 ,

rithm. In addition to these input data structures, the CAC
algorithm uses the following internal data structures.
d~lt?riId , a matrix internally used by the CAC algorithm.
d (N + l), a vector of size N + 1. It is internally used by the
CAC algorithm to store the computed upper bounds on
the end-to-end cell delays.

internal(@, a vector internally used by the CAC algorithm
to store the computed upper bounds on the queue length at
the servers.

QN), HN+I, ~ ~ + 1 , rN+l,s(N+l,l) and W K) to the CAC algo-

Impact-server-list, an ordered list of the server iden iities.
When the CAC algorithm detects that a server would be
affected by admitting the new connection, it will append
the corresponding identity at the end of Impact-server-ist.
The CAC algorithm uses Impuctserver-list to determine
the order in which the servers affected by the new coimec-
tion are to be analysed.

3.4 Algorithm
The pseudocode for the CAC algorithm is given in Fig. 4.
It is an iterative procedure which efficiently determines and
re-analyses the servers that will be affected if the new con-
nection MN+I is admitted. The algorithm has three phases.

3.4.1 Initialisation phase, lines 1-7 7: In this phase
the algorithm copies the system data structures dM and
q(@ into its internal working space. Matrix dAPnternal of the
algorithm is initialised as follows. For 1 I s I K,

dMt,+ if 1 5 i 5 N ,

if i = N + 1.

dM;,:ternal - - i o
Also, a (N + 1) and d(N + 1) are constructed for the set of
connections under consideration,including the new connec-

Connection-Admission-Control (dM, i (K) , d(N), ?(?I), HNCl , DNcl , rN+l,,v(N+l,l), g (K))
I* Initialisation phase: Constructing d(N + 1) and a (N + 1) for connection set */
1, y w l u l (K) = W);
2.
3, dMinfCrnu/ = d&f.

D (N + 1) = (01, D2, ..., DN, DN+I);

4. for a l l s do
5. dh4$'ty1 = 0;
6 . end for all
7.
8.
9. end for
10. d (N + 1) = (d l , d2, ..., dN, dN+I);

11. Impact-server-list = < s(N + 1, I), s(N + 1, 2), ..., s(N + I , KN+J >;
I* Iteration phase */
12. while ((Impact-server-list # 0) and (d (N + 1) I a (N + 1)) and (gintcrnal(K) I B(K))) do
1 3.
14.
15.
16. q , p m I l = compute-queue-length(s);
17.
18. i f s E Hi then
19. 1.S

I* If delay or queue length at server s changes, add the succeeding server to Impact-server-list */
20.

21.
22. end if
23. end if
24. end for
25.
26. di = C,s,,i dM$iCrnu/;
27. end for
28.
29. end while
I* QoS verification phase *I
30. if ((a (N + 1) 5 b (N + 1)) and (GinfernUl(K) 5 d (K))) then
31.
32. else return(Reject).

f o r i = 1 to N + 1 do
di = &E Hi dM$!ernul;

s = fi rst-e I ement (Impact-ser ver-list);
Impact-server-list = Impact-server-list - ;
old - q = q , p n u l ;

for (i = 1 to N + 1) do

4s ; dM (IIIWnUl =

if ((old-q # q,Ffernu/) and
(nexti(s) G Impact-server-list)) 'then
a p pe nd-to-l ist (Impactser ver-list, nexti (s));

for i = 1 to N + 1 do

a (N + 1) = (dl, d2, ..., d N , dp.,+l);

return(Accept, d (N + I), dMinternU', ginferna'(K), f (N + 1));

Fig. 4 Pseudocode for CAC algorithm

222 IEE Pruc-Cummun.. Vol 148, No. 4, Augirsr 2001

tion and the existing ones. Since all the servers in the
connection path of MN+, will be directly impacted if M N + ~
is admitted, the algorithm initialises Impact-server-list with
the identities of all the servers in MN+l’s path.

