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Our goal is to illustrate the typical life cycle of a fuzzy knowledge-based
model, starting from its development, testing, optimization, and deployment,
and ending with the maintenance of its knowledge base. We illustrate this
process within the context of an underwriting insurance application. First we
define some key concepts of soft computing models and discuss some design
tradeoffs that must be addressed. Then we focus on the design and imple-
mentation of a fuzzy rule-based classifier (FRC). We establish a standard
reference dataset (SRD), consisting of 3,000 insurance applications with their
corresponding decisions. The SRD exemplifies the results achieved by an ideal,
optimal classifier, and represents the target for our design. We apply evolution-
ary algorithms to perform an off-line optimization of the design parameters of
the classifier, modifying its behavior to approximate this target. The SRD is
also used as a reference for testing and performing a five-fold cross-validation
of the classifiers. Finally, we focus on the monitoring and maintenance of the
FRC. We describe a fusion architecture that supports an off-line quality as-
surance process of the on-line FRC. The fusion module takes the outputs of
multiple classifiers, determines their degree of consensus, and compares their
overall agreement with the decision made by the FRC. From this analysis, we
can identify the most suitable cases to update the SRD, to audit, or to be
reviewed by senior underwriters.

1 Introduction

1.1 Soft Computing

The literature of Soft Computing (SC) is expanding at a rapid pace, as ev-
idenced from the numerous congresses, books, and journals devoted to this
issue. Its original definition provided by Zadeh [23]) denotes systems that “...
exploit the tolerance for imprecision, uncertainty, and partial truth to achieve
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tractability, robustness, low solution cost, and better rapport with reality.”
As discussed in previous articles (Bonissone [3]; Bonissone et al. [4]), we view
soft computing as the synergistic association of computing methodologies that
includes as its principal members fuzzy logic, neuro-computing, evolutionary
computing and probabilistic computing. We also stress the synergy derived
from hybrid SC systems that are based on a loose or tight integration of their
constituent technologies. This integration provides complementary reasoning
and search methods that allow us to combine domain knowledge and empirical
data to develop flexible computing tools and solve complex problems.

1.2 Characteristics of Real World Applications

Integration of Knowledge and Data

When addressing real-world problems, we realize that we are dealing with
systems that are typically ill defined, difficult to model, and possess large
solution spaces. In these cases, precise models are usually impractical, too ex-
pensive, or non-existent. Therefore, we need to generate approximate solutions
by leveraging the two types of resources that are generally available: problem
domain knowledge of the process (or product) and field data that characterize
the system’s behavior. The relevant available domain knowledge is typically
a combination of first principles and empirical knowledge. This knowledge is
often incomplete and sometimes erroneous. The available data are typically
a collection of input-output measurements, representing instances of the sys-
tem’s behavior, and are generally incomplete and noisy. Soft computing is a
flexible framework in which we can find a broad spectrum of design choices
to perform the integration of knowledge and data in the construction of ap-
proximate models.

Need to Support Model Maintenance

In real-world applications before we can use a model in a production envi-
ronment we must address the model’s entire life cycle, from its design and
implementation, to its validation, tuning, production testing, use, monitoring
and maintenance. By maintenance we mean all the steps required to keep the
model vital (e.g., non-obsolete) and able to adapt to changes. Two reasons
justify our focus on maintenance. Over the life cycle of the model, mainte-
nance costs are the most expensive component (as software maintenance is
the most expensive life cycle component of software). Secondly, when dealing
with mission-critical software we need to guarantee continuous operations or
at least fast recovery from system failures or model obsolescence to avoid lost
revenues and other business costs.
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1.3 Structure of paper

In the next section, we describe a variety of soft computing models and some
typical search methods that could be used to generate those models. Then
we focus on the insurance underwriting process, the problem domain used to
illustrate the life cycle of a fuzzy knowledge-based model. Within this con-
text, we further focus on models that assess risk using a fixed resolution (rate
classes). Therefore, in this case study, the model is a discrete classifier. How-
ever, many of the concepts illustrated in this paper can be easily extended
to situations in which the model is used as a predictor of continuous values,
rather than a classifier. In Section 4, we provide a brief description of the
design of a fuzzy rule-based classifier. In Sections 5 through 7, we describe the
steps required to ensure the stable operation of the classifiers: the establish-
ment of a standard reference dataset (SRD) to provide an ideal reference; the
optimization of the classifiers’ design parameters to ensure their performance;
their cross-validation to ensure their robustness; the run-time monitoring of
their decisions to track stable operations; and an off-line quality assurance
process, based on the fusion of multiple classifiers, to enhance the SRD and
identify questionable cases for manual audit.

