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Abstract

Jacobian-free Newton–Krylov (JFNK) methods are synergistic combinations of Newton-type methods for super-

linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction

equations. The link between the two methods is the Jacobian-vector product, which may be probed approximately

without forming and storing the elements of the true Jacobian, through a variety of means. Various approximations to

the Jacobian matrix may still be required for preconditioning the resulting Krylov iteration. As with Krylov methods

for linear problems, successful application of the JFNK method to any given problem is dependent on adequate

preconditioning. JFNK has potential for application throughout problems governed by nonlinear partial differential

equations and integro-differential equations. In this survey paper, we place JFNK in context with other nonlinear

solution algorithms for both boundary value problems (BVPs) and initial value problems (IVPs). We provide an

overview of the mechanics of JFNK and attempt to illustrate the wide variety of preconditioning options available. It is

emphasized that JFNK can be wrapped (as an accelerator) around another nonlinear fixed point method (interpreted as

a preconditioning process, potentially with significant code reuse). The aim of this paper is not to trace fully the

evolution of JFNK, nor to provide proofs of accuracy or optimal convergence for all of the constituent methods, but

rather to present the reader with a perspective on how JFNK may be applicable to applications of interest and to

provide sources of further practical information.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction and Background

The need to solve nonlinear systems of algebraic equations is ubiquitous throughout computational

physics. Such systems typically arise from the discretization of partial differential equations (PDEs),

whether scalar (such as heat conduction) or a system of coupled equations (such as the Navier–Stokes
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equations). One may be interested in the steady-state solution of these equations (a boundary value

problem, BVP) or in their dynamical evolution (an initial value problem, IVP). For BVPs, nonlinear it-

erative methods are desirable. The same is true for multiple time-scale IVPs, when discretized implicitly at

each time step. A particular unified solution algorithm for these two classes of nonlinear systems, the

Jacobian-Free Newton–Krylov method (JFNK), is the focus of this survey paper. JFNK methods have

been developed and applied in many areas of computational physics, but so far by a relatively small number

of researchers. The aim of this paper is to review recent advances and help accelerate the development and

application of JFNK methods by a broader community of computational physicists.
It is our observation that solution strategies for nonlinearly implicit PDEs have evolved along somewhat

different trajectories in the applied mathematics community and the computational physics community. In

discussing solution strategies for BVPs [84,137] the applied mathematics community has emphasized

Newton-based methods. Outside of finite element practitioners, the computational fluid dynamics (CFD)

community has emphasized Picard-type linearizations and splitting by equation or splitting by coordinate

direction [2,138]. The difference in predominating approach (Newton versus Picard) seems stronger for

implicit IVPs. Again, the applied mathematics community has focused on Newton-based methods and on

converging the nonlinear residual within a time step. In the computational physics community, operator
splitting (time splitting, fractional step methods) [20,136] has been the ‘‘bread and butter’’ approach, with

little attention to monitoring or converging the nonlinear residual within a time step, often allowing a

splitting error to remain in time. In both IVP and BVP contexts, the concept of splitting (a form of divide-

and-conquer at the operator level) has been motivated by the desire to numerically integrate complicated

problems with limited computer resources. This tension does not vanish with terascale hardware, since the

hardware is justified by the need to do ever more refined simulations of more complex physics. On can

argue that the stakes for effective methods become higher, not lower, with the availability of advanced

hardware.
Recent emphasis on achieving predictive simulations (e.g., in the ASCI [115] and SciDAC [178] pro-

grams of the US Department of Energy) has caused computational scientists to take a deeper look at

operator splitting methods for IVPs and the resulting errors. As a result, the computational physics

community is now increasingly driven towards nonlinear multigrid methods [22,188] and Jacobian-Free

Newton–Krylov methods (JFNK) [27,47,84]. These nonlinear iterative methods have grown out of ad-

vances in linear iterative methods [6,67], multigrid methods [23,72,174,188], and preconditioned Krylov

methods [157].

