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Abstract. Automatic registration of range images is a fundamental problem in 3D modeling of free-from objects.
Various feature matching algorithms have been proposed for this purpose. However, these algorithms suffer from
various limitations mainly related to their applicability, efficiency, robustness to resolution, and the discriminating
capability of the used feature representation. We present a novel feature matching algorithm for automatic pairwise
registration of range images which overcomes these limitations. Our algorithm uses a novel tensor representation
which represents semi-local 3D surface patches of a range image by third order tensors. Multiple tensors are used to
represent each range image. Tensors of two range images are matched to identify correspondences between them.
Correspondences are verified and then used for pairwise registration of the range images. Experimental results show
that our algorithm is accurate and efficient. Moreover, it is robust to the resolution of the range images, the number
of tensors per view, the required amount of overlap, and noise. Comparisons with the spin image representation
revealed that our representation has more discriminating capabilities and performs better at a low resolution of the
range images.

Keywords: correspondence, automatic registration, feature matching, shape descriptor, 3D representation, 3D
modeling

1. Introduction

Three dimensional modeling has many applications
in computer graphics, virtual reality, medical science,
reverse engineering and robotics. Various techniques
including stereo, structured light and laser range find-
ers are used for acquiring range images of an object. A
range image (also known as a 2 1

2 D image) is generally
in the form of a point cloud (see Fig. 2(a)). A single
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range image (or a view) however is not sufficient to
completely model a free-form object (Besl, 1990) due
to self-occlusions. To complete the 3D model, mul-
tiple views of the object must be acquired in order to
cover the entire surface of the object. These views must
then be registered in a common coordinate basis. Ac-
cording to the survey of Campbell and Flynn (2001),
registration is performed in two steps. First, the views
are coarsely registered and second, the registration is
refined with a fine registration algorithm like ICP (Besl
and McKay, 1992) for example.

Coarse registration can be performed either
manually or automatically. In the former approach,
corresponding points are manually identified in the



20 Mian, Bennamoun and Owens

overlapping region of two different views. Points on
two different views that correspond to the same point
on the object are said to be corresponding points.
These correspondences are then used to derive a rigid
transformation (rotation and translation) that aligns the
views. Automatic coarse registration can be achieved
in two different ways. One, by tracking the motion of
the object (to be modeled) relative to the sensor and
applying the reverse transformations to the views. This
method either makes the sensing device expensive
or limits its capability to only scanning small objects
that can be placed on a turn table. The second way
is through feature matching which is also known
as automatic correspondence identification. Feature
matching automatically identifies corresponding
points in the two views and coarsely registers them by
minimizing the distance between these points.

Coarse registration is followed by a fine regis-
tration algorithm which iteratively refines the initial
coarse registration. The classic Iterated Closest Point
(ICP) algorithm (Besl and McKay, 1992), the Chen
and Medioni’s algorithm (1991) and the registration
approach based on maximizing mutual information
(Rangarajan et al., 1999) are examples of fine registra-
tion algorithms. These algorithms can only work once
the views have been coarsely registered. Moreover, in
case the coarse registration is not accurate enough,
these techniques may not converge to the correct solu-
tion. In addition to pairwise fine registration, more than
two views can also be simultaneously registered with
multiview global registration techniques (Williams and
Bennamoun, 2001; Benjemma and Schmitt, 1997;
Oishi et al., 2003; Nishino and Ikeuchi, 2002). Once all
the views are registered in a common coordinate basis,
they are integrated and reconstructed to make a com-
plete 3D model. The block diagram of Fig. 1 illustrates
the process of automatic 3D modeling.

The idea behind feature matching based automatic
coarse registration techniques is to represent the fea-
tures of each range image and match these representa-
tions in order to identify corresponding points between

them. For accurate feature matching, ideally the rep-
resentation used must be unique and invariant to rigid
transformations. A unique representation should re-
sult in a similar representation only for exactly similar
features. However, in practice features of an object ac-
quired by different range images vary to some extent
due to the variations caused by noise and surface sam-
pling. Therefore, representations must be adapted to
handle these variations. As a result, these representa-
tions no longer remain unique and loose some of their
discriminating capability i.e. matching of these rep-
resentations results in one-to-many matches including
incorrect ones. The challenge here for a representation
scheme is to be capable of handling small variations
in features while still maintaining maximum discrim-
inating capability between features. A representation
with low discriminating capability will result in multi-
ple ambiguous matches making it difficult to identify
correct matches from incorrect ones. The end result is
that the algorithm becomes computationally expensive
and may even converge to an incorrect solution.

Various representation schemes have been used
by feature matching algorithms for automatic coarse
registration. However, these algorithms or the repre-
sentations they use suffer from a number of limitations
related to their applicability to free form objects, effi-
ciency, robustness to resolution and low discriminating
capability of the representation. The following is a
survey of related work in the area of automatic coarse
registration by feature matching. The RANSAC-based
DARCES algorithm (Chen et al., 1991) is based upon
an exhaustive search and is not practical if the data sets
are large. Moreover, the DARCES algorithm makes
some unrealistic assumptions about the overlapping
regions of the views. Another example of an exhaus-
tive search based algorithm is the graph matching
algorithm (Cheng and Don, 1991). Bitangent curve
matching (Wyngaerd et al., 1999) requires first order
derivatives which are sensitive to noise. Another prob-
lem with bitangent curves is that they represent global
features which may not be fully contained inside the

Figure 1. Block diagram showing the different components of a generic automatic 3D modeling system.
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overlapping regions of the views. Three tuple matching
(Chua and Jarvis, 1996) calculates the first and second
order derivatives which are also sensitive to noise
and require the underlying surfaces to be smooth.
Spherical Attribute Image (SAI) matching (Higuchi
et al., 1994) requires the underlying surfaces to be
free of topological holes which limits its applicability.
Geometric histogram matching (Ashbrook et al., 1998)
makes use of a 3D Hough transform (Stephens, 1990)
which is computationally expensive. Roth’s technique
(Roth, 1999) is limited by the fact that it relies upon
the presence of a significant amount of texture on the
surface of the object for consistent extraction of feature
points from their intensity images. Matching oriented
points (Johnson and Hebert, 1997) uses the spin
image representation which has a low discriminating
capability (as illustrated in Section 8) because it
maps the 3D range image into a 2D histogram. Spin
image matching therefore results in many ambiguous
correspondences which must be processed through a
number of filtration stages to prune out incorrect ones
making the technique computationally inefficient even
for range images of a reasonable size.

In this paper, we present a novel feature matching
algorithm for automatic coarse registration of range im-
ages. Our algorithm uses a novel tensor representation
for representing semi-local surface patches of a range
image of a free-form (sculpted) object (Besl, 1990).
Each range image is represented with multiple third
order tensors. Each tensor is derived by defining a local
3D grid over the range image and quantizing the surface
area intersecting each bin of the grid in a third order
tensor (see Section 2 for details). This results in a 3D
representation of the surface patch with a high discrimi-
nating capability leading to correct matches.Tensors of
two overlapping views are matched to establish pair-
wise correspondences between the views. Correspond-
ing tensors are verified (local-verification)
and then used to pairwise register the views. The regis-
tration is then refined with a fine registration algorithm
as illustrated in Fig. 1.