2 Models and Fuzzy Models

2.1 Model Generation

In general terms, we can consider a model to be characterized by its represen-
tation (structural and parametric information) and its associated reasoning
mechanism, which is usually related to the representation. The generation
(and updating) of an optimal model requires a search method to define the
model’s representation and to characterize its reasoning mechanism. We will
illustrate this concept with examples taken from conventional and soft com-
puting models.

Differential Equations

Classical engineering models based on linear differential equations have a rep-
resentation that can be decomposed into a structure (the order of the dif-
ferential equation that determines the number of required coefficients), and
a set of parameters, (the value of those coefficients). The reasoning mech-
anism is based on the (exact or approximated) solution of the differential
equations. The search method used to generate the model could be based
on energy-balance approaches (e.g., Bond Graphs), least mean squared error
minimization, etc.
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Bayesian Belief Networks and Neural Networks

For graphical models we have a similar situation. In the case of Bayesian Be-
lief Networks (BBN’s) their structure (graph topology) and parameters (prior
probabilities on the node and conditional probabilities on the links) define the
BBN’s representation. Their underlying reasoning mechanism is based on con-
ditioning, and consists of calculating and propagating posterior probabilities
along the network topology, according to Bayes’ rule. The search method used
to generate the BBN’s ranges from manual construction, to EM algorithms,
evolutionary algorithms (EA’s) (Larrañaga and Lozano [16]), et cetera. Other
graphical models, such as Neural Networks (NN’s), have a similar represen-
tation: their structure is the network topology, while their parameters are
the biases on the nodes and weights on the links. Reasoning with NN’s is a
similar process, consisting in evaluating and propagating values along the net-
work topology according to the operators defined in each neuron. The search
method used to generate the NN structure could be manual, forward or back-
ward pruning, evolutionary algorithms (Vonk et al. [21], Yao [11]), while local
search methods such as backpropagation, conjugate gradient, etc., or global
search approaches, such as evolutionary algorithms could be used to generate
the NN parameters.

Fuzzy Systems and Radial Basis Functions

Many knowledge-based models, which on the surface might appear quite differ-
ent from graphical models, can be easily transformed and represented graph-
ically. For instance, the domain knowledge in fuzzy systems is usually rep-
resented by a set of if-then rules that approximate a mapping from a state

space
−→
X to an output space

−→
Y . In a Mamdani-type fuzzy system (Mamdani

and Assilian [17]) the KB is completely defined by a set of scaling factors,
determining the ranges of values for the state and output variables; a term
set, defining the membership function of the values taken by each state and
output variable and a rule set, characterizing a syntactic mapping of symbols

from
−→
X to

−→
Y . The structure of the underlying model is the rule set, while the

parameters are the scaling factors and term sets. The reasoning mechanism
is based on generalized modus ponens, and consists in interpolating among
the outputs of all relevant rules. A Takagi-Sugeno-Kang (TSK) type of fuzzy
system (Takagi and Sugeno [19]) increases its representational power by al-
lowing the use of a first-order polynomial (defined on the state space), to be
the output of each rule in the rule set. This enhanced representational power,
at the expense of local legibility (Babuska et al. [1]) results in a model that is
equivalent to Radial Basis Functions (RBF’s) (Bersini et al. [2]). RBF’s have
a topology similar to classical NN’s with the sigmoid node replaced by one
containing a localized distribution. The same model can be translated into a
structured network, such as the adaptive neural fuzzy inference systems (AN-
FIS) (Jang [15]). In ANFIS, the rule set determines the topology of the net
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(model structure), while dedicated nodes in the corresponding layers of the
net (model parameters) define the term sets and the polynomial coefficients.
In all these cases, the search method for the structure is either manual or
based on evolutionary algorithms, while the determination of the parameters
is usually based on local (backpropagation) or global (EA’s) search.