3.4.2 Iteration phase, lines 13-29: This is the main
body of the algorithm and consists of a while loop. The
iterative procedure begins with the current status of the net-
work with the existing set of connections. Then it systemat-
ically traces the impact of the new connection request
MN+I. In each iteration there are three major operations
(i) First, the algorithm removes the first server in Impact-
server-list for analysis.
(ii) Next, the algorithm computes an upper bound on the
queue length and then the delay at the server analysed. The
results presented in Section 3.3 are used to achieve this.
(iii) Because an increase in delay at ths server may change
the input traffic characteristics of the succeeding servers,
the succeeding servers are also appended to Impact-server-
list. The next,@) function defined in Section 3.2 facilitates
this process. Thus, the algorithm systematically traces the
perturbation caused by connection MN+, in the network.
9 e iteration process terminates if the current value of
d(N + 1) or $(a violates the QoS requirements of the N +
1 connections. The iteration also stops if Impact-server-list
is empty. An empty Impact-server-list implies that the
queue lengths and the delays at every server have reached a
stable value.

3.4.3 Verification phase, lines 30-32: In this phase
the algorithm examines the cause of the termination of the
while loop. The algorithm accepts the new connection if the
deadline and kuffer requirzments of all the connections can
be met, i.e. if d(N + 1) I D (N + 1) and $(K) I B(@. If the
new connection is accepted, thz algorithm also returns the
updated values of dM, q(K), D (N + I), and p(N + 1) to
the network management system.

Table 1: Values of Impact-sewer-list in the example

Im pact-server-list
at beginning of
iteration

Server analysed Impact-server-list
during iteration at end of iteration

iteration
k

1 <I , 3,4> 1 <3. 4,2>

2 <3,4,2> 3 <4,2, 5>

3 <4.2,5> 4 <2,5>

4 <2,5> 2 <5>
5 <5> 5 <6,7>
6 <6,7> 6 <7>

7 <7> 7 <8, I>

8 <8, I > 8 <I>
9 <I> 1 <2.3>

10 <2,3> 2 <3>
11 <3> 3 <4,5>

3.5 Some remarks
Consider the system presented in Fig. 2. Let { M I , M2, M3}
be the set of connections that already exist in the system
and M4 be one newly requested. The connection-server
graph in Fig. 3 shows the situation in which M4 is admit-
ted. During the execution of the CAC algorithm, servers
impacted by admitting the new connection are identified

IEE Proc-Commun., Vol. 148, No. 4, August 2001

and re-analysed. For illustration, assume that all the succes-
sor servers are impacted during the first 11 iterations.
Table 1 shows the members of Impact-server-ist and the
servers analysed during the iterations. The reader is encour-
aged to verify the contents of Table 1 by tracing the algo-
rithm. This will help understand the algorithm. There is a
cyclic dependency in the connection-server graph. For
example, M4 shares server 3 with M , affecting Mi’s traffic.
Since M , later shares server 5 with M2, the behaviour of
server 5 and connection M2 may be impacted by introduc-
tion of M4. Furthermore, M2 shares server 7 with M3 and
M3 shares server 1 with M4 itself, forming a dependency
loop! From Table 1, it is clear that our CAC algorithm is
able to capture this dependency. The algorithm explicitly
and cyclically traces and analyses those servers impacted
during the iterations.

Furthermore, note that during an execution of our CAC
algorithm the iteration stops whenever the delay or queue
length goes beyond the allowable bounds. This automati-
cally solves the convergence problem in a potentially unsta-
ble system. Section 8.2 formally, establishes the termination
property.

4 Performance evaluation

We first define performance metrics, then describe the
system architecture considered and present the performance
results.

