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Abstract: A connection admission control (CAC) algorithm must efficiently determine if a new 
connection can be admitted by venfying that its QoS requirements can be met without violating those 
of previously admitted connections. In hard real-time systems, the QoS requirements are specified in 
terms of end-to-end cell deadlines and no cell loss due to buffer overflow. To achieve these objectives 
a CAC algorithm must account for the traffic characteristics of connections. Furthermore, arbitrary 
topology of the network may lead to cyclic dependencies among various connections. An efficient 
CAC algorithm is presented that addresses these issues. The algorithm uses a traffic descriptor called 
the ‘maximum traffic rate function’ to effectively compute bounds on end-to-end delays of 
connections and buffer requirements within the network. The work differs from most previous work 
in that it does not require traffic restoration inside the network. 

1 Introduction 

We address the problem of admitting hard real-time (HRT) 
connections in an ATM local area network. A hard real- 
time connection specifies its quality of service (QoS) in 
terms of a cell-transfer deadline and the requirement of no 
cell loss due to buffer overflow. Connections supporting 
distributed hard real-time applications such as supervisory 
command and control systems used in manufacturing, 
chemical processing, nuclear plants, telemedicine, warshps, 
etc. can be characterised as HRT connections. 

The problem of admitting a hard real-time connection in 
an ATM network is as follows. Consider a network that 
has already admitted a set of N hard real-time connections 
{ M I ,  M2, ..., MN} with each connection receiving its 
requested quality of service. Let a request for a new hard 
real-time connection MN + 1 arrive. Now the network 
must efficiently determine if MN + 1 can receive its 
requested quality of service without violating the guaran- 
tees already provided to connections {Mi ,  M2, ..., MN}. 

A key issue in admission of hard real-time connections in 
an ATM LAN is the derivation of delay bounds of connec- 
tions. This is a challenging task. Arbitrary topology of 
ATM networks along with statistical multiplexing of cells 
belonging to different connections makes the derivation 
complicated in comparision with other local area network. 
Specifically, admitting a new connection perturbs the traffic 
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of some of the existing connections, necessitating a re-eval- 
uation of the end-to-end cell delays of these connections. 
Furthermore, arbitrary topology loops make the delay 
analysis complicated [ 1, 21. Therefore determining delay 
bounds has been the pivotal issue in the development of 
real-time technology [3-6]. In general, obtaining delay 
bounds in a LAN has been difficult due to the distributed 
nature of the problem. There are roughly two approaches: 
synthesis and decomposition. 

With the synthesis approach, the entire network is con- 
sidered as a single server. Such an approach gives reasona- 
ble bounds only if one or few applications access the 
network at a time. Therefore this approach has been 
adopted only for small and simple networks such as 802.5 
token ring [7, 81, DQDB [9], and FDDI [7, IO]. 

With the decomposition approach, the network is 
decomposed into servers. Each ATM connection is viewed 
as being served by a sequence of servers. The worst case 
end-to-end cell delays are obtained by summing the upper 
bounds of the delays suffered by a connection at each of 
the servers [I, 2, 111. The advantage of the decomposition 
approach is that it provides the basis for a general and 
modular analysis of the network, similar to the analysis of 
electrical circuits. We adopt the method of network decom- 
position in the computation of the end-to-end cell delays. 

To analyse the delay bounds at each server it is necessary 
to have a description of a connection’s traffic at the input 
of the server. Many traffic descriptors have been proposed 
in the literature [l, 11, 121. To explicitlv model the traffic 
characteristics of connections we adopt a maximum rate 
function introduced in [Ill and used in [13]. Much of the 
previous work [14-191 assumes the existence of additional 
mechanisms within the network to tailor the connection 
traffic so that the traffic at the input of each server adheres 
to a specific traffic characterisation. The use of the maxi- 
mum function to model traffic w i t h  the network frees us 
from this assumption. 

In this paper we design and analyse a connection admis- 
sion control (CAC) algorithm that addresses these prob- 
lems. Our algorithm has two important properties: it 
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explicitly models the trafic characterstics of connections in 
the network, and it takes into account interaction of the 
new connection’s trafic with that of the old ones and 
addresses the possibility of cyclic dependencies among 
those connections. We show that our algorithm is effective 
and efficient. We demonstrate that there is a high probabil- 
ity that a new connection be admitted in a normally loaded 
system. Our experimental data also show that it takes a 
relatively short time for the CAC algorithm to make the 
admission decision, an essential feature for on-line use. 

2 Preliminaries 

We present the preliminary concepts and techniques 
employed for deriving the wors-case end-to-end cell delay 
of a connection. We also introduce some of the notations 
and terminologies we use in the rest of this paper. 

The worst-case end-to-end delay experienced by a cell is 
obtained by summing the worst case delays a cell may 
experience at every network component it traverses. The 
methodology to compute these delays is based on the fol- 
lowing three steps: 
Network decomposition. The idea behmd this step is to 
model the network as a set of servers that serve individual 
connections [1, 111. Those servers that offer only constant 
delays to a connection’s cells without changing the cell traf- 
fic characteristics of a connection are considered separately 
from those which offer variable delays to cells and hence 
affect a connection’s trafic. 
Connection-server gruph construction. As a consequence of 
the previous step, each connection is represented as a path 
in a graph whose nodes are servers which potentially affect 
the connection’s trafic. 
Indiuiduul server analysis. The objective of this step is to 
compute the worst-case delay suffered by a connection and 
characterise its traffic at the output of each of the servers 
that offer a variable amount of delay to cells. 

switch A 

I 

The following three subsections examine these steps in 
detail. 

2.7 Network decomposition 
Ths step involves modeling the network as a collection of 
servers. A server is an abstraction of a network component 
that is traversed by a connection’s cells. In an ATM LAN, 
hosts are connected to ATM switches and various ATM 
switches are connected to each other using physical links. 
Fig. 1 shows an ATM LAN consisting of five switches. 
Thus, switches and communication links are two key com- 
ponents in an ATM LAN. As shown in Fig. 1, a witch 
itself consists of input ports, a switching fabric, and catput 
ports. An ATM cell arrives at an input port of a swiich, is 
transported by the switching fabric to an output port, and 
transmitted along the physical link associated with the out- 
put port. In the network decomposition step, we model the 
input ports, the switching fabric, the output ports, arid the 
physical links as servers serving ATM connections. 