Instance-based Models

Non-graphical models, such as instance-based models, follow a similar pattern.
Their representation contains structural information (such as the dimension-
ality and definition of their attribute space), and parametric information (such
as the weights assigned to each attribute, etc.). Their reasoning mechanism is
based on a retrieval of instances, a similarity-driven ordering of the instances,
the evaluation and potential modification of their outcomes, and an aggre-
gation of the (modified) outputs. This mechanism might require the value of
some parameters, such as the relevance of each attribute in computing simi-
larity, the extent of the retrieval, the type of aggregation, etc. For simplicity,
we will include all these parameters in the model representation.

2.2 Search

Regardless of the underlying representation of the model, Evolutionary Al-
gorithms can provide a robust, global search method to define the models’
structure and parameters. Given a fixed model structure, using a wrapper
approach, EA’s can be used to determine the inputs and pre-processors (at-
tribute selection, weighing, and construction) as well as the parameter values
required by the models. The appealing aspect of this approach is the ease
of incorporating knowledge in the EA to control the search, as described by
Bonissone et al. [7]. Furthermore, the same methodology can be applied after
deployment to retune and or reconfigure the model, hence extending its vital-
ity. It is also possible to intertwine global search (more robust but less efficient)
with local search, such as greedy induction, gradient-based techniques, etc, in
the quest to design and maintain better models. In the following sections, we
will illustrate the application of EA’s in the development and maintenance of
optimal fuzzy classifiers.

3 Problem description

3.1 The Classification Problem

To illustrate the life cycle of a classifier, we will use a representative, challeng-
ing classification problem: the process of underwriting insurance applications.
Insurance underwriting is a complex decision-making task that is traditionally
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performed by trained individuals. An underwriter must evaluate each insur-
ance application in terms of its potential risk for generating a claim, such
as mortality in the case of term life insurance. An application is compared
against standards adopted by the insurance company, which are derived from
actuarial principles related to mortality. Based on this comparison, the ap-
plication is classified into one of the risk categories available for the type of
insurance requested by the applicant. The accept/reject decision is also part
of this risk classification, since risks above a certain tolerance level will typi-
cally be rejected. The estimated risk, in conjunction with other factors such
as gender, age, and policy face value, will determine the appropriate price
(premium) for the insurance policy. When all other factors are the same, to
retain the fair value of expected return higher risk entails higher premium.

We represent an insurance application as an input vector
−→
X that con-

tains a combination of discrete, continuous, and attribute variables. These
variables represent the applicant’s medical and demographic information that
has been identified by actuarial studies to be pertinent to the estimation of

the applicant’s claim risk. Similarly, we represent the output space
−→
Y , e.g.

the underwriting decision space, as an ordered list of rate classes. Due to
the intrinsic difficulty of representing risk as a real number on a scale, e.g.,

97% of nominal mortality, the output space
−→
Y is subdivided into bins (rate

classes) containing similar risks. For example 96%-104% nominal mortality
could be labeled the Standard rate class. Therefore, we consider the under-

writing (UW) process as a discrete classifier mapping an input vector
−→
X into

a discrete decision space
−→
Y , where |−→X | = n and |−→Y | = T .

This problem is complicated by several requirements: a) the nonlinearity
of the UW mapping; b) the need for inputs interpretations; c) the flexibility
required to balance risk-tolerance, to preserve price competitiveness, and risk-
avoidance, to prevent overexposure to risk; d) legal and compliance regulations
that require the models to be transparent and interpretable. To address these
requirements we decided to develop a hybrid soft computing system, based
on fuzzy logic and evolutionary algorithms. With this system we were able
to provide flexibility and consistency, while maintaining interpretability and
accuracy as part of an underwriting and a risk management platform.