4.7 Metrics
Consider the following two metrics for evaluating a CAC
algorithm for hard real-time connections.
(i) Admission probability (AP(U)) : defined as the probabil-
ity that HRT connections are admissible on condition that
the average utilisation of the inter-switch physical links in
the network is U.
(ii) Execution time (ET(U)): defined as the average time
taken for the CAC algorithm to make an admission deci-
sion given that the average utilisation of the inter-switch
links in the network is U.
It is desirable to have a CAC algorithm with high admis-
sion probability and low execution time. However, there is
an obvious trade-off between the two. A CAC algorithm
that blindly rejectes all the admission requests should have
almost zero execution time but certainly the lowest admis-
sion probability. On the other hand, one may design a
CAC algorithm with hgher admission probility by
computing tighter delay bounds whch may result in a
longer execution time. In the design of our CAC algorithm.
we have carefully balanced both factors. The data shown in
the following subsections will demonstrate that our CAC
algorithm can achieve reasonable admission probability
aud yet maintains a low execution time.

4.2 Experimental system setup
Here, we report the results of performance evaluation for a
svstem architecture shown in Fig. 5. The results from the
other systems are similar and therefore are not presented
here.

The network considered consists of four 32 x 32 ATM
switches. That is, each switch has 32 input lines and 32
output lines. As shown in Fig. 5. there are 120 connections
in the system. Connection M,J:k is the kth connection that
enters the network at switch I and leaves the network at
switchj. The connections in the network form a symmetric
pattern. The system is arranged in such a way that 60
connections share one inter-switch link at each stage.

223

switch 1 switch 2

Ml , 2, 0

'1, 2,9

Ml , 3, 0

Ml ,3 ,9

Ml , 4, 0

Ml , 4, 9

M1;4F0 Ml, 4,9 ~, \ // g M4;1,0 M4,1,9

M2,4, 0 switch

M2, 4,9 M4, 2, 9

M3, 4, 0

M3, 4, 9
I

switch 4
Fig.5 712e network system evaluated

Several systems with different architectures have also been
evaluated, the results are slmilar.

Since our target applications are hard real-time systems,
we consider the source traffic descriptor (STD [2]) for the
HRT connections to be the traditional HRT source traffic
model. That is, the source traffic is assumed to be periodic
and the STD is described by the parameters (C, P), where
P is the period of the message and C is the number of cells
in a message. Although the source traffic of a connection is
periodic, due to multiplexing in the network the periodicity
of the connection traffic may no longer be maintained
within the network. As mentioned earlier, we use the maxi-
mum rate function to characterise the traffic of connections
inside the network.

To obtain the performance data, we developed a pro-
gram to simulate the network system. The program was
written in the C programming language and run in a Sun/
Solaris environment. In each run 1,000 connection sets
were randomly generated. For each connection, the total
number of cells per period was chosen from a geometric
distribution with mean ten. Similar results have been
obtained with different settings of parameters.

Connection M I J k enters the network at switch I and exits at swtch J

4.3 Admission probability
Fig. 6 shows the admission probabilitv results for our
sample network. The performance figures are correspond-
ing to two values of deadline D, (P, and 2PJ. It is common
practice in a hard real-time system that deadlines are asso-
ciated with periods [21, 221. From Fig. 6, we can make the
following observations:

In general, we found that the admission probabhty is sen-
sitive to the average link utilisation. As the utilisation
increases, admission probabilitv decreases. This is expected
because the higher the network utilisation, the more dSi-
cult it is for the system to admit a set of connections.

224

switch

i\
M3, 1, 0

M3. 2. 9
I I

switch 3

When the end-to-end cell deadlines of the connections are
increased the admission probability shows an otwious
improvement. For example, when U = 0.4, the admission
probability increases from about 40 to 80% when the aver-
age deadline increases from P to 2P.

Fig. 6

4- D = P

Ahiwwn probability against link utilkutwn: unregulated source (gs-
rem S)
.... @ D = 2 p

So far, we have considered a network management .;y stem
which uses the CAC algorithm to control connection
admission without modifying the input traffic of the
connections. There has been an increasing interczst in
controlling the delays of connections by appropriately regu-
lating the connection traffic at the entrance of the network.
By regulating the input traffic, its burstiness can be control-
led. This tends to reduce the adverse impact of burstiness
on the end-to-end delays of other connections. We now
consider the system with traffic regulation at the source.
We adopt the method proposed in [15] to select paraimeters
of the traffic regulation mechanism (e.g. leaky bucket) so
that an appropriate level of regulation is maintained.