We combined our automatic pairwise registration
algorithm with other modular components to devise a
complete framework for automatic 3D modeling from
ordered range images i.e. when a priori knowledge of
overlapping view pairs is available. However, no fur-
ther information about the relative viewing angles or
exact regions of overlap of the views is available. Our
algorithm pairwise registers the views after local-
verification (Sections 4.1). Next a global-

verification (Section 4.2) of the registration is
performed considering all the views that have already
been pairwise registered. A pairwise registration is ac-
cepted only if it passes both verifications, otherwise
it is rejected and another pair of matching tensors is
sought. Once all the views are pairwise registered, the
registration is refined with a global registration algo-
rithm (Williams and Bennamoun, 2001) which reg-
isters the views globally, distributing the registration
errors evenly over the entire 3D model. The views are
finally integrated and reconstructed to form a smooth
and seamless 3D model.

We performed the analysis of our automatic pair-
wise registration algorithm (Mian et al., 2004d) taking
into consideration the following criteria: accuracy of
registration, robustness to resolution and the number
of tensors per view, efficiency with respect to memory
and time, robustness to the required amount of over-
lap and finally robustness to noise. We also compared
our algorithm to the spin image matching algorithm
(Johnson and Hebert, 1997) by applying both algo-
rithms to the same sets of range images. Our results
show that our algorithm has more discriminating capa-
bility and performs better than the spin image algorithm
at a low resolution of the range images.

The rest of this paper is organized as follows. In
Section 2, we describe our novel tensor representation
scheme. In Section 3, we analyze the stability of our
tensor representation. In Section 4, we give details of
our automatic pairwise registration algorithm. In Sec-
tion 5, we briefly describe our framework of automatic
3D modeling. In Section 6, we present our 3D mod-
eling results along with their qualitative analysis. In
Section 7, we report on the quantitative results and
analysis of our automatic pairwise registration algo-
rithm according to our laid down criteria. In Section 8,
we perform the comparative analysis of our algorithm
with the spin image matching algorithm. In Section 9
we give our conclusions and directions for future work.

2. Tensor Representation

During the representation phase (see Fig. 1), the in-
put views of the object are converted into their tensor
representations. To compute these tensors, the range
images, in the form of point clouds (Fig. 2(a)), are con-
verted into triangular meshes Mi where i = 1, . . . , N
(Fig. 2(b)). This is performed by mapping the 3D points
onto the 2D retinal plane of the sensor and performing
a 2D Delaunay triangulation over the mapped points.
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Figure 2. (a) A point cloud of a view of a dog (see Fig. 11 for a complete 3D model). (b) After converting into a triangular mesh. (c) After
mesh reduction the number of faces are considerably reduced.

After triangulation, the points are mapped back to the
3D space and the triangles with edges longer than
a prespecified threshold are removed. This separates
surfaces which are falsely connected by the Delaunay
triangulation. In our implementation we removed all
triangles with an edge length 0.6 standard deviations
longer than the mean.

For reasons of efficiency, a mesh reduction algo-
rithm is applied to each mesh Mi, resulting in a re-
duced mesh M′

i with approximately 400 vertices per
mesh (see Fig. 2). For this purpose, we used Garland’s
mesh simplification algorithm (Garland and Heckbert,
1997). However, any other efficient algorithm can be
used as long as it simplifies the mesh while preserving
maximum amount of geometric variation on its surface.
Normals are then calculated for each vertex of the re-
duced meshes using two different approaches. In the
first approach, the normal of a vertex of M′

i is defined
as the weighted average of the normals of its imme-
diate neighbouring triangles. In the second approach,
the normal of a vertex of M′

i is taken as the normal of
its corresponding vertex in Mi which is defined as the
weighted average of the normals of the triangles within
a predefined neighbourhood of the vertex. The first ap-
proach is fast whereas the second approach gives more
stable normals. However, our experiments show that
both approaches give similar registration results given
that the registration is refined with a fine registration
algorithm.

Once the normals have been calculated, pairs of ver-
tices along with their normals are selected to define
local 3D coordinate bases. Note that a 3D coordinate
basis can also be defined using three vertices without
their normals. However, in this case the number of
possible vertex pairs will be Cn

3 (where n is the num-

ber of vertices in M′
i) as opposed to the Cn

2 possible
pairs in the case of using two vertices and their nor-
mals. Moreover, choosing two vertices for defining a
3D coordinate basis also increases the chances that all
vertices in a pair will belong to the region of overlap
of the two meshes. Therefore, we define local coor-
dinate basis on a mesh using two vertices and their
normals.

To avoid the Cn
2 combinatorial explosion of the ver-

tex pairs, a distance constraint is imposed on their pair-
ing. This distance constraint allows the pairing between
only those vertices which are within a prespecified dis-
tance. The distance constraint also ensures that the ver-
tices that are paired are far enough apart so that the cal-
culation of the coordinate bases is not sensitive to noise
but close enough to maximize their chances of being
inside the overlapping region. The allowable distances
between vertex pairs is selected as a fraction of the di-
mensions of the object. To calculate the dimensions of
the object, all its range images are transformed to their
principal axes in order to align their maximum surface
area along the xy plane. The approximate bounding di-
mensions (D = [Dx Dy Dz]) of the object along the x,
y, z directions are then calculated using Eq. (1).

D = max
xyz

(
max

xyz
(ViPi) − min

xyz
Vi Pi)

)

∀ i ∈ [1, . . . , N ] (1)

In Eq. (1), Vi is an n × 3 matrix of the x, y, z co-
ordinates of the data points of the ith view. Pi is the
rotation matrix which aligns Vi with its principal axis.
The operator “maxxyz(Vi )” takes the maximum values
of x, y, z in Vi. If the views of an object completely
cover its surface, then D is approximately equal to the
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bounding box of the object when it is aligned with
its principal axis. D serves as a low cost verification
of the registration of two or more views. According
to this verification step, the combined bounding di-
mensions of any number of registered views, when
aligned with their principal axis, should not exceed
D. Details of the verification are given in Sections 4.1
and 4.2.

The minimum and maximum limits (dmin and dmax

respectively) of the distance constraint for pairing ver-
tices are calculated from the bounding dimensions D
of the object using Eq. (2).

dmin = mean(Dx , Dy, Dz)

6 (2)
dmax = mean(Dx , Dy, Dz)

4

In addition to the distance constraint, an angle con-
straint is also imposed on the pairing of vertices so
that vertices with approximatelyequal normals are not
paired (since their cross product will result in a zero).
According to the angle constraint, the normals of two
vertices in any pair must have a mutual angle (θd )
greater than 5◦. Moreover, the average of the two nor-
mals must be defined i.e. when the two normals are
added they must not result in a zero. Each vertex is
paired only with its closest three vertices that satisfy
the above constraints, limiting the maximum number
of possible pairs to 3n per view (where n is the number
of vertices per view). In practice the valid number of
vertex pairs is much less than 3n due to the distance
and angle constraints.