4 Design and Implementation

4.1 Design Tradeoffs

In the development of a classifier, we usually face design trade-offs, such
as accuracy-versus-coverage and accuracy-versus-interpretability (Guillaume
[14]; Casillas et al. [10]). The first trade-off is similar to the precision-versus-
recall compromise found in the design of information retrieval systems. We
could tune a classifier to maximize the number of correct decisions it pro-
duces, declining to make any commitment if we are not confident about the
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conclusion. This behavior would increase accuracy at the expense of cover-
age. Alternatively, we could tune the same classifier to always issue a deci-
sion for each case, thus increasing coverage at the expense of accuracy. The
second trade-off, typically dictated by legal or compliance regulations, con-
strains the underlying technologies used to implement the classifier. When we
use SC techniques, the equation “model = structure + parameters (&
search)”, takes on a different connotation, as we have a much richer repertoire
to represent the structure, to tune the parameters, and to iterate this process
(Bonissone et al. [4]). This repertoire enables us to choose among different
trade-offs between the model’s interpretability and its accuracy. For instance,
one approach aimed at maintaining the model’s transparency usually starts
with knowledge-derived linguistic models, in which domain knowledge is trans-
lated into an initial structure and parameter values. The model’s accuracy is
further improved by using global or local data-driven search methods to tune
the structure and/or parameters. An alternative approach, aimed at building
more accurate models might start with data-driven search methods. Then we
can embed domain knowledge into the search operators to control or limit the
search space, or to maintain the model’s interpretability. Post-processing ap-
proaches can also be used to extract explicit structural information from the
models. The commonalities among these models are the tight integration of
knowledge and data, leveraged in their construction, and the loose integration
of their outputs, exploited in their off-line use.

4.2 Fuzzy Rule-Based Classifier (FRC)

The fuzzy rule-based and case-based classifiers have been briefly described in
(Bonissone et al. [5]). The Fuzzy Rule-based Classifier (FRC) uses rule sets
to encode underwriting standards. Each rule set represents a set of fuzzy con-
straints defining the boundaries between rate classes. These constraints were
first determined from the underwriting guidelines. They were then refined us-
ing knowledge engineering sessions with expert underwriters to identify factors
such as blood pressure levels and cholesterol levels, which are critical in defin-
ing the applicant’s risk and corresponding premium. The goal of the classifier
is to assign an applicant to the most competitive rate class, providing that the
applicant’s vital data meet all of the constraints of that particular rate class
to a minimum degree of satisfaction. The constraints for each rate class r are
represented by n fuzzy sets: Ari (xi), i = 1, . . . , n. Each constraint Ari (xi) can
be interpreted as the degree of preference induced by value xi, for satisfying
constraint Ari . After evaluating all constraints, we compute two measures for
each rate class r. The first one is the degree of intersection of all the constraints
and measures the weakest constraint satisfaction1:

1This expression implies that each criterion has equal weight. If we want to
attach a weight ωi ∈ [0, 1] to each criterion Ai we could use the weighted minimum
operator Γ (r) = ∩n

i=1ωiA
r
i (xi) = minn

i=1

[
max

(
(1 − ωi), A

r
i (xi)

)]
.
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I(r) =

n⋂

i=1

Ari (xi) =
n

min
i=1

Ari (xi).

The second one is a cumulative measure of missing points (the complement of
the average satisfaction of all constraints), and measures the overall tolerance
allowed to each applicant i.e.:

MP (r) =

n∑

i=1

(
1 −Ari (xi)

)
= n

(
1 − 1

n

n∑

i=1

Ari (xi)

)
= n(1 −Ar).

The final classification is obtained by comparing the two measures, I(r) and
MP (r) against two lower bounds defined by thresholds τ1 and τ2. The para-
metric definition of each fuzzy constraint Ari (xi) and the values of τ1 and τ2 are
design parameters that were initialized with knowledge engineering sessions.

Fig. 1. Example of three fuzzy constraints for rate class Z

Figure 1 illustrates an example of three constraints (trapezoidal member-
ship functions) associated with rate class Z, the input data corresponding to
an application, and the evaluation of the first measure, indicating the weakest
degree of satisfaction of all constraints.
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5 Optimization of Design Parameters of the FRC
Classifier

The FRC design parameters must be tuned, monitored, and maintained to
assure the classifier’s optimal performance. To this end, we have chosen to
use EA’s. Our EA is composed of a population of individuals or chromosomes.
Each chromosome contains a vector of elements that represent distinct tunable
parameters to configure the FRC classifier, i.e., the parametric definition of
the fuzzy constraints Ari (xi) and thresholds τ1 and τ2.