IEE Proc.-Commun., Vol. 148, No. 4. August 2001

Fig. 7 shows the admission probabditv results for the
regulated system (called system R). In comparison with the
data in Fig. 6 we see that by using input traffc regulation
in conjunction with our CAC algorithm, the admission
probability can be improved. The AP(U) is almost 100%
for values of U as high as 30%.

Fig. 7

-0- D = P

Ahission probability uguht link utilisation: regulated source (system
Ri
.... @ D = 2p

6 -

5 -

4 -

U)

s 3 -
w

2 -

U
i -

.........
U

-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 8
--[I system S
.. .O. . system R

Execution t k results with und without regulution

4.4 Execution time
Here we evaluate the effciency of our CAC algorithm in
terms of the time taken by our CAC algorithm to make an
admission decision. It is desirable that any online CAC
algorithm has a small execution time. Fig. 8 presents the
results for both system S and system R. In the case of the
regulated system, the execution time reported included that
taken to select proper regulation parameters.

From Fig. 8 we can make the following observations:
We found that in terms of E q U) our CAC algorithm

performed very well when it was used alone. The maxmium
average time required by the algorithm was less than 1.4 s.
For a large range of utilisation, (e.g. U = 0 to 60%), the
ET(U) was less than 0.36s.

The ET(Uj is increased when the CAC algorithm is used
in conjunction with the regulation method. This is because
of the additional overheads due to the regulation parameter
setting method. However, even in this case the maximum
ET(U) is about 6s..For a large range of utilisation (e.g. U =
0 to 60%), the ET(U) is less than.2.7~.

From Fig. 8, we can also observe that the ET(U) may not
monotonically increase as the average link utilisation
increase. With a little reflection we notice that the average

link utilisation impacts the ET(v) of the CAC algorithm in
two different ways.

When the link utdisation increases, so does the load of the
server. Consequently, the length of the busy interval at the
server also increases. This results in an increase in the time
taken to compute the delay upper bound at the server. As a
result, the ET(v) of the CAC algorithm increases.

On the other hand, an increase of link utilisation may
reduce the number of iterations during an execution of the
CAC algorithm. This is because a .high link utilisation
increases the likehood that the deadline and buffer require-
ments will be violated. Therefore the CAC algorithm termi-
nates in ‘reject’ with less number of iterations. As a result,
the increased link utilisation may reduce the ET(U).
These two opposing effects explain the nonmonotonical
phenomenon of ET(U) as a function of the link utilisation.

5 Conclusions

We addressed the connection admission control problem in
an ATM LAN supporting hard real-time applications. The
key issue in solving this problem was obtaining reasonable
upper bounds on the end-to-end delays of connections. We
took a network decomposition approach, in which the net-
work is modelled as a collection of servers. This approach
has been used by several researchers before [I, 1 11. How-
ever, our work sigdcantly differs from the previous work
by making the following contributions:

We use the maximum rate function T(Z) to describe a
connection’s traffic at any point in the network. A potential
concern one may have on the use of the maximum rate
function is the need for computational resources (time,
space or both) to obtain values of r(Z) for different values
of I. By generalising the result in [I], we provide a simple
and efficient method for computing r(I) values for a con-
nection at any point in the network.

Our CAC algorithm explicitly accounts for the extent of
the perturbation caused by admitting a new connection and
also deals with the possible cyclic dependencies.

We formally established the desired properties of our
CAC algorithm. Specifically, we showed that the algorithm
always terminates, regardless of the existence of cyclic
dependencies among the connections and servers. Thus,
our algorithm is correct in the sense that it accepts a con-
nection only if the QoS requirements of the new connection
and existing ones can be met. The performance of our algo-
rithm is throughly evaluated. We found that the algorithm
is effective and effkient in the sense that it can achieve a
reasonable admission probability and yet maintain a low
execution time.