For each valid pair of vertices a local 3D basis is
defined as follows. The center of the line joining the
two vertices defines the origin of the new 3D basis.
The average of the two normals defines the z-axis. The
cross product of the two normals defines the x-axis and
finally the cross product of the z-axis with the x-axis
defines the y-axis. This 3D basis is used to define a 3D
grid centered at its origin (Fig. 3(b)).

Two parameters need to be selected, namely, the
number of bins in the 3D grid and the size of each bin
bs. Varying the number of bins from less to more varies
the representation from being local to being global. In
our experiments we found that defining a 10 × 10 × 10
grid gives good results (see Sections 6 and 7). The bin
size defines the level of granularity at which the object’s
surface is represented. In our initial experiments (Mian
et al., 2004), we defined the bin size in terms of the
mesh resolution. However, with the introduction of an

additional step of mesh reduction which results in a
mesh with extremely non-uniform resolution, the bin
size is now automatically calculated from the bounding
dimensions of the object (Eq. (3)).

bs = mean(Dx , Dy, Dz)

30
(3)

Once the 3D grid is defined, the surface area of
the mesh intersecting each bin of the grid is recorded
in a third order tensor. In simple terms, the tensor
can be considered as a 10 × 10 × 10 array of scalar
elements where each element is the area of intersection
between the mesh and the bin inside the 3D grid which
corresponds to the same index location as the tensor
element (Fig. 3(d)). This tensor is a local surface
descriptor which corresponds to a local representation
of the surface inside the 3D cubic grid. To find the area
of intersection of the mesh with each bin of the 3D
grid, we start from a vertex on the mesh that is closest
to the origin of the 3D basis and visit each triangular
facet in its immediate neighbourhood. We call this the
current-neighbourhood. A single triangular
facet may intersect more than one bin (Fig. 3(d)). The
area of intersection of each triangular facet (in the
current-neighbourhood) with its intersecting
bins is calculated using Sutherland Hodgman’s
polygon clipping algorithm (Foley et al., 1990) and an
entry is made at the corresponding element position
in the tensor. Since more than one triangular facet
can intersect a single bin, the calculated area of
intersection is added to the area already present in
that bin as a result of its intersection with another
triangular facet. Once all the triangular facets have
been visited in the current-neighbourhood, it
becomes the old-neighbourhood. The “outer”
(with respect to the origin) neighbouring triangular
facets of the old-neighbourhood make up
the new current-neighbourhood. The area
of intersection of each triangular facet in the new
current-neighbourhood with the grid bins is
calculated as discussed above and entered into the
tensor. This process continues until a stage is reached
when all the triangular facets in the current-
neighbourhood are completely outside the 3D
grid at which point the computation is stopped. Note
that there are chances that a surface may re-enter the
grid after leaving it. Dealing with such situations may
require looking for polygons in every bin of the grid
which is computationally more expensive than the
above region growing algorithm. Luckily, the chances
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Figure 3. (a) 3D basis defined over the surface of the dog. (b) A 10 × 10 × 10 grid defined over the surface of the dog centered at the origin
of the 3D basis. The surface area of the mesh intersecting each bin ofthe grid is the value of the tensor element corresponding to the bin. (c) A
zoomed in view of eight bins around the origin. (d) A single bin intersecting three triangular faces. The shaded area is the intersection of the
faces with the bin. (Figure reproduced from Mian et al., 2004b.)

of such situations are very slim and therefore the
region growing is a preferred approach.

Since most of the bins of the 3D grid are likely
to be empty (see Fig. 3(b)), the resultant tensor will
have many zero elements. In order to improve memory
utilization, the tensor is compressed to a sparse form
by squeezing out the zero elements and retaining the
non-zero elements and their index positions in the third
order tensor. This process reduces the memory utiliza-
tion by approximately 85%. Compressed tensors are
calculated for all the valid vertex pairs of each mesh in
a similar way. These compressed tensors together with
their respective coordinate basis and θd are called the
tensor representation of the mesh or view. Tensors of
each mesh are indexed by a 1D table with their θd for
quick reference. Each bin of the index table serves as a
quick reference to a group of tensors which have a θd

within a certain range �θd . Choosing a small �θd will
reduce the number of possible matches for a tensor.
However, it will also increase the risk of missing out a
correct matching tensor due to noise in the vertex nor-
mals. We found from our experiments that a �θd = 5◦

gives good results (Mian et al., 2004b). Since the mu-
tual relationship between the two vertices in a pair and
their normals is invariant to rigid transformations, the
3D coordinate basis and the resulting tensors also have
the same property.

3. Stability Analysis of the Coordinate Frames

Tensors derived from different views of the same sur-
face will be similar or matching (see Section 4 for the
similarity measure and matching of tensors) if they are
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calculated with respect to similar coordinate frames.
Therefore, it is importantto analyze the stability of the
defined local 3D coordinate frames used to calculate
our tensors. Stability here refers to the probability of
getting similar coordinate frames in the overlapping re-
gions of the meshes of two views of an object. The local
coordinate basis B1 on view 1 and B2 on view 2 (each
derived from a pair of vertices of the respective view)
are considered similar if they satisfy the condition of
Eq. (4).

B�
2 B1 ≈ R−1

GT (4)

Bi (i = 1, 2) is a 3 × 3 matrix of x, y, z coordinate
vectors of the local coordinate basis of view i with re-
spect to the view coordinate basis of view i and RGT

is the ground truth rotation matrix between view 2 and
view 1. Two coordinate frames are likely to be similar
if the vertex pairs used to derive them are in approx-
imately the same location on the underlying object’s
surface. In other words, two coordinate frames will be
similar if they are derived from corresponding pairs
of vertices (see Section 1 for the definition of corre-
spondence). Therefore, the stability of our coordinate
frames is directly related to the probability of having
corresponding pairs of vertices in overlapping meshes
after mesh simplification (since the vertex pairs for
defining a 3D basis are selected from the simplified
meshes).