A chromosome, the genotypic representation of an individual, defines a
complete parametric configuration of the classifier. Thus, an instance of such
classifier can be initialized for each chromosome, as shown in Figure 2. Each
chromosome ci, of the population P (t) (left-hand side of Figure 2), goes
through a decoding process to allow them to initialize the classifier on the
right. Each classifier is then tested on all the cases in the case base, assigning
a rate class to each case. We can determine the quality of the configuration
encoded by the chromosome (the “fitness” of the chromosome) by analyzing
the results of the test. Our EA uses mutation (randomly varying parameters
of a single chromosome) to produce new individuals in the population. The
more fit chromosomes in generation t will be more likely to be selected for
this and pass their genetic material to the next generation t + 1. Similarly,
the less fit solutions will be culled from the population. At the conclusion of
the EA’s execution the best chromosome of the last generation determines the
classifier’s configuration.

Fig. 2. FRC Optimization Using EA
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5.1 Standard Reference Dataset (SRD)

To test and tune the classifiers, we need to establish a benchmark. There-
fore, we generated a standard reference dataset (SRD) of approximately 3,000
cases taken from a stratified random sample of the historical case population.
Each of these cases received a rate category decision when it was originally
underwritten. However, to reduce variability in these decisions a team of expe-
rienced underwriters performed a blind review of selected cases to determine
the standard reference decisions. These cases were then used to create and
optimize the FRC model.

5.2 Fitness Function

In discrete classification problems we can use two matrices to construct the
fitness function that we want to optimize. The first matrix is a T×T confusion
matrix M that contains frequencies of correct and incorrect classifications for
all possible combinations of the Standard Reference Decisions (SRD)2 and
classifier decisions. The first (T−1) columns represent the rate classes available
to the classifier. Column T represents the classifier’s choice of not assigning
any rate class, sending the case to a human underwriter. The same ordering
is used to sort the rows for the SRD. The second matrix is a T × T penalty
matrix P that contains the cost of misclassification. The fitness function f
combines the values of M , resulted from a test run of the classifier configured
with chromosome ci, with the penalty matrix P to produce a single value:

f(ci) =
T∑

j=i

T∑

k=i

M(j, k) ∗ P (j, k).

. Function f represents the overall misclassification cost.

6 Testing and Validation of FRB

After defining measures of coverage, relative, and global accuracy3, we per-
formed a comparison against the SRD. The results, partially reported in ref-
erence (Bonissone et al. [5]), show a remarkable improvement in all measures.
Specifically we obtained the following results:

2Standard Reference Decisions represent ground truth rate class decisions as
reached by consensus among senior expert underwriters for a set of insurance appli-
cations.

3Coverage: Percentage of cases as a fraction of the total number of input cases;
Relative Accuracy: Percentage of correct decisions on those cases that were not
referred to the human underwriter; Global Accuracy: Percentage of correct decisions,
including making correct rate class decisions and making a correct decision to refer
cases to human underwriters as a fraction of total input cases
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Table 1. Typical performance of the un-tuned and tuned rule-based decision system
(FRC)

Initial parameters Best knowledge
METRIC based on engineered Optimized parameters

written guidelines parameters

Coverage 94.01% 90.38% 91.71%

Relative Accuracy 75.92% 92.99% 95.52%

Global Accuracy 74.75% 90.07% 93.63%

Using the initial parameters (first column of Table 1) we can observe a
large moderate Coverage (∼ 94%) associated with a low Relative Accuracy
(∼ 76%) and a lower Global Accuracy (∼ 75%). These performance values are
the result of applying a strict interpretation of the UW guidelines, without
allowing for any tolerance. Had we implemented such crisp rules with a tra-
ditional rule-based system, we would have obtained these same evaluations.
This strictness would prevent the insurer from being price competitive, and
would not represent the typical modus operandi of human underwriters. How-
ever, by allowing each underwriter to use his/her own interpretation of such
guidelines, we could introduce a large underwriters’ variability. One of our
main goals of this project was to provide a uniform interpretation, while still
allowing for some tolerance. This goal is addressed in the second column of
Table 1, which shows the results of performing knowledge engineering and
encoding the desired tradeoff between risk and price competitiveness as fuzzy
constraints with preference semantics. This intermediate stage shows a differ-
ent tradeoff since both Global and Relative Accuracy have improved. Coverage
slightly decreases (∼ 90%) for a considerable gain in Relative Accuracy (∼
93%). Although we obtained this initial parameter set by interviewing the ex-
perts, we had no guarantee that such parameters were optimal. Therefore, we
used an evolutionary algorithm to tune them. We allowed the parameters to
move within a predefine range centered around their initial values and, using
the SRD and the fitness function described above, we obtained an optimized
parameter set, whose results are described in the third column of Table 1. The
results of the optimization show the point corresponding to the final parame-
ter set dominates the second set point (in a Pareto sense), since both Coverage
and Relative Accuracy were improved. Finally, we can observe that the final
metric, Global Accuracy (last row in Table 1), improves monotonically as we
move from using the strict interpretation of the guidelines (∼ 75%), through
the knowledge-engineered parameters (∼ 90%), to the optimized parameters
(∼ 94%). While the reported performance of the optimized parameters (in
Table 1) is typical of the performance we achieved through the optimization,
a five-fold cross-validation on the optimization was also performed to identify
stable parameters in the design space and stable metrics in the performance
space. Specifically:
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Table 2. Average FRC performance over 5 tuning case sets compared to 5 disjoint
test sets