This work can be extended in several ways. An impor-
tant issue in hard real-time systems is to consider good
approximations [I I] of the explicit traffic descriptor so as to
improve the execution overheads of the algorithm,
although this will result in a corresponding decrease in
admission probability.

6 Acknowledgments

This work was partially sponsored by the City University
of Hong Kong under grant 7100130 and 7001060, and
UGC (University Grant Council) Hong Kong under grant
904051 1-CityU 1076-00E. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official polices or
endorsements, either express or implied, of the UGC Hong
Kong or the City University of Hong Kong.

IEE Proc.-Commun., Vol. 148, No. 4, August 2001 225

7 References

1

2

CRUZ, R.L.: ‘A calculus for network delay’, IEEE Tram. In$ Theory,
1991,37, (I), pp. 114141
PAREKH, A.K.J.: ‘A generalised processor sharing approach to flow
control in integrated services networks’. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1992
KAMAT, S., and ZHAO, W.: ‘Performance comparison of two token
ring protocols for real-time communication’ in SON, S. (Ed.): ‘Princi-
ples of real-time systems’ (Prentice Hall, 1994)

4 STANKOVIC, J.A.: ‘Misconceptions about real-time computing: A
serious problem for next generation systems’, Computer, 1988,21, (lo),
DD. 1&19

3

5 ‘STANKOVIC, J.A., and RAMAMRITHAM, K. (Eds.): ‘Hard real-
time systems’ (IEEE Computer Society Press, 1988)

6 VAN TILBORG, A.M., and KOOB, G.M.: ‘Foundations of real-time
computing: Scheduling and resource management’ (Kluwer Academic
Publishers, 1991)
KAMAT, S., and ZHAO, W.: ‘Real-time schedulability of two token
ring protocols’. Proceedings of the IEEE intemational conference on
Distributed computing systems, May 1993, pp. 347-354

8 STROSNIDER, J. K., MARCHOK, T., and LEHOCZKY, J.:
Advanced real-time scheduling using the IEEE 802.5 token ring’. Pro-

ceedings of the IEEE symposium on Real-time systems, December
1988, pp. 42-52

9 SHA, L., SATHAYE, S.S., and STROSNIDER, J.K.: ‘Scheduling
real-time communication on dual-link networks’. Proceedings of the
IEEE Symposium on Real-time systems, December 1992, pp. 188-197

10 AGRAWAL, G., CHEN, B., ZHAO, W., and DAVARI, S.: ‘Guar-
anteeing synchronous message deadlines in high speed token ring net-
works with timed token protocol’. Proceedings of the 12th TEEE
international conference on Distributed computing systems, June 1992,
pp. 468475

11 RAHA, A., KAMAT, S., and ZHAO, W.: ‘Guaranteeing end-to-end
deadlines in ATM networks’. Proceedings of the 15th IEEE intema-
tional conference on Distributed computing systems, June 1995,

12 ‘ATM user-network interface specification version 3.1’. ATM Forum,
1995

13 RAHA, A., KAMAT, S., and ZHAO, W.: ‘Using trafic regulation to
meet end-to-end deadlines in ATM networks’. Presented at the 1995
intemational conference on Network protocols (ICNP-95), 1995,

14 DEMERS, A., KESHAV, S., and SHENKER, S.: ‘Analysis and sim-
ulation of a fair queueing algorithm’. Proceedings of ACM SIG-
COMM’89, September 1989, pp. 1-12

15 FERRARI, D. , and VERMA, D.C.: ‘A scheme for real-time channel
establishment in wide-area networks’. IEEE J. Se/. Area. Commun.,

7

~~ ~ ~~~~~~~~

1990, 8, (3), pp. 368-379
16 GOLESTANI, S.J.: ‘A framing strategy for congestion management’,

IEEEJ Sel. Area. Commun., 1991, 9, (7), pp. 10641077
17 KALMANEK, C.R., KANAKIAG, H., and KESHAV, S.: ‘Rate

controlled servers for verv hi&-sDeed networks’. Proceedings of IEEE
conference on Global tele;o&un>cations, December 1990, pp. 300.3.1-
300.3.99