We performed a simple experiment to estimate the
probability of corresponding vertices in two overlap-
ping and simplified meshes. We took two meshes (at
approximately 23000 vertices permesh) of two differ-
ent views of the dog and calculated the percentage of
vertices in mesh 2 which had a corresponding vertex
in mesh 1 after fine registration. A pair of vertices
(one from each mesh) is considered corresponding if
the distance between them is less than 1.4 cm (namely
twice the mesh resolution before simplification). This
figure came out to be approximately 60%.1 The two
meshes were simplified (Garland and Heckbert, 1997)
to approximately 270 vertices per mesh (or 400 faces
per mesh) (see Fig. 4(a) and (b)) and the percentage
of vertices of mesh 2 that were within a distance of
1.4 cm of view 1 was calculated again (see Fig. 4(c)).
This time it came out to be 41.8% which is a reduc-
tion by only 18.2%. Assuming that the probability of
finding a pair of corresponding vertices in the region
of overlap of the two high resolution meshes is 1, af-
ter mesh simplification this probability will reduce to

0.7. This reduction is very reasonable when compared
to a mesh simplification by a factor of 1

85 or 98.8%
reduction (i.e. 98.8% of the vertices are removed as a
result of the mesh reduction). From Fig. 4(c) we can
see that the vertices of the two meshes are very close in
their region of overlap. Figure 4(d) shows a histogram
of the distances between the vertices of mesh 2 and
their nearest neighbour vertices in mesh 1. Figure 4(d)
shows that a high percentage of the vertex pairs are
closely located whereas some of the pairs have large
distances between them mainly because at least one
vertex of the pair does not belong to the region of over-
lap. We repeated the same experiment for three other
objects namely the dinosaur, the bone and the dragon
(their full models are shown in Fig. 11). Figure 5 shows
our results calculated in exactly the same manner as in
the case of the dog. From Fig. 5(a), (b) and (c), we can
see that most of the vertices of mesh 2 have a closely
located vertex in mesh 1 in each case. The statistics
reported in Fig. 5 also reveal that only a small reduc-
tion in correspondences occurred in each case. Note
that a threshold of 1.4 cm for corresponding vertices is
extremely conservative compared to the dimensions of
these objects. For example, by increasing this threshold
to 2.8 cm there is almost no reduction in the percent-
age of corresponding vertices after mesh simplification
(see Figs. 4(d) and 5). Our results show that the vertices
of the simplified meshes of overlapping views of an ob-
ject are closely located. Since the normal of a vertex is
related to its position, the corollary is that these vertices
are also likely to have similar normals especially when
the normals are calculated using the high resolution
mesh Mi. On this basis, we conclude that the local co-
ordinate frames derived from the corresponding pairs
of two overlapping meshes will be approximately sim-
ilar. Minor variations in the coordinate frames do not
cause any problem because these coordinate frames are
used only for automatic coarse registration. This coarse
registration is then refined with a fine registration algo-
rithm which is independent of these coordinate frames.
Our results reported in Sections 6, 7 and 8 also support
our argument.

The Garland and Heckbert’s mesh simplification ap-
proach is viewpoint independent and produces similar
sets of vertices for surfaces which are exactly simi-
lar. Rotating an acquired surface around the viewing
direction (or any other axis) does not affect its simpli-
fication since the surface remains the same. However,
when the viewing direction of a sensor is changed, it
may acquire different parts (views) of a surface of an
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Figure 4. (a) and (b) Simplified meshes of two different views of the dog (see Fig. 11 for a complete 3D model) at approximately 270 vertices
(or 400 faces) per mesh. (c) The two meshes are registered with a transformation calculated from the fine registration of the high resolution
meshes. Note that the vertices of the two meshes are closely located. (d) A histogram of the distances between the vertices of mesh 2 and their
nearest vertices in mesh 1. Most of the vertex pairs have a small distance between them whereas some of the vertex pairs have a large distance
mainly because at least one vertex of the pair doesn’t belong to the region of overlap of the two meshes. (Note: this figure is best viewed in
colour.)

Figure 5. Histograms of the distances between the vertices of view 2 and their nearest vertices in view 1 of (a) the dinosaur, (b) the bone and (c)
the dragon. (See Fig. 11 for the 3D models of these objects). The mesh resolution in each case was approximately 0.7 cm before simplification.
The distance threshold for a corresponding pair of vertices was 1.4 cm in each case. Most of the vertex pairs have a small distance between them
in each case compared to the dimensions of the object.
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object. If these two views have sufficient overlap, their
simplification will result in approximately similar sets
of vertices in their region of overlap (see Fig. 5). This
however cannot be guaranteed when the overlap be-
tween the two views is very small, as the tessellation
of the overlapping region will be influenced by the rest
of the meshes. Our results (Section 7.4) show that at
least 50% overlap between the views is required by our
algorithm for a successful registration. For further de-
tails about the Garland’s mesh simplification algorithm
and its error analysis, the reader is referred to Garland
(1999).

4. Matching Tensors for Automatic Pairwise
Correspondence and Registration

Tensors of a pair of views are matched to find cor-
respondences between the views. Matching tensors
are then used for the automatic coarse registration of
the views by aligning the 3D coordinate basis used
to derive these tensors. Since a tensor is a 3D de-
scriptor of a local surface patch of anobject, a pair of
matching tensors reveals that the surface patches rep-
resented by these tensors are also similar and should
correspond to the same surface patch of the object.
We use a linear correlation coefficient for matching
a pair of tensors. Figure 6 shows the histogram of
matches between a tensor of one view with 700 ten-
sors of another view. It is clear from Fig. 6 that the
matching pairs of tensors have a very high correlation
value (as defined below) compared to the remaining
tensors.

We will use hereafter the terminology of model view
(reference view) and scene view instead of view 1 and
view 2 for explaining our algorithm. To establish corre-
spondence between a model mesh Mm and scene mesh
Ms (where m, s = 1, 2, . . ., N), a tensor is selected
from Ms and matched with only those tensors of Mm

′

which are at θd ±�θd positions in the index table. The
matching of a scene tensor Ts and a model tensor Tm

proceeds as follows. First, the overlap ratio RO of the
two tensors is calculated using Eq. (5).

RO = nq

nm + ns − nq
(5)

In Eq. (5), nq is the number of non-zero elements
of Tm which have a corresponding non-zero element
at the same index position in Ts. In other words, nq
is the number of intersecting bins between Tm and
Ts. nm and ns are the total number of non-zero ele-
ments of Tm and Ts respectively. If RO is greater than
a prespecified threshold tr , the algorithm proceeds to
calculate the correlation coefficient Cc of the two ten-
sors in their region of overlap Eq. (6), otherwise the
next tensor from Mm

′ is considered for matching. In
our experiments we found that tr = 0.5 gives good
results (see Sections 6 and 7). The tensors are matched
only in those bins where both tensors have surface data
to cater for situations where some part of the object
may be occluded in one view.

Cc

= nq
∑nq

i=1 pi qi − ∑nq
i=1 pi

∑nq
i=1 qi√

nq
∑nq

i=1 p2
i −

( ∑nq
i=1 pi

)2
√

nq
∑nq

i=1 q2
i −

( ∑nq
i=1 qi

)2

(6)

Figure 6. Histograms of matches (correlation coefficient weighted by the number of tensor elements nq used to calculate the correlation
coefficient) between a tensor of view 1 with 700 tensors of view 2. The matching tensors in each case have a very high correlation value
compared to the remaining tensors. Note however that in both cases, these matching tensors will be verified as per Sections 4.1 and 4.2.
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Figure 7. Pseudo-code of the automatic correspondence and regis-
tration algorithm. This corresponds to module 4 of the block diagram
in Fig. 9. (Figure reproduced from Mian et al., 2004d).