The standard nonlinear multigrid method is called the ‘‘full approximation scheme’’ or FAS [22,188].
Whereas a linear multigrid scheme usually solves for a delta correction for the solution based on linearized

equations on coarser grid levels, FAS performs relaxation on the full (nonlinear) problem on each suc-

cessively coarsened grid. In the FAS approach, the nonlinear correction (either Newton or simpler Picard)

is not global, but resides inside the cycle over levels and the sweep over blocks of unknowns at each level. As

a result, asymptotic quadratic convergence of the overall nonlinear iteration is not guaranteed. The virtues

of FAS include its low storage requirement (if one can use a simple smoother), optimal convergence on

some problems, and a tendency for an enlarged domain of convergence, relative to a straight Newton

method directly on the finest discretization. Disadvantages include the hurdle of forming hierarchical grids,
the expertise required to develop coarse grid representations of a nonlinear operator, and the potential for

many expensive nonlinear function evaluations. FAS has been used extensively and successfully in many

computational fluid dynamics settings [117,119,184].

In JFNK methods [27,47,84], the nonlinear iterative method is on the outside, and a linear iterative

method on the inside. Typically, the outer Newton iteration is ‘‘inexact’’ [53] and strict quadratic con-

vergence is not achieved. Asymptotic quadratic convergence is achievable, but only with effort on the part

of the inner, linear iterative method, which is usually unwarranted when overall time to solution is the

metric. An advantage of JFNK is that the code development curve is not steep, given a subroutine that
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evaluates the discrete residual on the desired (output) grid. Furthermore, inexpensive linearized solvers can

be used as preconditioners. Developing effective preconditioners may be a challenge, and the storage

required for the preconditioner and Krylov vectors may be a limitation.

There have been limited comparisons between FAS and JFNK methods on identical problems. The

authors regard both methods as important and complementary. It is not the purpose of this survey paper to

provide such comparisons, but rather to hasten the applicability of JFNK to new applications, via ‘‘real

world’’ examples. Additionally, we direct the reader�s attention to ongoing interactions between these two

approaches such as JFNK as a smoother for FAS and multigrid as a preconditioner for JFNK
[118,139,141].

An important feature of JFNK is that the overall nonlinear convergence of the method is not directly

affected by the approximations made in the preconditioning. The overall framework, making use of mul-

tiple discrete approximations of the Jacobian operator, has a polymorphic object-oriented flavor that lends

itself well to modern trends in software design and software integration. In many cases, including some

referenced as case studies herein, JFNK has been used to retrofit existing BVP and IVP codes while

retaining the most important investments (in the physics routines) of the original code.

The remainder of this paper is organized as follows. In Section 2, we present the fundamentals of the
JFNK approach. Section 3 is devoted to considerations of preconditioning. In Section 4, we survey ex-

amples of JFNK from a variety of applications. In Section 5 we illustrate a number of techniques and

‘‘tricks’’ associated with using JFNK in real problems, including many of the applications discussed in

Section 4. Section 6 considers a novel application of JFNK to PDE-constrained optimization. We conclude

in Section 7 with a discussion of future directions for JFNK methodology, as influenced by directions for

scientific and engineering applications, computer architecture, mathematical software, and the on-going

development of other numerical techniques.
2. Fundamentals of the JFNK method

The Jacobian-free Newton–Krylov (JFNK) method is a nested iteration method consisting of at least

two, and usually four levels. The primary levels, which give the method its name, are the loop over the

Newton corrections and the loop building up the Krylov subspace out of which each Newton correction is

drawn. Interior to the Krylov loop, a preconditioner is usually required, which can itself be direct or it-

erative. Outside of the Newton loop, a globalization method is often required. This can be implicit time
stepping, with time steps chosen to preserve a physically accurate transient or otherwise, or this can be some

other form of parameter continuation such as mesh sequencing.

2.1. Newton methods

The Newton iteration for FðuÞ ¼ 0 derives from a multivariate Taylor expansion about a current point uk:

Fðukþ1Þ ¼ FðukÞ þ F0ðukÞðukþ1 � ukÞ þ higher-order terms: ð1Þ

Setting the right-hand side to zero and neglecting the terms of higher-order curvature yields a strict Newton
method, iteration over a sequence of linear systems

JðukÞduk ¼ �FðukÞ; ukþ1 ¼ uk þ duk; k ¼ 0; 1; . . . ð2Þ

given u0. Here, FðuÞ is the vector-valued function of nonlinear residuals, J � F0 is its associated Jacobian

matrix, u is the state vector to be found, and k is the nonlinear iteration index. The Newton iteration is
terminated based on a required drop in the norm of the nonlinear residual
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kFðukÞk
kFðu0Þk < tolres; ð3Þ

and/or a sufficiently small Newton update

duk

uk

����
���� < tolupdate: ð4Þ

For a scalar problem, discretized into n equations and n unknowns, we have

FðuÞ ¼ fF1; F2; . . . ; Fi; . . . ; Fng ð5Þ

and

u ¼ fu1; u2; . . . ; ui; . . . ; ung; ð6Þ

where i is the component index. In vector notation, the ði; jÞth element (ith row, jth column) of the Jacobian

matrix is

Jij ¼
oFiðuÞ
ouj

: ð7Þ

In this scalar example there is a one-to-one mapping between grid points and rows in the Jacobian.