The servers are classified into two categories: constant 
servers and variable servers. A constant server is the one 
that offers a constant delay to each cell passing it but does 
not by itself change the traffic flow characteristics of a 
connection. For example physical links and the switchmg 
fabric are constant delay line servers. The function of an 
input port is to demultiplex the arriving cells based on the 
information in the cell header. Ths is achieved in constant 
time by the hardware associated with the input port. Thus 
we can also model the input port of an ATM switch as a 
constant demultiplexer server. We further assume that in 
the high priority queue the cells are served on the first come 
first serve (FCFS) basis. 

As an example of network decomposition, consider the 
ATM LAN shown in Fig. 1. Fig. 2 shows the same 
network modeled as a collection of servers serving four 
connections M, ,  M2, M3, and M4. Although this example 
may not be representative of a typical ATM LAN, it is 
used to illustrate important concepts discussed. 

switch 0 - 
switch switch 

from host H2 

switch 
fabric fabric 

from host H3 to host H8 

.- I 

switch D 

I \ /  
switch C 

switch E 

I from host H4 
Fig. 1 ATM LAN withfive switches 
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connection M4 switch A switch B 
from host Hi  
_ -  

connection M2 connection M1 
tohostH5 

............ 

. ....... .......... ............................. 

connection M2 
from host H3 

connection M4 
to host H7 

.......... ......... 

switch D mux switch C 

_. - ._ ._  connection M1 
connection M2 
connection M3 
connection M4 

.................... _ _ _ - _ _ _ _  
. - - - -  

I ::‘: switch E 

I , ,  
, - * J  constant delay line server 

1 ; ; connectionM3 ‘r from host H4 
Fig. 2 Example of nehvork decomposition 

connection M2 

’*. ; connection M1 

................................................................................................................. 
I - - - _  .... C . - . - . - . - . - . - . - . - . - . - . - . - . - . - .  

. .  
‘( 

tr-v - . . . - . ~  . _ . d  !. i::::::t!o!P!-- ... 
destination of 
connection M1 

4 
source of 

connection M3 

Fig. 3 Connection-sewer graph comtruction 

2.2 Connection-server graph construction 
Introduction of a new connection into an ATM LAN may 
affect the delays suffered by some of the previously admit- 
ted connections. The purpose of connection-server graph 
construction is to identify such interdependencies. 

First, note that network decomposition allows us to view 
each connection as a stream of cells served by a sequence of 
constant and variable servers. For example, consider con- 
nection M I  from host 2 to host 8 (Fig. 2). M ,  traverses 
seven delay line servers (four physical links and three 
switching fabrics) and three demultiplexer servers (input 
ports of three switches) all of which are constant servers. 
M I  also traverses three multiplexer servers (output ports of 
three switches) which are variable servers. Recall that the 
constant servers serving M I  only add a fmed amount of 
delay to M,’s cells without changing M,’s traffic character- 

IEE PIOC -Commun , Vol 148, No 4, Auguyt 2001 

I 
- - - - - - I  connection M4 

destination of 
connection M4 

/ 

istics. Hence, their impact on M I  can be accounted for by 
simply subtracting the total delay suffered by M ,  at these 
servers from M,’s end-to-end deadline. The same holds for 
other connections. In the rest of the paper, we assume that 
the deadlines of connections are modified in such a way. In 
so doing, we eliminate all the constant servers from further 
consideration and focus only on the variable servers in the 
remainder of the paper. We will often omit the modifier 
‘variable’ when referring to variable servers to avoid repeti- 
tion. 

Now we can view a connection as being served by a 
sequence of variable servers only. Let K be the total 
number of network components modelled as variable 
servers. In the example shown in Fig. 2, K equals 9. Each 
of these servers is given a unique identity, an integer rang- 
ing from 1 to K. A connection-server graph is constructed 
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as a labelled, directed graph with the servers as its nodes. A 
directed edge is introduced from server m to server n if 
there is a connection served by server m followed by server 
n. The edge is labelled by the connection that uses the 
servers in immediate sequence. Fig. 3 shows the connec- 
tion-server graph corresponding to the svstem shown in 
Fig. 2. The sources and destinations of connections are also 
shown in the connection-server graph to facilitate the later 
discussion of our CAC algorithm. 

We denote the sequence of servers serving connection kfi 

(1) 
where Ki is the total number of servers serving connection 
Mi, and s(i, I]  the identity of the jth server in the path of 
connection Mi. For example, from Fig. 3 we see that H I ,  
the sequence of servers for connection M I ,  is <3, 5, 6>. 
Clearly, Hi, the sequence of servers serving Mi, must be a 
valid directed path in the connection-server graph. If server 
x is one of the servers in Hi, such that x = s(i, k), k # Ki, 
then function next,@) is defined as 

next,{x) will be used in our CAC algorithm. 

2.3 Individual server analysis 
The construction of the connection-server graph captured 
the dependencies among the servers. Next we need to 
examine how delays at individual servers can be computed. 
T h s  is the main objective of the server analysis step. We 
assume that time is normalised in terms of the cell trans- 
mission time in the ATM network. That is, time is consid- 
ered a discrete quantity with the cell transmission time 
taken as unit time. 

We need some notations to facilitate the discussion. Let 
d,, be the worst-case delay experienced by a cell of Mi at 
server s. We let d,,, = 0 i f s  does not belong to Mi‘s connec- 
tion path specified by Hi. Let d(n) be a vector 

bY 
H, = ( s ( i ,  l),  s ( i ,  2 ) ) .  . . , s ( Z , j ) ,  . . . , s(Z, Ki)) 

nezt;(z) = s ( i ,  k + 1) ( 2 )  

+ 
d ( n )  = ( d l , d 2 , .  . . ,d ; ,  . . . , d n )  (3) 

where d, is the worst-case end-to-end delay experienced by 
a cell of connection Mi. We will compute di as 

K. 

2.3.7 Traffic descriptor: From the connection-server 
graph we can determine all the connections that share a 
network server. Hence the delay at every server can be 
obtained if input traffic patterns of all the connections shar- 
ing the server are known. The traffic pattern of a connec- 
tion at a point in the network is characterised by a traffic 
descriptor [2]. Due to multiplexing at ATM switches the 
traffic pattern of a connection at any point in the network 
need not be the same as that at its source [l, 11, 121. 