Average performance Average performance on
METRIC on tuning sets disjoint test sets

Coverage 91.81% 91.80%

Relative Accuracy 94.52% 93.60%

Global Accuracy 92.74% 91.60%

7 Monitoring and Maintenance of the FRB

A serious challenge to the successful deployment of intelligent systems is
their ability to remain valid and accurate over time, while compensating for
drifts and accounting for contextual changes that might otherwise render their
knowledge-base stale or obsolete. This issue has been a constant concern in
deploying AI expert systems and continues to be a critical issue in deploy-
ing knowledge-based classifiers. The maintenance of a classifier is essential to
its long-term usefulness since, over time, the configuration of the FRC may
become sub-optimal. Thus, we want to be able to modify the SRD to reflect
these contextual changes. We developed specialized editors to achieve this ob-
jective. By modifying the SRD to incorporate the desired changes (by altering
some previous standard reference decisions), we can create a new target for
the classifier. Then, we use the same evolutionary optimization tools to find
a new configuration (parameter values) for the classifier to approximate the
new target.

It is also vital to monitor the classifier performance over time to identify
those new, highly reliable cases that could be used to update the SRD. To
address this objective, we have implemented an off-line quality assurance (QA)
process, based on a fusion module, to test and monitor the production FRC
that performs on-line rate classification. At periodic intervals, e.g., every week,
the fusion module and its components will review the decisions made by the
FRC during the previous week. The purpose of this fusion is to assess the
quality of the FRC performance over that week. In addition, this fusion will
identify the best cases, which could be used to tune the production engine, as
well as controversial or unusual cases that could be audited or reviewed by
human underwriters.

7.1 Fusion Architecture

We developed four independent classifiers specially tuned for accuracy:

1) Neural Networks (NN),
2) Multivariate Regression Splines (MARS),
3) Support Vector Machine (SVM), and
4) Random Forest (RF).
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NN: We developed multiple binary neural networks to perform the multi-
class classification. Each binary network had the structure of 12-5-1, i.e., 12
input nodes, 5 hidden neurons, and 1 output node. We used logistic sigmoidal
functions as the activation functions for both hidden and output neurons. The
range of target values was scaled to the range [0.1, 0.9] to prevent saturation
during training process. The Levenberg-Marquardt numerical optimization
technique was used as the back-propagation learning algorithm to achieve
second-order training speed. Each binary network represented an individual
rate class and was trained with the targets of one-vs-other. MARS: We cre-
ated a collection of MARS models, each of which solves a two-class problem,
and we collated their outputs in a manner similar to the one used for the NN
classifiers. MARS is an adaptive nonparametric regression technique, able to
capture main and interaction effects in a hierarchical manner (Friedman [13]).
SVM: We used this model to find the optimal hyper-plane that correctly clas-
sifies data points as much as possible, while separating the points of two classes
as far as possible via structural risk minimization (Vapnik [20], Cristianini and
Taylor [11]). RF: We built an ensemble of 1,000 trees such that each tree de-
pended on the values of a random vector sampled independently and with
the same distribution for all trees in the forest. The RF’s overall prediction
was obtained by combining the predictions of the trees (Breiman [9]). These
classifiers, which don’t need to meet the same interpretability requirements
as the FLE, are part of the fusion process described in Figure 3.