18 TRAJKOVIC, L., and GOLESTANI, S.J.: ‘Congestion control for
multimedia services’, IEEE Netw., 1992, 6, (5), pp. 2&26

19 ZHANG, H., and KESHAV, S.: ‘Comparison of rate-based service
disciplines’. Proceedings of ACM SIGCOMM’91, September 1991.
pp. 113-121

20 RAHA, A.: ‘Real time communication in ATM networks’. PhD the-
sis, Department of Computer Science, Texas A&M University 1995, in
preparation

21 LIU, C.L., and LAYLAND, J.W.: ‘Scheduling algorithms for multi-
Dronarnming in a hard-real-time environment’, J. Assoc. Compur.
kfazh., 1973,120, (I), pp. 46-61

multiple-access networks’, J Real-Tzme Syst , 1995
22 MALCOLM, N., and ZHAO, W.: ‘Hard real-time communication in

l < l < k

Proof: We prove this theorem by induction. By definition,
r(I) s 1. Thus it is sufficient to show that

r z , s (z , k + l) (1) I (1 + %z,s(z,l) I (1 + C Z d (20)

where crP is given by

226

C i , k = c di ,s(i , l) (21)
l<l<k

Base step: k = 1. When k = 1. Ti,$ (i,k+l)(I) = ri,s(i,2)(I) is the
maximum rate function of Mi at the output of the first
server traversed by Mi. Consider server s(i, 1) and an arbi-
trary time instant (say t). Let (t - di,s(i,l), t + r) I 2 0,
be the number of Mi’s cells that arrive at the input of s(i, 1)
in interval [t - di,di,l), t + I) . Let ~ i , , ~ (j , l) (t , t + I) , t 2 0 be the
number of Mi’s cells that are transmitted by s(i, 1) in inter-
val [t, t + I) . Thus, by definition,

m,s(i,2) (1) = m p x (~ , ~ (~ , ~) (t , t + 1)) (22)

di,x(i,,) is the worst-case delay experienced by Mi’s cells at
server s(i, 1). Therefore if a cell of connection Mi is 1.rans-
mitted by server s(i, 1) at time t, t 2 0, then the earliest time
that the cell can arrive at the input of server s(i, 1) is
t - di,5fi,l). Hence

But by definition
% , s (i , l) (4 t + 1) I % , s (i , l) (t - 4 , s (i , l) I t + 4 (23

% , s (j , l) (t - d i , S (i , l) , t + 1)

I (1 + ~ Z , s (i , l)) ~ i , s (z , l) (1 + d i , s (i , l)) (24

~ Z , S (Z , l) (~ , t + 1) I (1 + ~ i , S (Z , l) ~ ~ Z , S (Z , l) ~ ~ + dZ,:(i,l))
(25)

1 L , S (Z , 2) (1) I (1+di,S(i,l))L,s(i , l) (~ + ~ Z , S (Z , l)) (26)

ri,s(i,2) (11 I (1 + y) r i , s (i , l) (1 + di,5(i,l)) (27)

By substituting eqn. 24 in eqn. 23 we obtain

Due to the arbitrarity of t and eqn. 22 we have

Dividing by Z on both sides, eqn. 26 becomes

di s(i 1)

Hence the base case holds.
Induction hypothesis: Let the maximum rate function at the
input of the kth server in Mi’s path be given by

r z , s (z , k) (0 5 (1 + y9ri,s(i,l) (1 + C i , k - l) (28)

where ci&I is given by

Ci ,k - l = c dZ,s(Z,L) (29)
l < l < k - l

Induction step: r,,, (i,k+l)(I) is the maximum rate function of
Mi at the output of the kth server traversed by Mp By
using slrmlar arguments discussed in the base case we have

m,s(i,k+l) (1) I (1 + d i , s (i , k)) r i , s (i , k) (1 + di,s,: i ,k))
(30)

q s (z , k + l) (1) I (1 + d i , s (i , k)