We use the maximum rate function. T(Z) as our traffic 
descriptor. T(Z) specifies the maximum arrival rate of cells 
in any interval of length Z. Equivalently, at most E(Z) cells 
belonging to the connection may arrive in an interval of 
length I. 

A connection’s actual traffic pattern may differ from that 
implied by the traffic descriptor used to describe the con- 
nection’s traffic. The maximum rate function specifies the 
worst case behaviour of the traffic. This information is nec- 
essary for us to derive bounds on the delays suffered by a 
connection’s cells and on the queue lengths at servers. 

For connection Mi, we denote the maximum rate func- 
tion at the input of server s (s = 1, 2, ..., K ) ,  by ri,JZ). How- 
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ever, if server s does not belong to H,, M,‘s connection 
path, then VZ, r,,(Z) = 0. At M,‘s source, its maximum rate 
function is given by T,s(l,l)(Z) which is assumed to be speci- 
fied by the requesting application during the connection 
set-up procedure. Note that (rJ+l)(Z) ,  the maximum rate 
function for M, at the input of server s(i,j + l), is the same 
as the one at the output of server s(i,j]. In Section 2.3 3 we 
will present a method for computing the maximum rate 
function of a connection at the output of a server. 

2.3.2 Delay and queue length bounds: Now con- 
sider an FCFS server s. Assume that the maximum rate 
function traffic descriptors of all the connections at the 
input to server s are known. Then the following result from 
[l, 201 can be used to find the worst-case delay experienced 
by a cell and the maximum queue length at server s. 

Theorem 1. Consider connection M I  that traverses server s. 
dl,s the worst-case delay experienced by connection M,,  and 
q,, the maximum queue length at server s, are given by 

where Ls is the length of the longest busy interval at server 
s and is given by 

L,  = min(1) xrm,s(l) 5 1) ( 6 )  
m 

Theorem 1 can be proved by applying theorem 4.1 given in 
[31. 

2.3.3 Derivation of internal traffic descr,;ptor: 
Recall that connection Mi passes through a sequence of 
servers that is given by Hi = <s(i, l), s(i, 2), ..., s(i, I] ,  ..., 
s(i, ICi)>. Assume that di,s(i,2), ... di,s(i,k), the worst-case 
delays suffered by Mi at the first k (k < Ki) servers in its 
connection path are known. Then the upper bounds ton Ti,, 
( i ,k+l)(Z) ,  the maximum rate function values for connection 
Mi at the output of server s(i, k)  are given by the following 
theorem: 
Theorem 2 

where c,,k is given by 

‘%,k = dz ,s (z , l )  (8) 
l < l < k  

The proof of theorem 2 is given in the Appendix (Section 
8.1). 

Theorem 2 gives an upper bound on a connection’s max- 
i” rate function at the input of server s(i, k + 1) in 
terms of the parameters of the source traffic. Theorem 2 is 
a generalisation of theorem 2.1 in [3], where the maximum 
rate function at the output of an FCFS server was obtained 
in terms of the parameters of traffic at the input to the 
server. Th~s  is useful in practice. Most often, sources in 
hard real-time systems generate regular traffic (e.g. peri- 
odic) for which r(Z) can be described by a closed-form 
expression. Thus, theorem 2 facilitates efficient cornputa- 
tion of maximum traffic-rate functions inside the network, 
making an efficient CAC algorithm feasible. Our perform- 
ance results will also demonstrate that the delay bounds 
computed by using eqns. 5 and 7 are reasonable in that the 
CAC algorithm has a high probability of connection 
admission for normal loads. 
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3 Connection admission control algorithm 

We will first elucidate some fundamental requirements of a 
connection admission control (CAC) algorithm for hard 
real-time (HRT) systems. Then we present an efficient 
CAC algorithm for HRT systems and establish its proper- 
ties. 

3.7 Requirements 
Any connection aQmission control algorithm has to satisfy 
the following two properties: 
Property 1: A CAC algorithm must be correct in the sense 
that if the new HRT connection is admitted then the end- 
to-end cells delays of all connections (the existing and the 
newly admitted ones) must be no more than their deadlines 
and there must be no buffer overflow. 
Property 2: The algorithm must terminate. In other words, 
the connection admission algorithm must either admit the 
new connection,or reject it within a bounded time. Further- 
more, the time taken by the CAC algorithm has a direct 
impact on the time required for connection establishment. 
Therefore it is desirable to have an efficient CAC algorithm 
that takes a short time to make an admission decision. 

To formalise the property we introduce the following 
notations and conventions: 

Let a(,) be a vector of size n. (We explicitly specify the 
size of the vector; this is to avoid the confusion of the 
number of connections considered. Hqwyer, when the 
context is clear we omit this specification). d*(n) represents 
the end-to-end delays associated with n connections, that is 

+ 
d*(n) = (d ; ,  d ; ,  . . . , dz, . . . , d:) (9) 

where dr is a random variable that denotes the end-to-end 
delay of a cell belonging to Mi. 

Let a(,) be a vector of size n. a(,) represents the end-to- 
end.deadlines associated with n connections. That is 

q n )  = ( 0 1 ,  Dz,  . . . ,D,, 3 . .  , Dn)  (10) 
where D, is the deadline associated with M,. 

Let a*(@ be a vector size K. a*(@ represents the queue 
lengths, that is 

+ 
Q * ( K )  = (9.; , d I . . . ,9.: , f . . , 9.; 1 (1 1) 

where qs* is a random variable that denotes the queue 
length at server s. 

Let Z(K)  be a vector size K. J(@ represents the buffer 
capacities of the server s. That is 

4 

B ( K )  = (&,&, . . . , B,, . . . , B K )  (12) 
where B, denotes the buffer capacity at server s. 

Given two vectors ?(n) = (X,, X2, ..., X,) and ?(n) = (Y,,  
Y2, ..., Yn) of the same size, we say that 

(13) 2 5 ? if (Vz, 1 5 i 5 n, X ,  5 K )  
and 

2 < Y' if ( (2  5 9) and (3 , l  5 z 5 n, X ,  < E)) 

In terms of these notations the correctness property can be 
stated as follows: if the new connection MN + 1 is admitted 
then 

(14) 

4 

d * ( N  + 1) 5 h ( N  + 1) (15) 
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(16) 
+ 
q*(K)  L &(A) 

where N is the number of connections that have previously 
been admitted into the system. 