In Eq. (6), pi (i =1 . . . nq) are the elements of Tm

in the region of overlap (intersection) of Tm and Ts

i.e. the elements of Tm which have a corresponding
element in Ts at the same index position. Similarly, qi

are the elements of Ts in the overlapping region of the

two tensors. Note that i = 1 . . . nq in both cases. If Cc is
greater than a prespecified threshold tc (which is also
set to 0.5), the algorithm proceeds to the next step of
local-verification.

4.1. Local Verification (Steps 4 to 14
of the Pseudo-Code of Fig. 7)

During local-verifications, all the points of
Ms

′ are transformed to the coordinates of Mm
′. This

transformation is calculated by transforming the cor-
responding 3D basis of Ts to the 3D basis of Tm using
Eqs. (7) and (8).

R = B�
s Bm (7)

t = Os − OmR (8)

Bi (i = m, s) is a 3 × 3 matrix of the x, y, z coordinate
vectors (with respect to the view coordinate basis of
view i) of the local coordinate basis used to derive Ti.
Oi is a 1 × 3 vector of the coordinates of the origin of
Bi in the view coordinate basis of view i. R and t are
the rotation matrix and translation vector respectively
which aligns M′

s with M′
m (the scene view with the

model view). Figure 8 shows automatic pairwise coarse
registration of meshes on the basis of a single pair of
matching tensors. Note that our coarse registration re-
sults in Fig. 8 are quite accurate even though no regis-
tration refinement has been performed at this stage.

Figure 8. Automatic coarse registration of a pair of views of (a) the dinosaur, (b) the dog and (c) the robot. The cube in each case shows the
bounding box of the 3D grid inside which the tensors were computed. Note that our coarse registration results are quite accurate even though it
has been calculated from a single pair of matching tensors in each case and no registration refinement has been performed yet. (This figure is
best viewed in colour).
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M′
m and M′

s are registered to form M′
ms. M′

ms

is then aligned along its principal axis and its x,
y, z bounding dimensions D′

ms are calculated using
Eq. (9).

D′
ms = max

xyz
(V′

msPms) − min
xyz

(V′
msPms) (9)

In Eq. (9), V′
ms is the matrix of x, y, z coordinates of

the data points of M′
ms and Pms is the rotation matrix

that aligns V′
ms along its principal axis.

In the next step, the bounding dimensions D of the
object are subtracted from D′

ms. If the maximum dif-
ference between the two is less than a specified tol-
erance tD, Mm and Ms are also registered (using the
same R and t) and pairs of points on Mm and Ms

that are within a distance equal to 2dres (where dres

is the resolution of Mi) are turned into correspon-
dences. tD is chosen as a fraction of D. Since the
registration at this stage is calculated from a single
set of matching tensors,it is likely to be inaccurate.
Therefore, a high value of tD is selected. In our ex-
periments we chose tD = mean(Dx , Dy, Dz)/10. If
the number of correspondences found is more than nc

(nc = min(number of points in Mm, Ms)/4), the regis-
tration is refined with a variant of the ICP algorithm
(Rusinkiewicz and Levoy, 2001). Correspondences are
established once again between points on the two views
that are within a distance equal to dres. If the num-
ber of correspondences found is more than 2nc, the
combined bounding dimensions Dms of the registered
meshes (Mm and M′

s) are calculated in a similar fash-
ion using Eq. (9). Once again D is subtracted from Dms.
If the maximum difference between the two bounding
dimensions Dms and D is less than a predefined toler-
ance 2dres, the transformation is accepted. A very low
value of tolerance is selected at this stage compared
to tD since the registration has now been refined.If any
one of the abovelocal-verification steps fails,
the next pair of tensors is selected for matching and the
whole process is repeated.

4.2. Global Verification (Steps 15 and 16
of the Pseudo-Code of Fig. 7)

In case there are more than two views, they are all
pairwise registered in the coordinate basis of a refer-
ence view as described above. Each time a new view
is added to the set of registered views, global-
verification is performed by calculating the

combined bounding dimensions of all the views
(Eq. (9)), that are registered so far, and comparing
them with D. If the maximum difference between the
two is less than 4dres, the newly added view is accepted.
If global-verification fails, the pairwise cor-
respondence algorithm is repeated for the last pair of
views and their next pair of tensors is matched. Pseudo
code of our automatic correspondence and registration
algorithm is given in Fig. 7.

Note that in our approach, automatic coarse registra-
tion is performedon the basis of a single pair of match-
ing tensors. An alternate possibilityis to match a pre-
determined number of tensors and calculate the rigid
transformation supported by the maximum number of
matching tensors using RANSAC. This approach could
be more robust but it will be computationally more
expensive as there are six degrees of freedom when
registering two range images. Moreover, the coarse
registration resulting from a single pair of matching
tensors is quite accurate (see Fig. 8) and serves as a
reliable starting point for an onward refinement with a
fine registration algorithm (e.g. ICP (Besl and McKay,
1992)).

5. The 3D Modeling Framework

We combined our automatic pairwise registration al-
gorithm with other modular components to devise a
complete framework of automatic 3D modeling from
ordered range images i.e. with known overlapping view
pairs.2 Figure 9 shows the block diagram of our frame-
work.The input to our framework is the ordered set
of views in the form of point clouds. No other in-
formation is required by the algorithm and nor does
the algorithm make any assumption about the view-
ing angles, overlapping regions or the shape of the
object. The input views are pairwise registered using
our automatic algorithm described in Section 4 and
the registration is further refined with a global reg-
istration algorithm (Williams and Bennamoun, 2001)
(Module 5 of Fig. 9) in order to distribute any reg-
istration errors evenly over the complete 3D model.
Finally, the registered views are integrated and recon-
structed using the Volumetric Range Image Process-
ing Package (VripPack) (Stanford Computer Graphics
Laboratory, 2001) as shown in Module 6 of Fig. 9.
VripPack uses the volumetric integration algorithm
by Curless and Levoy (1996) for integration and the
marching cubes algorithm (Lorensen and Cline, 1987)



30 Mian, Bennamoun and Owens

Figure 9. Block diagram of our automatic 3D modeling framework. (Figure reproduced from Mian et al. (2004d)).

for reconstruction. The global registration algorithm,
integration algorithm and surface reconstruction algo-
rithm are all modular components of our 3D modeling
framework and can eventually be replaced with better
algorithms.

6. Results

We performed our experiments on range data ob-
tained from different sources on the Internet. Figure 10
shows our 3D modeling results using Johnson’s data set
(Johnson and Hebert, 1999; Johnson, 1997). Figure 11
shows our 3D modeling results using range data from
The Stuttgart Range Image Database (The University
of Stuttgart, 2001). We performed our experiments on
range images of different types of free-form objects
with varying properties of features, symmetries, planar
regions, curvatures etc. in order to test our algorithm

in every possible scenario. Since the ground truth was
not available in all these cases, we could only perform
a qualitative analysis of the pairwise registrations and
their resulting 3D models. The registered views were
magnified and visually inspected for alignment errors
and seams. There were no visually noticeable defects
or seams in the registered views. Moreover, the re-
constructed models in Figs. 10 and 11 also look very
accurate.