This fusion process can be decomposed into four steps:

1. Collection, discounting and post-processing of modules’ outputs. Each clas-
sifier’s output is a possibility (or probability, depending on the classifier)
distribution representing the degree to which a given rate class is selected.
The set of all possible rate classes represents the universe of possible an-
swers that can be considered by the classifiers. A classifier’s ignorance can
be modeled by a weight assignment to this universe.

2. Determination of combined decision via associative fusion of modules’ out-
puts. We combine the outputs of each classifiers by using an outer-product
with the T-norm operator that better represents the possible correlation
among the classifiers. The final output is a rate class distribution and a
measure of conflict among all the classifiers.

3. ) Determination of degree of confidence. By normalizing the final output
we identify the strongest selection of the fusion, and qualify it with a
degree of confidence that is the complement of the measure of conflict.

4. Identification of candidate cases for test set, auditing, and SRD process.
We use the confidence measure and the agreement/disagreement of the
fused modules’ decision with the production engine’s decision to assess
the quality of the production engine. We label the cases in terms of their
decision confidence, e.g. ‘low’, ‘medium’, ‘high’, or ‘unknown’. When the
fused decision exhibits a low degree of confidence for a given application,
the case is selected for auditing. When the fused decision exhibits a high
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Fig. 3. Top-level Fusion Architecture

degree of confidence and agrees with the decision of the production engine,
the case becomes a candidate for augmenting the SRD. When the fused
decision is non-committal or unknown (i.e., it does not show a strong
commitment for any class), the case is a candidate for a review by senior
underwriters who will generate a standard reference decision. These cases
will be later used to retrain the offline classifiers. When the fused decision
exhibits a medium degree of confidence, we will not use the case, but we
will monitor the frequency of its occurrence.

A more detailed description of the fusion mechanism can be found in
(Bonissone [6], [8]).

8 Conclusions

We have developed a design methodology for a fuzzy knowledge-based classi-
fier that automatically determines risk categories for insurance applications.
The classifier design was based on the integration of domain knowledge with
field data. The knowledge was leveraged in selecting the attributes that define
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the classifier’s structure, in designing the chromosome for the EA’s, and in
defining a fitness function to enforce a specific trade-off between classifica-
tion coverage and accuracy. The field data was refined, corrected, and used
to establish a repository of cases representing ground-truth decisions, i.e. the
SRD.

The model’s parameters and decision thresholds were first initialized by
elicitation from expert underwriters, and then tuned using a multi-stage
mutation-based evolutionary algorithm, wrapped around the classifier, to
achieve a specific trade-off between accuracy and coverage. The fitness func-
tion selectively penalized different degrees of misclassification, and served as
a forcing function to drive correct classifications. The structure of the model
was determined by knowledge engineering sessions, given that legal constraints
defined the only variables that could be used. In other less constrained ap-
plications, we could have derived the structure of the model by evolutionary
algorithms following the same wrapper approach (Freitas [12]).

More importantly, we have established a reliable method to design and
maintain the fuzzy knowledge-based classifier. Our design methodology explic-
itly addresses classifiers’ obsolescence to facilitate their maintenance. Main-
tenance of the classification accuracy over time is an important requirement
considering that decision guidelines may evolve, and so can the set of certi-
fied cases. In our approach we have designed the classifiers around a set of
standard reference dataset (SRD), which embodies the results of the ideal be-
havior that we want to reach during development and that we want to track
during production use.

We have proposed the use of a fusion module to update the SRD with
new cases, without resorting to manual screening. Furthermore, during the
life of the classifier we might need to change the underwriting rules. These
modifications could be driven by new government regulations, changes among
data suppliers, new medical findings, etc. These rule changes are used to
update the SRD via maintenance tools. We identify the subset of SRD cases
whose decisions are affected by the changes and must be altered. The updated
SRD represents the new target that we want our classifier to approximate.
At this point, we can use the same EA-based optimization tools, employed
during the initial tuning, to find a parametric configuration that structures a
classifier whose behavior better approximates the new SRD. A more detailed
description of the salient steps in the life cycle of a fuzzy knowledge-based
classifier can be found in (Patterson et al. [18]; Bonissone [6]).
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