3.2 Motivation 
We know that once a new connection is admitted its traffic 
can perturb the traffic of existing connections. Th~s  pertur- 
bation is not limited to the connections that share a server 
with the new connection but may spread to other connec- 
tions in the system. Thus, to make it correct a CAC algo- 
rithm must take into account the extent of such 
perturbation and re-evaluate the delays and queue lengths 
affected by the perturbation. 

Given the network decomposition methodology, a 
straightforward approach to solving the problem is to iden- 
tify all the servers impacted by the new connection. Then 
all the servers impacted by admitting the new connection 
can be re-analysed. 

However, there is an inherent problem in such an 
approach. Consider the system presented in Fig. 2. Let 
{M,, M2, M3} be the connections that already exist in the 
system and M4 be the new request. The connection-server 
graph in Fig. 3 shows the situation in whch M4 has been 
admitted. 

There is a cyclic dependency in the connection-server 
graph. For example, M4 shares server 3 with MI, hence 
affecting M,'s traffic. Since M ,  later shares server 5 with 
M2, the behaviour of server 5 and connection M2 may be 
impacted by the introduction of M4. Furthermore, M2 
shares server 7 with M3 and M ,  shares server 1 with M4 
itself, forming a dependency loop! 

With such a dependency loop one cannot analyse the 
impacted servers in a simple sequential manner. Our CAC 
algorithm is an iterative procedure. During the iterations it 
explicitly and cyclically traces and analyses those servers 
impacted. 

In general, a system with such cyclic dependency may 
not be stable in the sense that the delays and queue lengths 
may not be bounded. This has created a great deal of diffi- 
culty in analysis [I, 21. Particularly, when an iterative 
method is used to analyse the system one may run into 
such risk as the procedure may not converge, violating the 
termination requirement. We are dealing with hard real- 
time systems which have stringent dead line and buffer 
requirements. Our CAC algorithm exploits the restrictions 
imposed bv hard real-time systems to solve the convergence 
problem in a potentially unstable system. 

3.3 Important data structures 
Before we present the CAC algorithm, we discuss some 
important data structures used in the algorithm. We 
assume that the network management system, which 
invokes the CAC algorithm. maintains the following data 
structures: 
dM is a matrix used by the management system to store the 
current value of the upper bounds on the cell delays experi- 
enced by connections at servers in the ATM LAN. 
Formally, for 1 s s s K, 

where d,,s is defined in eqn. 5. 
a(@ = (ql, q2, ..., qk), a vector used by the management 
system to store the upper bound on the queue size at eve,ry 
server in the network. The default initial value of a(K, is 0 .  
B(N> = (01, D2, ..., DN), which is defined in eqn. 10. 
B(K) = (B1, B2, ..., BK), which is defined in eqn. 12. 

' 

dMc,s = dz,s (17) 

22 1 



The input traffic vector ?(N> = (qs(l,,)(a ~ 2 , ~ ( 2 , 1 ) 0 ,  ..:, 
rN,s(N,I) where for i = 1, ..., N,  r;,s(i,l)(l) presents the maxi- 
mum rate function of connection Mi at the source. 

Once a new connection admission request arrives, the 
new connection (MN + 1) presents the following informa- 
tion to the system: 

ETNcl = <s(N + 1, l), ..., s(N + 1, i.e. the connec- 
tion path of MN + 1 

DN+l,  the cell transfer deadline of connection MN+l.  
rN+l,$N+l,l)(Q the maximum rate function of connection 

MN+I at the source. 
The network management system p5sses dM, q(K), 6 0 ,  

rithm. In addition to these input data structures, the CAC 
algorithm uses the following internal data structures. 
d~lt?riId , a matrix internally used by the CAC algorithm. 
d ( N  + l), a vector of size N + 1. It is internally used by the 
CAC algorithm to store the computed upper bounds on 
the end-to-end cell delays. 

internal(@, a vector internally used by the CAC algorithm 
to store the computed upper bounds on the queue length at 
the servers. 

QN), HN+I,  ~ ~ + 1 ,  rN+l,s(N+l,l) and W K )  to the CAC algo- 

Impact-server-list, an ordered list of the server iden iities. 
When the CAC algorithm detects that a server would be 
affected by admitting the new connection, it will append 
the corresponding identity at the end of Impact-server-ist. 
The CAC algorithm uses Impuctserver-list to determine 
the order in which the servers affected by the new coimec- 
tion are to be analysed. 

3.4 Algorithm 
The pseudocode for the CAC algorithm is given in Fig. 4. 
It is an iterative procedure which efficiently determines and 
re-analyses the servers that will be affected if the new con- 
nection MN+I is admitted. The algorithm has three phases. 

3.4.1 Initialisation phase, lines 1-7 7: In this phase 
the algorithm copies the system data structures dM and 
q(@ into its internal working space. Matrix dAPnternal of the 
algorithm is initialised as follows. For 1 I s I K, 

dMt,+ if 1 5 i 5 N ,  

if i = N + 1. 

dM;,:ternal - - i o  
Also, a ( N  + 1) and d(N + 1) are constructed for the set of 
connections under consideration,including the new connec- 

Connection-Admission-Control (dM, i ( K ) ,  d(N), ?(?I), HNCl ,  DNcl ,  rN+l,,v(N+l,l), g ( K ) )  
I* Initialisation phase: Constructing d(N + 1) and a ( N  + 1) for connection set */ 
1, y w l u l  ( K )  = W); 
2. 
3,  dMinfCrnu/ = d&f. 

D ( N  + 1 )  = (01, D2, ..., DN, DN+I); 

4. for a l l s  do 
5. dh4$'ty1 = 0; 
6 .  end for all 
7. 
8. 
9. end for 
10. d ( N  + 1) = (d l ,  d2, ..., dN, dN+I);  

11. Impact-server-list = < s(N + 1, I), s(N + 1, 2), ..., s(N + I ,  KN+J >; 
I* Iteration phase */ 
12. while ((Impact-server-list # 0) and ( d ( N  + 1) I a ( N  + 1)) and (gintcrnal(K) I B(K)))  do 
1 3. 
14. 
15. 
16. q , p m I l  = compute-queue-length(s); 
17. 
18. i f s  E Hi then 
19. 1.S 

I* If delay or queue length at server s changes, add the succeeding server to Impact-server-list */ 
20. 