We also performed some experiments on range data
for which the ground truth was available. These range
images were synthetically generated from already
built models available at The Stanford 3D Scanning
Repository (Stanford Computer Graphics Laboratory,
2003) namely the armadillo, the Stanford bunny and
the happy buddha. 26 synthetic range images were
generated for each model (using a z-buffer) from
different viewpoints 30◦ apart. These range images
were then automatically registered with our algorithm

Figure 10. Our 3D modeling results using Johnson’s range data. (a) 16 views of the robot were registered to construct its 3D model. (b) 12
views of the bunny were registered to construct its 3D model.
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Figure 11. Our 3D modeling results using range data from the Stuttgart Range Image Database. Each 3D model is shown from four different
angles. The number of views used to construct each model is written to its left below its name. Notice that these models look more neat compared
to the models in Fig. 10 because the range data was of a better quality in this case.

and reconstructed with VripPack (Curless and Levoy,
1996). Figure 12 shows the original 3D models
along with the rebuilt ones. Visual comparison of the
models showed that the rebuilt models are identical

to their original counterparts except for minute and
indiscernible blurring which occurred in the rebuilt
models due to approximations in the integration and
reconstruction phases.
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Figure 12. 3D modeling results of synthetic data. 26 different
views of each model were synthetically generated from view points
30◦ apart. The models were rebuilt from these views using our frame-
work. The rebuilt models (second row) are identical to the original
models (first row) except for minute and indiscernible blurring.

7. Quantitative Analysis of the Automatic
Registration Algorithm

In addition to the qualitative analysis of our 3D models,
we also performed extensive testing of our automatic
pairwise correspondence and registration algorithm.
The algorithm was tested according to the following
criteria: (1) Accuracy (2) Robustness to resolution and
the number of tensors perview (3) Efficiency with re-
spect to memory and time (4) Required amount of
overlap and (5) Robustness to noise. Details are given
below with respect to each criterion.

7.1. Accuracy

To analyze the accuracy of our algorithm quantitatively,
it was necessary to generate range images with avail-
able ground truth transformations. This test was there-
fore performed on the synthetically generated range
images of the Stanford 3D models (Stanford Computer
Graphics Laboratory, 2003).While breaking these 3D
models into 26 views, the ground truth rotation ma-
trix (RiGT ) and translation vector (tiGT ) with respect
to a reference view were recorded for each view Vi

(i = 1, 2 . . . , 26). Next, the transformations (Ri ) and
ti resulting from our automatic registration algorithm
were compared to the ground truth transformations.
The error in the two rotation matrices was calculated

using Eqs. (10) and (11).

Rid = Ri R−1
iGT (10)

θie = cos−1

(
trace(Rid ) − 1

2

)
180

π
(11)

In Eq. (10), Rid is a rotation matrix representing the
difference between Ri and RiGT . Rid is equal to an
identity matrix in case of no error. Equation (11) is
derived from Rodrigue’s formula. θie represents the
amount of rotation error (about a single axis) present
in Ri . Similarly, the translation error tie of each view
Vi was calculated using Eq. (12).

tid = ||ti − tiGT ||
dres

(12)

In Eq. (12), dres is the resolution of the fine meshes
i.e. before mesh reduction. The difference between the
translation vectors is normalized with respect to dres in
order to make it scale-independent. Figure 13 shows
histograms of the errors in rotation and translation of
the 26 views of all 3D models. Most of the pairs have a
rotation error less than 0.1o and a translation error less
than 0.1 mesh resolution.

7.2. Robustness to Resolution and the Number
of Tensors per View

We tested our algorithm’s performance by varying the
resolution of the range images and the number of ten-
sors per view. We varied the resolution of the views
of the objects of Fig. 11 by simplifying (Garland and
Heckbert, 1997) them by different factors. Figure 14
shows some example views at the lowest three res-
olutions. Next, we used our automatic algorithm for
pairwise registration of overlapping views and catego-
rized the results as correct or incorrect. Figure 15 shows
the number of overlapping view pairs which were cor-
rectly or incorrectly registered at different resolution
for six individual objects. Note that these results are
reported for individual pairs ofoverlapping views with-
out performing global-verification. Many
of these incorrect registrations were detected at the
global-verification stage and hence cor-
rected by searching for another pair of matching ten-
sors which satisfies the global-verification
stage. Figure 16 shows the combined results of all
the seven objects at varying resolution and number
of tensors per view. We can see in Fig. 16 that
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Figure 13. Histograms of errors in rotation and translation after registration (using our algorithm) of the synthetically generated views of the
Stanford bunny, armadillo and happy buddha. Maximum view pairs have a rotation error less than 0.1◦ and a translation error less than 0.1◦
mesh resolution. The translation error is normalized with the mesh resolution (before simplification) to make it scale independent. The average
dimension i.e. the average of height, length and width, of each object are as follows. Stanford bunny: dimension = 150 cm resolution = 1.47 cm,
armadillo: dimension = 125 cm resolution = 0.53 cm and happy buddha: dimension = 121 cm and resolution = 0.72 cm. (Figure reproduced
from Mian et al. (2004d).)

Figure 14. Example views of the dog, the dinosaur and the frog
at their lowest three resolutions. Notice that the objects start loosing
their meaningful shape at 100 faces per view.

80% correct results are acheived at resolutions as low
as 200 faces per view and 175 points per view. Note that
the objects lose their meaningful shape at a resolution
of 100 faces, yet we still achieved 50% correct pair-
wise registrations at this resolution (see Fig. 16). The
performance of our algorithm with varying number of
tensors (Fig. 16 last column) shows that our algorithm
achieves a success rate of approximately 90% at 450
tensors per view. With global-verification a

success rate of almost 100% was acheived at 400 faces
per view and 500 tensors per view. Note that these
figures are independent of the size of the actual range
images i.e. whatever is the original resolution of the
range images, our algorithm reduces them to 400 faces
per view and represents each view by 500 tensors to
achieve correct results.

7.3. Efficiency with Respect to Memory and Time

Our algorithm is efficient in terms of memory utiliza-
tion because a limited and constant number of tensors
(approx. 500) are required to represent each view. Fur-
thermore, as explained in Section 2, we take advantage
of the sparsity of these tensors and compress them
to further cut down on memory utilization. Compu-
tational efficiency is achieved by performing coarse
registration (matching) at a very low resolution and by
matching only a small number of tensors. Our exper-
iments show that most of the time a correct pair of
matching tensors is found when the first few tensors of
M′

s are matched with the tensors of M′
m . Figure 17(a)

shows a histogram of the number of tensors of M′
s that

were matched with the tensors of M′
m during the exper-

iments of Section 7.2. Most of the correct matches were
found when the first 50 tensors of any M′

s were matched
with those of M′

m . The median number of tensors of M′
s

that were matched3 with the tensors of M′
m was found to

be 26. Once a correct match which passes the local-
verification+ and global-verification
is found, the views are registered and our algorithm
stops searching for any further matches consequently
saving computational time.
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Figure 15. Performance of our automatic registration algorithm with varying mesh resolution. Individual results for six objects. The biplane
has the maximum number of incorrect matches due to its highly symmetrical shape. Note that these results have been recorded for individual
pairs of overlapping views only and these incorrect matches were detected and corrected during global-verification.