Substituting eqn. 28 in eqn. 30 we obtain

+ c i , k - l
-) 1 + &(i,k:)

x ~ Z , S (Z , l) (~ + d i , s (i , k) + C Z , k - - l N

(31)
Thus

l r i , s (z , k + l) (1) L (1 + di ,s(i ,k) + CZ,k-1)

x r l z , s (z , l) (~ + d i , s (i , k) + C i , k - - l))

(32)

Ci,k-1 + di ,s(i ,k) = di,S(i,L) + d i , s (i , k) (33)

But

l<L<k- l

IEE Proc.-Commun., Vol. 148, No. 4, August 2001

= dZ,S(i,l) (34)

Therefore the theorem follows.

8.2 Termination property of the algorithm
To prove the termination property of the algori te we
need some lemmas. For notational convenience,_let be
vector 2 at the end of the kth iteration. Let d[O] be the
vector 2, which is computed at the initialisation phase in
Fig. 4.
Lemma 1: During any execution of the CAC algorithm, the
following inequality holds: for k 2 0,

(38) &I < $+ll -
Furthermore, the strict inequality (&I < &+ll) holds if a
server is appended to Impactserver-list during iteration
k + I .
Proo$+Con_sider the first iteration. Before the iteration+we
have d = d o l and at the end of the iteration we have d =
& I . During this iteration, server s = s(N + 1, 1) is analysed.
Consider a previously admitted connection MI. If M, passes
through this server, then d,,, Ml's delay bound at this
server is updated. Let 4,/ld and 4,pew be the old and new
values of this delay bound, respectively. Thus by definition

if Mi does not pass
through server s

dpl + d;zw - d$! otherwise
(39)

Considering the fact that d i , p takes into account the
impact of the new connection (MNtl) while di,:ld does not,
from eqn. 5 we have

N

(40)
where L F and L,:ld are the new and old maximum busy
interval lengths computed by using eqn. 6. Substituting
eqn. 6 in eqn. 40 we can show ;hat d. new - di,/ld B 0. Thus
dL0] 5 dc']. It then follows that do] 5 #l]. Furthermore, if a
server is added to Impact-server-list during iteration 1, then
we have old-q < q,Ffernnl. This implies that diol < d/I] if con-
nection Mi passes through the serv5r. Be5ause there will be
at least one connection doing so, d[O] < d '] . We have now
established the lemma for the case of k = 0. By mathemati-
cal induction, the general case (k > 0) can be proved.

To prove the following lemma, define size-oflist(k) as
the sue of Impact-server-& at the end of the kth iteration.
Let size-of-list(k)(O) be the size of Impact-server-& before
the iteration phase, i.e. size of list HN+,.
Lemma 2: During an execution of the CAC algorithm, if

(41)

&I= &+I1 then

size-of-list(k + 1) = size-of-list(lc) - 1

IEE Proc.-Cominun., Vol. 148, No. 4, August 2001

Prooj In the algorithm given in Fig. 4, the first element in
Impact-server-list is removed (see line 14) during every iter-
ation. Thus, th_e size of the Impactserver-list is reduced by
one. If &I = dk+'], then the queue length of the server is
not changed. Hence, from line 20 of Fig. 4, no new element
is appended to Impact-server-list. The lemma then follows.
Lemma 3: During an execution of the algorithm. before its
termination there is a subsequence of iterations (iterations
I , , I,, 12, ..., 4 ...) where Io < 1, < Z, < ..., J-, < 4 ... such
that fo r j > 1

and
I3 - IJ-l 5 A-

d[L11 < & I

(42)

(43)
+

Prooj This subsequence of iterations can be established as
follows: Let Io = 0. Recall that in the algorithm before the
first iteration, Impact-server-& was initialised by the iden-
tities of all the servers traversed by MN+I, that is by HN+I.
We have

size-of-Zist(0) 5 K (44)
Thus, by the end of the Kth iteration, every server in the
initial Impact-server-list has been analysed at least once.
Using lemmas I and 2, it is obvious that either the algo-
rithm has terminated, or between the first iteration and the
Kth iteration, there must be at least one iteration (let it be
iteration x) during whch the list is appnded with an ele-
ment. This means that compared with &-'I, at least one of
the elements in has increased. By eqn. 14,

(45)

Note that x - Io 5 K. Let I , be x. Thus, we have iteration I ,
identified. By mathematical induction, the subsequent itera-
tions can be identified.