21. 
22. end if 
23. end if 
24. end for 
25. 
26. di = C,s,,i dM$iCrnu/; 
27. end for 
28. 
29. end while 
I* QoS verification phase *I 
30. if ( ( a ( N  + 1) 5 b ( N  + 1)) and (GinfernUl(K) 5 d ( K ) ) )  then 
31. 
32. else return(Reject). 

f o r i  = 1 to N + 1 do 
di = &E Hi dM$!ernul; 

s = fi rst-e I ement (Impact-ser ver-list); 
Impact-server-list = Impact-server-list - ; 
old - q = q , p n u l ;  

for (i = 1 to N + 1) do 

4s ; dM (IIIWnUl = 

if ((old-q # q,Ffernu/) and 
(nexti(s) G Impact-server-list)) 'then 
a p pe nd-to-l ist (Impactser ver-list, nexti (s)); 

for i = 1 to N + 1 do 

a ( N  + 1) = (dl, d2, ..., d N ,  dp.,+l); 

return(Accept, d ( N  + I), dMinternU', ginferna'(K), f ( N  + 1)); 

Fig. 4 Pseudocode for CAC algorithm 
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tion and the existing ones. Since all the servers in the 
connection path of MN+, will be directly impacted if M N + ~  
is admitted, the algorithm initialises Impact-server-list with 
the identities of all the servers in MN+l’s path. 

3.4.2 Iteration phase, lines 13-29: This is the main 
body of the algorithm and consists of a while loop. The 
iterative procedure begins with the current status of the net- 
work with the existing set of connections. Then it systemat- 
ically traces the impact of the new connection request 
MN+I. In each iteration there are three major operations 
(i) First, the algorithm removes the first server in Impact- 
server-list for analysis. 
(ii) Next, the algorithm computes an upper bound on the 
queue length and then the delay at the server analysed. The 
results presented in Section 3.3 are used to achieve this. 
(iii) Because an increase in delay at ths  server may change 
the input traffic characteristics of the succeeding servers, 
the succeeding servers are also appended to Impact-server- 
list. The next,@) function defined in Section 3.2 facilitates 
this process. Thus, the algorithm systematically traces the 
perturbation caused by connection MN+, in the network. 
9 e  iteration process terminates if the current value of 
d(N + 1) or $(a violates the QoS requirements of the N + 
1 connections. The iteration also stops if Impact-server-list 
is empty. An empty Impact-server-list implies that the 
queue lengths and the delays at every server have reached a 
stable value. 

3.4.3 Verification phase, lines 30-32: In this phase 
the algorithm examines the cause of the termination of the 
while loop. The algorithm accepts the new connection if the 
deadline and kuffer requirzments of all the connections can 
be met, i.e. if d(N + 1) I D ( N  + 1) and $(K)  I B(@. If the 
new connection is accepted, thz algorithm also returns the 
updated values of dM, q(K), D ( N  + I), and p(N + 1) to 
the network management system. 

Table 1: Values of Impact-sewer-list in the example 

Im pact-server-list 
at beginning of 
iteration 

Server analysed Impact-server-list 
during iteration at end of iteration 

iteration 
k 

1 <I ,  3,4> 1 <3. 4,2> 

2 <3,4,2> 3 <4,2, 5> 

3 <4.2,5> 4 <2,5> 

4 <2,5> 2 <5> 
5 <5> 5 <6,7> 
6 <6,7> 6 <7> 

7 <7> 7 <8, I>  

8 <8, I >  8 <I> 
9 <I> 1 <2.3> 

10 <2,3> 2 <3> 
11 <3> 3 <4,5> 

3.5 Some remarks 
Consider the system presented in Fig. 2. Let { M I ,  M2, M3}  
be the set of connections that already exist in the system 
and M4 be one newly requested. The connection-server 
graph in Fig. 3 shows the situation in which M4 is admit- 
ted. During the execution of the CAC algorithm, servers 
impacted by admitting the new connection are identified 
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and re-analysed. For illustration, assume that all the succes- 
sor servers are impacted during the first 11 iterations. 
Table 1 shows the members of Impact-server-ist and the 
servers analysed during the iterations. The reader is encour- 
aged to verify the contents of Table 1 by tracing the algo- 
rithm. This will help understand the algorithm. There is a 
cyclic dependency in the connection-server graph. For 
example, M4 shares server 3 with M ,  affecting Mi’s traffic. 
Since M ,  later shares server 5 with M2, the behaviour of 
server 5 and connection M2 may be impacted by introduc- 
tion of M4. Furthermore, M2 shares server 7 with M3 and 
M3 shares server 1 with M4 itself, forming a dependency 
loop! From Table 1, it is clear that our CAC algorithm is 
able to capture this dependency. The algorithm explicitly 
and cyclically traces and analyses those servers impacted 
during the iterations. 

Furthermore, note that during an execution of our CAC 
algorithm the iteration stops whenever the delay or queue 
length goes beyond the allowable bounds. This automati- 
cally solves the convergence problem in a potentially unsta- 
ble system. Section 8.2 formally, establishes the termination 
property. 

4 Performance evaluation 

We first define performance metrics, then describe the 
system architecture considered and present the performance 
results. 

4.7 Metrics 
Consider the following two metrics for evaluating a CAC 
algorithm for hard real-time connections. 
(i) Admission probability (AP( U) ) :  defined as the probabil- 
ity that HRT connections are admissible on condition that 
the average utilisation of the inter-switch physical links in 
the network is U. 
(ii) Execution time (ET(U)): defined as the average time 
taken for the CAC algorithm to make an admission deci- 
sion given that the average utilisation of the inter-switch 
links in the network is U. 
It is desirable to have a CAC algorithm with high admis- 
sion probability and low execution time. However, there is 
an obvious trade-off between the two. A CAC algorithm 
that blindly rejectes all the admission requests should have 
almost zero execution time but certainly the lowest admis- 
sion probability. On the other hand, one may design a 
CAC algorithm with hgher admission probility by 
computing tighter delay bounds whch may result in a 
longer execution time. In the design of our CAC algorithm. 
we have carefully balanced both factors. The data shown in 
the following subsections will demonstrate that our CAC 
algorithm can achieve reasonable admission probability 
aud yet maintains a low execution time. 

4.2 Experimental system setup 
Here, we report the results of performance evaluation for a 
svstem architecture shown in Fig. 5. The results from the 
other systems are similar and therefore are not presented 
here. 