Forming each element of J requires taking analytic or discrete derivatives of the system of equations with

respect to u. This can be both error-prone and time consuming for many problems in computational

physics. Nevertheless, there are numerous examples of forming J numerically and solving Eq. (2) with a
preconditioned Krylov method [79,93,102,121,164,165,167]. J can also be formed using automatic differ-

entiation [77].

2.2. Krylov methods

Krylov subspace methods are approaches for solving large linear systems introduced as direct methods

in the 1950s [75], whose popularity took off after Reid reintroduced them as iterative methods in 1971 [148]

(see the interesting history in [66]). They are projection (Galerkin) or generalized projection (Petrov–

Galerkin) methods [157] for solving Ax ¼ b using the Krylov subspace, Kj,

Kj ¼ span r0;Ar0;A
2r0; . . . ;A

j�1r0
� �

;

where r0 ¼ b� Ax0. These methods require only matrix–vector products to carry out the iteration (not the
individual elements of A) and this is key to their use with Newton�s method, as will be seen below.

A wide variety of iterative methods fall within the Krylov taxonomy [11,84,157] and there are numerous

recent survey papers in this area [71,146,159]. A principal bifurcation in the family tree is applicability to

non-symmetric systems. Since the vast majority of fully coupled nonlinear applications of primary interest

result in Jacobian matrices that are non-symmetric, we focus the discussion on this side of the tree. A

further point of discrimination is whether the method is derived from the long-recurrence Arnoldi

orthogonalization procedure, which generates orthonormal bases of the Krylov subspace, or the short-

recurrence Lanczos bi-orthogonalization procedure, which generates non-orthogonal bases.
The widely used Generalized Minimal RESidual method (GMRES) [158] is an Arnoldi-based method.

In GMRES, the Arnoldi basis vectors form the trial subspace out of which the solution is constructed. One

matrix–vector product is required per iteration to create each new trial vector, and the iterations are ter-

minated based on a by-product estimate of the residual that does not require explicit construction of
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intermediate residual vectors or solutions – a major beneficial feature of the algorithm. GMRES has a

residual minimization property in the Euclidean norm (easily adaptable to any inner-product norm) but

requires the storage of all previous Arnoldi basis vectors. Full restarts, seeded restarts, and moving fixed-

sized windows of Arnoldi basis vectors are all options for fixed-storage versions. Full restart is simple and

historically the most popular, though seeded restarts show promise. The Bi-Conjugate Gradient STABi-

lized (BiCGSTAB) [179] and Transpose-free Quasi Minimal Residual (TFQMR) [60] methods are Lanczos-

based alternatives to GMRES for non-symmetric problems. In neither method are the Lanczos basis

vectors normalized and two matrix-vector products are required per iteration. However, these methods
enjoy a short recursion relation, so there is no requirement to store many Lanczos basis vectors. These

methods do not guarantee monotonically decreasing residuals.

We refer to [11,13,84,157] for more details on Krylov methods, and for preconditioning for linear

problems. We also call attention to the delightful paper [133], which shows that there is no universal

ranking possible for iterative methods for non-symmetric linear problems. Each of the major candidate

methods finishes first, last, and in the middle of the pack over the span of a few insight-provoking examples.

As a result of studies in [107,122], we tend to use GMRES (and its variants) almost exclusively with

JFNK. The resulting pressure on memory has put an increased emphasis on quality preconditioning. We
believe that it is only through effective preconditioning that JFNK is feasible on large-scale problems. It is

in the preconditioner that one achieves algorithmic scaling and also in the preconditioner that one may

stand to lose the natural excellent parallel scaling [163] enjoyed by all other components of the JFNK

algorithm as applied to PDEs. For this reason we focus our main attention in this review on innovations in

preconditioning.