Figure 16. Performance of our automatic registration algorithm with varying mesh resolution. Combined results for all seven objects. The
algorithm performs well even at very low resolutions. Note that these results (Figs. 15 and 16) are recorded for pairs of views only and these
incorrect matches were detected and corrected during global-verification. (Figure reproduced from Mian et al. (2004d).)
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Figure 17. (a) A histogram of the number of tensors of M′
s that were matched with M′

m . Most of the correct correspondences were found
when the first 50 tensors of M′

s were matched. (b) A PDF of θd of the tensors of all the views of the 7 objects of Fig. 11. (See text for details.)

We will now calculate the worst case complexity of
our tensor matching algorithm i.e. when all the tensors
of one view are matched with all the tensors of an-
other view. The complexity of any one-to-one match-
ing algorithm is O(n2

t ) (where nt is the total number
of descriptors per view). However, the number of ten-
sors per view in our case is constant i.e. nt is constant.
This means that the complexity of our automatic coarse
registration algorithm is independent of the size of the
range images. Moreover, the number of tensors that are
actually matched in our case is much less than n2

t be-
cause of the use of indexing. The improvement factor
n2

t
µ

(where µ is the number of tensors matched when
indexing is used) depends upon the probability density
of θd of the tensors. Figure 17(b) shows the probability
density function (PDF) of the θd of the tensors of all
the views of the seven objects of Fig. 11. This PDF
closely follows a Gamma distribution with α = 2.5
and β = 20. The more flat this PDF is, the greater the
improvement factor is and vice versa. Suppose there
are 500 tensors per view (nt = 500) and each tensor of
the first view is matched with only those tensors of the
second view which are indexed by θd ± �θd . The total
number of tensors (µ) that are matched in the worst
case is given by Eq. (13).

µ = 3n2
t

180/�θd∑

i=1

(∫ θdi +�θd

θdi

�(θd )dθd

)2

≈ 40432

(13)

In Eq. (13), �(θd ) is the gamma PDF. The PDF is
multiplied by 3 because each tensor is matched with
the tensors indexed by θd ± �θd (this range of θd will

point to 3 bins in the index table). µ ≈ 40432 when
nt = 500 and �θd = 5◦. Without the use of an index
table, this figure would have been (500)2 = 250000.
The improvement factor in this case is 250000

40432 = 6.2.
Therefore, in the worst case our algorithm would exe-
cute six times faster when using indexing than it would
execute without the use of an index table. A Matlab im-
plementation of our algorithm on a 2.4 GHz machine
with 512 MB memory takes 15 seconds to pairwise reg-
ister two overlapping range images in the worst case
i.e. when all tensors of view s are matched with all the
tensors of view m using the index table. However, as
Fig. 17(a) shows, in most cases our algorithm finds a
correct registration when the first few tensors of view
s are matched with those of view m. Moreover, the ex-
ecution time is expected to improve many folds once
our algorithm is implemented in C++.

7.4. Required Amount of Overlap

In this experiment, we tested the performance of our
algorithm against varying amounts of overlap between
the range images to be registered. These experiments
were performed on the range images of the dinosaur,
the dog, the bone and the biplane. We define the amount
of overlap between two meshes Mm and Ms according
to Eq. (14). For each of the four objects, the overlap
was calculated between all possible N (N − 1)/2 pairs
of views4 (N is the total number of views per object).
Next, we used our automatic algorithm for pairwise
registration of each of the N (N − 1)/2 view pairs and
categorized the results as correct or incorrect. Figure 18
shows the results of our experiments. There is some
variation between the results of individual objects but
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Figure 18. Performance of our algorithm as a function of the amount of overlap. The results vary with the type of object. A 50% and above
overlap however ensures correct matches independently of the object. (Figure reproduced from Mian et al., 2004d.)

generally an overlap of 50% or more ensures a correct
match.

Overlap

= no. of corresponding verties of Mm and Ms

min (no. of vertices in Mm, no. of vertices in Ms)
(14)

7.5. Robustness to Noise

We used the range images of the dinosaur, the dog and
the bone for this test. Gaussian noise with standard
deviation σ = dres, 2dres, 3dres, 4dres (where dres is the
resolution of the range image) was injected into these
range images along the scanner viewing direction.5

Next, our algorithm was used to automatically register
overlapping view pairs. Close to 100% correct regis-
trations were achieved up to σ = 3dres whereas some
of the view pairs could not be registered at σ = 4dres.
The robustness of our algorithm to noise can be at-
tributed to two main reasons. First, our algorithm has a
mesh reduction phase at the beginning which reduces
the effect of noise. Notice that despite the spiky sur-
face of the views of the dog (Fig. 19, column 2), the

output of the mesh reduction algorithm (Garland and
Heckbert, 1997) is quite smooth (Fig. 19, column
3). Second, our algorithm uses a correlation coeffi-
cient for matching tensors. Correlation coefficient, be-
ing a statistical measure, performs better in the pres-
ence of noise as compared to other matching tech-
niques (for example linear matching). The first column
of Fig. 19 shows two views of the dog. Noise with
σ = 4dres = 2.8 cm has been added to these views in
the second column. In column three, the noisy meshes
are reduced and finally column four shows the result
of their registration. We can see that the registration is
correct even though most of the features on each view
of the dog were distorted due to the addition of noise.

8. Comparison with Spin Images

A major criterion while developing our representation
was to achieve higher discriminating capability than
existing representations. Such a representation will
result in comparatively more accurate matches. Our
representation calculates third order tensors over
the 3D surface which describe the underlying local
surface patches more distinctly compared to other
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Figure 19. (a) Two views of the dog. (b) After adding Gaussian noise with σ = 4dres = 2.8 cm, most of the features of the dog are distorted.
(c) Despite the spiky surface of the noisy views, the output of the mesh reduction is smooth. (d) The noisy views are correctly registered by our
algorithm.

representations which map the 3D surface onto a 2D
histogram (e.g. spin images (Johnson and Hebert,
1997) and geometric histograms (Ashbrook et al.,
1998)) or the ones which extract 1D signatures from
the range image (e.g. point signatures (Chua and
Jarvis, 1997)). Because of the higher discriminating
capability of tensors, our algorithm can register
meshes at a very low resolution (see Section 7.2).

Figure 20. Comparison of our tensor matching algorithm with the
spin image matching algorithm. Tensor matching performed better
than the spin images. Note: the number of bins of a tensor were
10×10×10 where as the number of bins of a spin image were 15×15.