The network considered consists of four 32 x 32 ATM 
switches. That is, each switch has 32 input lines and 32 
output lines. As shown in Fig. 5. there are 120 connections 
in the system. Connection M,J:k is the kth connection that 
enters the network at switch I and leaves the network at 
switchj. The connections in the network form a symmetric 
pattern. The system is arranged in such a way that 60 
connections share one inter-switch link at each stage. 
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switch 1 switch 2 

Ml , 2, 0 

'1, 2,9 

Ml , 3, 0 

Ml ,3 ,9 

Ml , 4, 0 

Ml  , 4, 9 

M1;4F0 Ml, 4,9 ~, \ // g M4;1,0 M4,1,9 

M2,4, 0 switch 

M2, 4,9 M4, 2, 9 

M3, 4, 0 

M3, 4, 9 
I 

switch 4 
Fig.5 712e network system evaluated 

Several systems with different architectures have also been 
evaluated, the results are slmilar. 

Since our target applications are hard real-time systems, 
we consider the source traffic descriptor (STD [2]) for the 
HRT connections to be the traditional HRT source traffic 
model. That is, the source traffic is assumed to be periodic 
and the STD is described by the parameters (C, P), where 
P is the period of the message and C is the number of cells 
in a message. Although the source traffic of a connection is 
periodic, due to multiplexing in the network the periodicity 
of the connection traffic may no longer be maintained 
within the network. As mentioned earlier, we use the maxi- 
mum rate function to characterise the traffic of connections 
inside the network. 

To obtain the performance data, we developed a pro- 
gram to simulate the network system. The program was 
written in the C programming language and run in a Sun/ 
Solaris environment. In each run 1,000 connection sets 
were randomly generated. For each connection, the total 
number of cells per period was chosen from a geometric 
distribution with mean ten. Similar results have been 
obtained with different settings of parameters. 

Connection M I J k  enters the network at switch I and exits at swtch J 

4.3 Admission probability 
Fig. 6 shows the admission probabilitv results for our 
sample network. The performance figures are correspond- 
ing to two values of deadline D, (P, and 2PJ. It is common 
practice in a hard real-time system that deadlines are asso- 
ciated with periods [21, 221. From Fig. 6, we can make the 
following observations: 

In general, we found that the admission probabhty is sen- 
sitive to the average link utilisation. As the utilisation 
increases, admission probabilitv decreases. This is expected 
because the higher the network utilisation, the more dSi- 
cult it is for the system to admit a set of connections. 
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switch 

i\ 
M3, 1, 0 

M3. 2. 9 
I I 

switch 3 

When the end-to-end cell deadlines of the connections are 
increased the admission probability shows an otwious 
improvement. For example, when U = 0.4, the admission 
probability increases from about 40 to 80% when the aver- 
age deadline increases from P to 2P. 

Fig. 6 

4- D = P  

Ahiwwn probability against link utilkutwn: unregulated source (gs- 
rem S)  
.... @ .... D = 2 p  

So far, we have considered a network management .;y stem 
which uses the CAC algorithm to control connection 
admission without modifying the input traffic of the 
connections. There has been an increasing interczst in 
controlling the delays of connections by appropriately regu- 
lating the connection traffic at the entrance of the network. 
By regulating the input traffic, its burstiness can be control- 
led. This tends to reduce the adverse impact of burstiness 
on the end-to-end delays of other connections. We now 
consider the system with traffic regulation at the source. 
We adopt the method proposed in [15] to select paraimeters 
of the traffic regulation mechanism (e.g. leaky bucket) so 
that an appropriate level of regulation is maintained. 
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Fig. 7 shows the admission probabditv results for the 
regulated system (called system R). In comparison with the 
data in Fig. 6 we see that by using input traffc regulation 
in conjunction with our CAC algorithm, the admission 
probability can be improved. The AP(U) is almost 100% 
for values of U as high as 30%. 

Fig. 7 

-0- D = P  

Ahission probability uguht link utilisation: regulated source (system 
Ri 
.... @ .... D = 2p 

6 -  

5 -  

4 -  

U) 

s 3 -  
w 

2 -  

U 
i -  

......... 
U 

-I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. 8 
--[I system S 
.. .O. . system R 

Execution t k  results with und without regulution 

4.4 Execution time 
Here we evaluate the effciency of our CAC algorithm in 
terms of the time taken by our CAC algorithm to make an 
admission decision. It is desirable that any online CAC 
algorithm has a small execution time. Fig. 8 presents the 
results for both system S and system R. In the case of the 
regulated system, the execution time reported included that 
taken to select proper regulation parameters. 

From Fig. 8 we can make the following observations: 
We found that in terms of E q U )  our CAC algorithm 

performed very well when it was used alone. The maxmium 
average time required by the algorithm was less than 1.4 s. 
For a large range of utilisation, (e.g. U = 0 to 60%), the 
ET(U) was less than 0.36s. 

The ET(Uj is increased when the CAC algorithm is used 
in conjunction with the regulation method. This is because 
of the additional overheads due to the regulation parameter 
setting method. However, even in this case the maximum 
ET(U) is about 6s..For a large range of utilisation (e.g. U = 
0 to 60%), the ET(U) is less than.2.7~. 

From Fig. 8, we can also observe that the ET(U) may not 
monotonically increase as the average link utilisation 
increase. With a little reflection we notice that the average 

link utilisation impacts the ET( v) of the CAC algorithm in 
two different ways. 

When the link utdisation increases, so does the load of the 
server. Consequently, the length of the busy interval at the 
server also increases. This results in an increase in the time 
taken to compute the delay upper bound at the server. As a 
result, the ET(v) of the CAC algorithm increases. 

On the other hand, an increase of link utilisation may 
reduce the number of iterations during an execution of the 
CAC algorithm. This is because a .high link utilisation 
increases the likehood that the deadline and buffer require- 
ments will be violated. Therefore the CAC algorithm termi- 
nates in ‘reject’ with less number of iterations. As a result, 
the increased link utilisation may reduce the ET(U). 
These two opposing effects explain the nonmonotonical 
phenomenon of ET(U) as a function of the link utilisation. 

5 Conclusions 

We addressed the connection admission control problem in 
an ATM LAN supporting hard real-time applications. The 
key issue in solving this problem was obtaining reasonable 
upper bounds on the end-to-end delays of connections. We 
took a network decomposition approach, in which the net- 
work is modelled as a collection of servers. This approach 
has been used by several researchers before [I, 1 11. How- 
ever, our work sigdcantly differs from the previous work 
by making the following contributions: 

We use the maximum rate function T(Z) to describe a 
connection’s traffic at any point in the network. A potential 
concern one may have on the use of the maximum rate 
function is the need for computational resources (time, 
space or both) to obtain values of r(Z) for different values 
of I. By generalising the result in [I], we provide a simple 
and efficient method for computing r(I) values for a con- 
nection at any point in the network. 