2.3. Jacobian-free Newton–Krylov methods

The origins of the Jacobian-Free Newton–Krylov method can be traced back to publications motivated

by the solution of ODEs [25,62] and publications motivated by the solution of PDEs [27,47]. The primary

motivation in all cases appears to be the ability to perform a Newton iteration without forming the Ja-

cobian. Within the ODE community these methods helped to promote the use of higher-order implicit
integration. The studies on PDE problems focused on the use of nonlinear preconditioning, preconditioners

constructed from linear parts of the PDEs, and the addition of globalization methods.

In the JFNK approach, a Krylov method is used to solve the linear system of equations given by Eq. (2).

An initial linear residual, r0, is defined, given an initial guess, du0, for the Newton correction,

r0 ¼ �FðuÞ � Jdu0: ð8Þ

Note that the nonlinear iteration index, k, has been dropped. This is because the Krylov iteration is per-

formed at a fixed k. Let j be the Krylov iteration index. Since the Krylov solution is a Newton correction,

and since a locally optimal move was just made in the direction of the previous Newton correction, the
initial iterate for the Krylov iteration for du0 is typically zero. This is asymptotically a reasonable guess in

the Newton context, as the converged value for du should approach zero in late Newton iterations. The jth
GMRES iteration minimizes kJduj þ FðuÞk2 within a subspace of small dimension, relative to n (the

number of unknowns), in a least-squares sense. duj is drawn from the subspace spanned by the Krylov

vectors, fr0; Jr0; ðJÞ2r0; . . . ; ðJÞj�1r0g, and can be written as

duj ¼ du0 þ
Xj�1
i¼0

biðJÞ
i
r0; ð9Þ

where the scalars bi minimize the residual. (In practice, duj is determined as a linear combination of the
orthonormal Arnoldi vectors produced by GMRES.)
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Upon examining Eq. (9) we see that GMRES requires the action of the Jacobian only in the form of

matrix–vector products, which may be approximated by [27,47]:

Jv � ½Fðuþ �vÞ � FðuÞ�=�; ð10Þ

where � is a small perturbation.

Eq. (10) is simply a first-order Taylor series expansion approximation to the Jacobian, J, times a vector,

v. For illustration, consider the two coupled nonlinear equations F1ðu1; u2Þ ¼ 0, F2ðu1; u2Þ ¼ 0. The Jacobian

matrix is

J ¼
oF1
ou1

oF1
ou2

oF2
ou1

oF2
ou2

" #
:

JFNK does not require the formation of this matrix; we instead form a result vector that approximates this

matrix multiplied by a vector. Working backwards from Eq. (10), we have

Fðuþ �vÞ � FðuÞ
�

¼
F1ðu1þ�v1;u2þ�v2Þ�F1ðu1;u2Þ

�
F2ðu1þ�v1;u2þ�v2Þ�F2ðu1;u2Þ

�

 !
:

Approximating Fðuþ �vÞ with a first-order Taylor series expansion about u, we have

Fðuþ �vÞ � FðuÞ
�

�
F1ðu1;u2Þþ�v1

oF1
ou1
þ�v2

oF1
ou2
�F1ðu1;u2Þ

�

F2ðu1;u2Þþ�v1
oF2
ou1
þ�v2

oF2
ou2
�F2ðu1;u2Þ

�

0
BB@

1
CCA;

which simplifies

v1
oF1
ou1
þ v2

oF1
ou2

v1
oF2
ou1
þ v2

oF2
ou2

0
@

1
A ¼ Jv:

The error in this approximation is proportional to �. This matrix-free approach has many advantages.

The most attractive is Newton-like nonlinear convergence without the costs of forming or storing the true

Jacobian. In practice one forms a matrix (or set of matrices) for preconditioning purposes, so we eschew the

common description of this family of methods as fully ‘‘matrix-free.’’ However, the matrices employed in

preconditioning can be simpler than the true Jacobian of the problem, so the algorithm is properly said to

be ‘‘Jacobian-free.’’ We briefly discuss options for matrix-free (or nearly matrix-free) preconditioning in

Section 3.5. A convergence theory has been developed for JFNK in [24,28]. Conditions are provided on the

size of � that guarantee local convergence. Issues of global convergence are studied in [27]. For further
mathematical discussion, one can consult this subject [84]. Issues regarding convergence are often raised

with Newton-based methods and Jacobian-free Newton–Krylov methods are no exception. Two specific

situations known to cause convergence problems for JFNK are sharp nonlinear solution structure such as a

shock or a reaction front, and discontinuities in the nonlinear function such as one might see in higher-

order monotone advection schemes. Issues of non-convergence tend to be seen more in boundary value

problems and less in initial value problems.