We compared our algorithm with the spin image
matching algorithm (code available at (Mesh Tool Box,
2004)) by applying both algorithms to the same data set
i.e. the views of the dinosaur, the dog and the bone. This
amounted to a total number of 65 pairwise registra-
tion tests for each algorithm. The tests were performed
to compare the performance of the two algorithms at
varying resolution of the views. Figure 20 shows our
results. Our algorithm performed much better than the
spin images by achieving 100% correct pairwise regis-
trations at 600 faces per view whereas only 61% of the
views were correctly registered by the spin images at
this resolution. At 200 faces per view, our algorithm’s
performance dropped to 84% (16% decrease) whereas
the peformance of the spin images dropped to 30%
(50% decrease). This shows that our representation is
more robust to the resolution of the views compared to
the spin images.

In another experiment we compared the discriminat-
ing capability of our tensor representation to the spin
images. For better control over the spin image gener-
ation parameters and the matching criterion, we used
our own implementation of the spin images for this
experiment. Moreover, we used the same data used
by Johnson (1997) i.e. two views of the robot (see
Fig. 22), to ensure that the data suits the spin image
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Figure 21. Histograms of the ground truth error between the matching pairs of (a) spin images and (b) tensors. 97.5% of the matching pairs
of tensors have less than 2 cm error whereas only 53.5% of the matching pairs of spin images have less than 2 cm error. This proves that our
representation is more discriminating and gives more accurate correspondences compared to the spin images.

matching algorithm. The parameters of the tensors and
the spin images were closely matched. The bin size
was selected equal to the mesh resolution i.e. 0.41 cm
in each case. The number of bins of the spin images
were 15 × 15 whereas the number of bins of the ten-
sor were 15 × 15 × 15. The number of spin images
and the number of tensors per view was also fixed
to 700. Next, the tensors and spin images of the two
views were matched using a similar criterion i.e. a
linear correlation coefficient. The best 200 matches,
based on their correlation coefficient, were recorded in
each case. Next, the ground truth6 displacement error
between the matching pairs of descriptors was calcu-
lated. Figure 21 shows the histograms of these errors
for the two descriptors. 97.5% of the matching pairs of
tensors have an error of less than 2 cm whereas only
53.5% of the matching pairs of spin images have an er-
ror of less than 2 cm. These results clearly indicate that
our tensor representation is more discriminating result-
ing in a higher number of accurate matches compared
to the spin image representation.

Note also that a tensor calculated with the above
parameters is more local compared to a spin image
with equal parameters. This is because a spin image of
15×15 bins sweeps exactly π times more volume than
the volume enclosed by a tensor of 15×15×15 bins and
of equal bin size (see caption of Fig. 22). This fact is il-
lustrated pictorially in Fig. 22. Even though a tensor is
more local i.e. describes a smaller surface, it has more
discriminating power compared to the spin images (see
Fig. 21). Since a tensor is a more local representation,
it also gives better results when used for recognition of
occluded objects (Mian et al., 2004a). The reader may
also note that all the previous experiments including

Figure 22. (a) A spin image is generated by an image plane spin-
ning about the normal of a vertex (shown by a thick line) and sum-
ming vertices (shown distinctly in the figure without triangulation)
as they pass through the bins of the image plane. A 15 × 15 bins
spin image with unit bin size therefore sweeps a cylindrical volume
of πr2h = π153 (where r is the width and h is the height of the
image plane; in this case r = h). (b) A 15 × 15 × 15 bins tensor
with unit bin size encloses a volume of 153. The vertices enclosed
by the tensor are shown without triangulation for comparison with
the spin image of (a). The cylindrical volume swept by a spin image
(a) is exactly π times greater than the volume enclosed by a tensor
(b) of equal parameters. Therefore, with equal parameters, a tensor
is a comparatively more local descriptor with greater discriminating
power (see Fig. 21).

those reported in Fig. 21 were performed with tensors
of 10×10×10 bins. Another strength of our approach
is that a single pair of matching tensors gives a unique
transformation that aligns the two views (Eqs. (7) and
(8)). Moreover, because of the higher dimensionality
(x, y, z, θd ) of the tensors, there is more potential for
multidimensional indexing which can further speed up
the matching process. For example, our tensors can be
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used in conjunction with a 4D hash table for simulta-
neous matching of a single tensor with multiple tensors
(Mian et al., 2004a).

Although the 2D spin image representation is less
descriptive compared to its 3D tensor counterpart, it
has a positive side that it relies on a single vertex and
its normal. Moreover, a spin image taken in isolation,
requires less memory compared to a tensor of equal
parameters. This makes the correlation between a pair
of spin images comparatively faster. However, its lim-
ited descriptiveness necessitates the computation and
subsequent correlations between a larger number of
descriptors (i.e. spin images) compared to the tensor
representation. Furthermore, any gain in speed is di-
minished by the high computational cost requiredto
prune the large number of incorrect matches attributed
to the low descriptiveness of the spin images.

9. Conclusion

In this paper, we presented a novel 3D free-form
object representation scheme based on third order
tensors. Our tensor representation has more discrim-
inating capability which results in accurate pairwise
correspondences. We also presented a fully automatic
correspondence and registration algorithm by effi-
ciently matching tensors of overlapping views. The
automatic registration algorithm was integrated with
other modular components to form a complete frame-
work of 3D modeling which automatically generates
a 3D model from the range images of an object with
known overlapping view pairs. Our automatic registra-
tion algorithm is applicable to free-form objects and
does not require any knowledge of the viewing angles
or the regions of overlap of the views. We performed
our experiments on range images obtained from differ-
ent sources and presented our 3D modeling results. We
also performed extensive testing of our automatic pair-
wise registration algorithm according to an number of
important criteria. Our results show that our algorithm
is accurate and efficient. Moreover, it is robust to reso-
lution, number of tensors per view, the required amount
of overlap and noise. Our tensor representation gives
better results compared to the spin image matching
algorithm when applied on the same range images.

Our tensor representation is general and can be ex-
tended to represent more features than just the 3D sur-
face area of an object. The use of surface normals in
addition to area for generating fourth order tensors has

been demonstrated in (Mian et al. (2004a). Extending
our representation to include even more features will
further enhance its discriminating capability leading to
robust 3D object recognition. In the future, we plan to
use the tensor representation for automatic multiview
coarse registration of unordered range images when a
priori knowledge of the overlapping view pairs is not
available.
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Notes

1. This may appear to be a low percentage however it is important
to note that even the vertices which are outside the overlapping
region have been taken into consideration when calculating this
percentage. This is also the amount of overlap between the two
meshes calculated using Eq. (14).

2. This information can easily be extracted from the order of the
scans.

3. 26 tensors of M′
s were matched with only those tensors of M′

m
which were indexed by θd ± �θd in the index table.

4. The overlap was calculated after the views were registered using
transformations calculated from our earlier experiments.

5. Noise in range images generally occurs in the scanner viewing
direction.

6. Since ground truth was not available, manual coarse registration
and refinement with the ICP algorithm was considered as the
ground truth.
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