Our CAC algorithm explicitly accounts for the extent of 
the perturbation caused by admitting a new connection and 
also deals with the possible cyclic dependencies. 

We formally established the desired properties of our 
CAC algorithm. Specifically, we showed that the algorithm 
always terminates, regardless of the existence of cyclic 
dependencies among the connections and servers. Thus, 
our algorithm is correct in the sense that it accepts a con- 
nection only if the QoS requirements of the new connection 
and existing ones can be met. The performance of our algo- 
rithm is throughly evaluated. We found that the algorithm 
is effective and effkient in the sense that it can achieve a 
reasonable admission probability and yet maintain a low 
execution time. 

This work can be extended in several ways. An impor- 
tant issue in hard real-time systems is to consider good 
approximations [I I] of the explicit traffic descriptor so as to 
improve the execution overheads of the algorithm, 
although this will result in a corresponding decrease in 
admission probability. 
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l < l < k  

Proof: We prove this theorem by induction. By definition, 
r(I) s 1. Thus it is sufficient to show that 

r z , s ( z , k + l )  (1) I (1 + %z,s(z,l) I (1 + C Z d  (20) 

where crP is given by 
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C i , k  = c di ,s( i , l )  (21) 
l<l<k 

Base step: k = 1. When k = 1. Ti,$ (i,k+l)(I) = ri,s(i,2)(I) is the 
maximum rate function of Mi at the output of the first 
server traversed by Mi. Consider server s(i, 1) and an arbi- 
trary time instant (say t ). Let ( t  - di,s(i,l), t + r )  I 2 0, 
be the number of Mi’s cells that arrive at the input of s(i, 1) 
in interval [t - di,di,l), t + I ) .  Let ~ i , , ~ ( j , l ) ( t ,  t + I ) ,  t 2 0 be the 
number of Mi’s cells that are transmitted by s(i, 1) in inter- 
val [t, t + I ) .  Thus, by definition, 

m,s(i,2) (1) = m p x ( ~ , ~ ( ~ , ~ )  ( t ,  t + 1)) (22) 

di,x(i,,) is the worst-case delay experienced by Mi’s cells at 
server s(i, 1). Therefore if a cell of connection Mi is 1.rans- 
mitted by server s(i, 1) at time t, t 2 0, then the earliest time 
that the cell can arrive at the input of server s(i, 1) is 
t - di,5fi,l). Hence 

But by definition 
% , s ( i , l )  ( 4  t + 1) I % , s ( i , l )  ( t  - 4 , s ( i , l )  I t + 4 (23 

% , s ( j , l )  ( t  - d i , S ( i , l )  , t + 1) 

I (1 + ~ Z , s ( i , l ) ) ~ i , s ( z , l )  (1 + d i , s ( i , l ) )  (24 

~ Z , S ( Z , l ) ( ~ , t  + 1) I (1 + ~ i , S ( Z , l ) ~ ~ Z , S ( Z , l ) ~ ~  + dZ,:(i,l)) 
(25) 

1 L , S ( Z , 2 )  (1) I (1+di,S(i,l) )L,s(i , l)  ( ~ + ~ Z , S ( Z , l ) )  (26) 

ri,s(i,2) (11 I (1 + y ) r i , s ( i , l )  (1 + di,5(i,l)) (27) 

By substituting eqn. 24 in eqn. 23 we obtain 

Due to the arbitrarity of t and eqn. 22 we have 

Dividing by Z on both sides, eqn. 26 becomes 

di s(i 1) 

Hence the base case holds. 
Induction hypothesis: Let the maximum rate function at the 
input of the kth server in Mi’s path be given by 

r z , s ( z , k )  (0 5 (1 + y9ri,s(i,l) (1 + C i , k - l )  (28) 

where ci&I is given by 

Ci ,k - l  = c dZ,s(Z,L) (29) 
l < l < k - l  

Induction step: r,,, (i,k+l)(I) is the maximum rate function of 
Mi at the output of the kth server traversed by Mp By 
using slrmlar arguments discussed in the base case we have 

m,s(i,k+l) (1) I (1 + d i , s ( i , k ) ) r i , s ( i , k )  (1 + di,s,: i ,k))  
(30) 

q s ( z , k + l )  (1) I (1 + d i , s ( i , k )  

Substituting eqn. 28 in eqn. 30 we obtain 

+ c i , k - l  
-) 1 + &(i,k:) 

x ~ Z , S ( Z , l ) ( ~  + d i , s ( i , k )  + C Z , k - - l N  

(31) 
Thus 

l r i , s ( z , k + l )  (1) L (1 + di ,s( i ,k)  + CZ,k-1) 

x r l z , s ( z , l ) ( ~  + d i , s ( i , k )  + C i , k - - l ) )  

(32) 

Ci,k-1 + di ,s( i ,k)  = di,S(i,L) + d i , s ( i , k )  (33)  

But 

l<L<k- l  
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= dZ,S(i,l) (34) 

Therefore the theorem follows. 

8.2 Termination property of the algorithm 
To prove the termination property of the algori te  we 
need some lemmas. For notational convenience,_let be 
vector 2 at the end of the kth iteration. Let d[O] be the 
vector 2, which is computed at the initialisation phase in 
Fig. 4. 
Lemma 1: During any execution of the CAC algorithm, the 
following inequality holds: for k 2 0, 

(38)  &I < $+ll - 
Furthermore, the strict inequality (&I < &+ll) holds if a 
server is appended to Impactserver-list during iteration 
k +  I .  
Proo$+Con_sider the first iteration. Before the iteration+we 
have d = d o l  and at the end of the iteration we have d = 
& I .  During this iteration, server s = s(N + 1, 1) is analysed. 
Consider a previously admitted connection MI. If M,  passes 
through this server, then d,,, Ml's delay bound at this 
server is updated. Let 4,/ld and 4,pew be the old and new 
values of this delay bound, respectively. Thus by definition 

if Mi does not pass 
through server s 

dpl + d;zw - d$! otherwise 
(39) 

Considering the fact that d i , p  takes into account the 
impact of the new connection (MNtl) while di,:ld does not, 
from eqn. 5 we have 

N 

(40) 
where L F  and L,:ld are the new and old maximum busy 
interval lengths computed by using eqn. 6. Substituting 
eqn. 6 in eqn. 40 we can show ;hat d. new - di,/ld B 0. Thus 
dL0] 5 dc']. It then follows that do] 5 #l]. Furthermore, if a 
server is added to Impact-server-list during iteration 1, then 
we have old-q < q,Ffernnl. This implies that diol < d/I] if con- 
nection Mi passes through the serv5r. Be5ause there will be 
at least one connection doing so, d[O] < d ' ] .  We have now 
established the lemma for the case of k = 0. By mathemati- 
cal induction, the general case (k > 0) can be proved. 