The following lemma gives the delay and buffer size
invariance which holds for each iteration of the CAC algo-
rithm.
Lemma 4: If the CAC algorithm accepts a connection then
l s i s N + l , l s s < K ,

d,* 5 d2 (47)

9: 5 4 s (48)

and

where d,* is the end-to-end delay experienced by a cell of
connection MI and qs* is the queue length at server 5. The
formal proof of this property is given in [13]. Intuitively
lemma 4 can be explained as follows. Consider connections
MI, ..., MN, that are already admitted by the network
before the arrival of the connection request MN+,. Since
these connections are admitted by the network, their QoS is
not violated before the arrival of the new request. There-
fore, eqns. 47 and 48 must be true before the new connec-
tion request MN+, is considered. The cells from MN+' will
change the cell arrival traffic at the servers in the network.
Therefore if MN+' is accepted by the network, then the
worst-case delays suffered by the cells of all the connections
may change due to the perturbation caused by the cells of
the new connection. This perturbation originates from
server s(N f 1, l), the server at which the cells of connec-
tion MN+, enter the network and may propagate along
different paths. Hence, if we assume that eqns. 47 and 48
are not true then there must exist a server (say s) along a

221

perturbation path originating from s(N + 1, l), for which
the computed values of d,,$ and qJ are incorrect. However,
the CAC algorithm traces all the possible perturbation path
5 by using the list Impact-server-list. Further, the CAC
algorithm uses the results of theorems 1 and 2 to determine
the worst-case cell delay, maximum queue length, and
bounds on output traffic flows at every server in Impact-
server-list. Therefore, no such server s can exist. Hence, the
lemma holds.
Theorem 3: The CAC algorithm terminates.
Prooj We show this by contradiction. Assuming that there
is a system (e.g. K servers and N + 1 connections) such that
the CAC algorithm does not terminate.

Given the contradiction assumption, the algorithm iter-
ates infinitely. However, from lemma 3 we know that there
is a subsequence of iterations (iterations I,, I,, I., ..., 4 ...)
where Io < Zl < I, < ..., Ipl < 4 and

-+ d['OI < 2['11 < ;[I21 < , . , 2 [1 3 - 1 1 < &I < . , .
(49)

n u s , {&I, &ll, iW, ... J[Gll, J['r], ...I is a monotonically
increasing sequence. From eqn. 5, we know that the ele-
ments in 2 take positive integer values. Thus, eqn. 49

implies that there must be an iteration (say ZJ such thit
+

(50) d['-I > 5
Ths is one of the termination conditions in the itera.tion.
Thus, the execution of the algorithm must terminate. This
is a contradiction. Thus the theorem is proved.
Theorem 4: The CAC algorithm is correct.
Prooj Assume that the CAC algorithm shown in Fig. 4
accepts a connection after E iterations. Since the connec-
tion is accepted by the CAC algorit_hm, we must have 2L.l
(N + 1) s D (N + 1) and $[fl (K) s B(K) (see line 31).'That
is for 1 s i s N + 1, we have

d!E1 5 D; (51)

df 5 D; (52)

(53)

But by lemma 4 we have d; s ~$4. Therefore, for 1 s i s N
+ 1,

By using eqns. 9, 13 and 52 we get
I

+
d * (N + 1) 5 b (N + 1)

Srmilarly, using lemma 4 we can show

G*(K) -5 S (K) (54)
Hence the CAC algorithm is correct.

228 IEE Proc.-Commun., Vol. 148, No. 4, August 2001