To prove the following lemma, define size-oflist(k) as 
the sue of Impact-server-& at the end of the kth iteration. 
Let size-of-list(k)(O) be the size of Impact-server-& before 
the iteration phase, i.e. size of list HN+,. 
Lemma 2: During an execution of the CAC algorithm, if 

(41) 

&I= &+I1 then 

size-of-list(k + 1) = size-of-list(lc) - 1 
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Prooj In the algorithm given in Fig. 4, the first element in 
Impact-server-list is removed (see line 14) during every iter- 
ation. Thus, th_e size of the Impactserver-list is reduced by 
one. If &I = dk+'], then the queue length of the server is 
not changed. Hence, from line 20 of Fig. 4, no new element 
is appended to Impact-server-list. The lemma then follows. 
Lemma 3: During an execution of the algorithm. before its 
termination there is a subsequence of iterations (iterations 
I , ,  I,, 12, ..., 4 ...) where Io < 1, < Z, < ..., J-, < 4 ... such 
that fo r j  > 1 

and 
I3 - IJ-l  5 A- 

d[L11 < & I  

(42) 

(43) 
+ 

Prooj This subsequence of iterations can be established as 
follows: Let Io = 0. Recall that in the algorithm before the 
first iteration, Impact-server-& was initialised by the iden- 
tities of all the servers traversed by MN+I, that is by HN+I. 
We have 

size-of-Zist(0) 5 K (44) 
Thus, by the end of the Kth iteration, every server in the 
initial Impact-server-list has been analysed at least once. 
Using lemmas I and 2, it is obvious that either the algo- 
rithm has terminated, or between the first iteration and the 
Kth iteration, there must be at least one iteration (let it be 
iteration x) during whch the list is appnded with an ele- 
ment. This means that compared with &-'I, at least one of 
the elements in has increased. By eqn. 14, 

(45) 

Note that x - Io 5 K. Let I ,  be x. Thus, we have iteration I ,  
identified. By mathematical induction, the subsequent itera- 
tions can be identified. 

The following lemma gives the delay and buffer size 
invariance which holds for each iteration of the CAC algo- 
rithm. 
Lemma 4: If the CAC algorithm accepts a connection then 
l s i s N + l , l s s < K ,  

d,* 5 d2 (47) 

9: 5 4 s  (48) 

and 

where d,* is the end-to-end delay experienced by a cell of 
connection MI and qs* is the queue length at server 5. The 
formal proof of this property is given in [13]. Intuitively 
lemma 4 can be explained as follows. Consider connections 
MI, ..., MN, that are already admitted by the network 
before the arrival of the connection request MN+,.  Since 
these connections are admitted by the network, their QoS is 
not violated before the arrival of the new request. There- 
fore, eqns. 47 and 48 must be true before the new connec- 
tion request MN+, is considered. The cells from MN+' will 
change the cell arrival traffic at the servers in the network. 
Therefore if MN+' is accepted by the network, then the 
worst-case delays suffered by the cells of all the connections 
may change due to the perturbation caused by the cells of 
the new connection. This perturbation originates from 
server s(N f 1, l), the server at which the cells of connec- 
tion MN+, enter the network and may propagate along 
different paths. Hence, if we assume that eqns. 47 and 48 
are not true then there must exist a server (say s) along a 
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perturbation path originating from s(N + 1, l), for which 
the computed values of d,,$ and qJ are incorrect. However, 
the CAC algorithm traces all the possible perturbation path 
5 by using the list Impact-server-list. Further, the CAC 
algorithm uses the results of theorems 1 and 2 to determine 
the worst-case cell delay, maximum queue length, and 
bounds on output traffic flows at every server in Impact- 
server-list. Therefore, no such server s can exist. Hence, the 
lemma holds. 
Theorem 3: The CAC algorithm terminates. 
Prooj We show this by contradiction. Assuming that there 
is a system (e.g. K servers and N + 1 connections) such that 
the CAC algorithm does not terminate. 

Given the contradiction assumption, the algorithm iter- 
ates infinitely. However, from lemma 3 we know that there 
is a subsequence of iterations (iterations I,, I,, I., ..., 4 ...) 
where Io < Zl < I, < ..., Ipl < 4 .... and 

-+ d['OI < 2['11 < ;[I21 < , . , 2 [ 1 3 - 1 1  < &I < . , . 
(49) 

n u s ,  {&I, &ll, iW, ... J[Gll, J['r], ...I is a monotonically 
increasing sequence. From eqn. 5, we know that the ele- 
ments in 2 take positive integer values. Thus, eqn. 49 

implies that there must be an iteration (say ZJ such thit 
+ 

(50) d['-I > 5 
Ths  is one of the termination conditions in the itera.tion. 
Thus, the execution of the algorithm must terminate. This 
is a contradiction. Thus the theorem is proved. 
Theorem 4: The CAC algorithm is correct. 
Prooj Assume that the CAC algorithm shown in Fig. 4 
accepts a connection after E iterations. Since the connec- 
tion is accepted by the CAC algorit_hm, we must have 2L.l 
(N + 1) s D ( N  + 1) and $[fl ( K )  s B(K) (see line 31).'That 
is for 1 s i s N + 1, we have 

d!E1 5 D; (51) 

df 5 D; (52) 

(53)  

But by lemma 4 we have d; s ~$4. Therefore, for 1 s i s N 
+ 1, 

By using eqns. 9, 13 and 52 we get 
I 

+ 
d * ( N  + 1) 5 b ( N  + 1) 

Srmilarly, using lemma 4 we can show 

G*(K) -5 S ( K )  (54) 
Hence the CAC algorithm is correct. 
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