2.3.1. The Jacobian-vector product approximation

As shown above, the Jacobian-vector product approximation is based on a Taylor series expansion.

Here, we discuss various options for choosing the perturbation parameter, � in Eq. (10), which is obviously
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sensitive to scaling, given u and v. If � is too large, the derivative is poorly approximated and if it is too small

the result of the finite difference is contaminated by floating-point roundoff error. The best � to use for a

scalar finite-difference of a single argument can be accurately optimized as a balance of these two quan-

tifiable trade-offs. However, the choice of � for the vector finite difference is as much of an art as a science.

For well-scaled single-component PDEs, the choice of � is not challenging. In [47] � was set equal to

something larger than the square root of machine epsilon (�mach).

Other approaches for choosing � have their roots in algorithms used to compute individual elements of

the Jacobian or columns of the Jacobian. A simple choice of � is

� ¼ 1

nkvk2

Xn
i¼1

bjuij þ b; ð11Þ

where n is the linear system dimension and b is a constant whose magnitude is within a few orders of

magnitude of the square root of machine roundoff (typically 10�6 for 64-bit double precision). This ap-

proach produces the ‘‘average’’ � that one would get if each individual element of the Jacobian was

computed as

Jij ¼
Fiðuþ �jejÞ � FiðuÞ

�j
; ð12Þ

with �j ¼ buj þ b. The vector ej has all zeros and the value 1 in the jth location.

Another more sophisticated approach proposed by Brown and Saad [27] has its roots in an approach for

computing columns of the Jacobian numerically as discussed in [54], and is given by

� ¼ b
kvk2

max½juTvj; typ ujvj�signðuTvÞ: ð13Þ

Here, typu is a user-supplied ‘‘typical size’’ of u.

It is important to note that the choice of b ¼ ffiffiffiffiffiffiffiffiffiffi
�mach

p
assumes that FðuÞ can be evaluated to the precision

of �mach, which is often optimistic. When one knows that FðuÞ can only be evaluated to �rel, then b ¼ ffiffiffiffiffiffi
�rel
p

is

a good choice. When precision is known to be limited in the evaluation of FðuÞ, then another effective

formula for the evaluation of � is [140]

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kukÞ�mach

p
kvk ; ð14Þ

which is used in the NITSOL package [142].

We note in passing that Eq. (10) is a first-order approximation. It is straightforward to construct a

second-order approximation,

Jv � ½Fðuþ �vÞ � Fðu� �vÞ�=�: ð15Þ

The goal of such an approach would be to reduce the number of required Newton iteration by making the

Jacobian-vector product approximation more accurate. There has not been widespread use of higher-order

approximations such as Eq. (10) on the types of problems covered in this survey paper. A possible

disadvantage of second order is the cost of two fresh function evaluations per matrix–vector multiply,

although creative ways of minimizing this cost have been developed [177].

2.3.2. Inexact Newton methods

Since the use of an iterative technique to solve Eq. (2) does not require the exact solution of the linear

system, the resulting algorithm is categorized as an ‘‘inexact’’ Newton�s method [53]. A simple inexact

method results in the following convergence criteria on each linear iteration.
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kJkduk þ FðukÞk2 < ckFðukÞk2; ð16Þ
where c, the forcing term, is a constant smaller than unity. For details of local convergence theory and the

role played by the forcing term consult [53]. There may be a trade-off between the effort required to solve

the linear system to a tight tolerance and the resulting required number of nonlinear iterations. Too large a

value for c results in less work for the Krylov method but more nonlinear iterations, whereas too small a
value for c results in more Krylov iterations per Newton iteration. Examples of this trade-off between total

nonlinear iterations and execution time are given in [121,142]. Several strategies for optimizing the com-

putational work with a variable ‘‘forcing term’’ c are given in [57].

The forcing term and the issue of ‘‘oversolving’’ a Newton step has recently gained interest [164,176].

The concept of ‘‘oversolving’’ implies that at early Newton iterations c is too small. Then one may obtain

an accurate linear solution to an inaccurate Newton correction. This may result in a poor Newton update

and degradation in the Newton convergence. In [164,176] it has been demonstrated that in some situations

the Newton convergence may actually suffer if c is too small in early Newton iterations.

2.4. Globalization

The lack of convergence robustness of Newton�s method is frequently raised. In practice, globalization
strategies leading from a convenient initial iterate into the ball of convergence of Newton�s method around

the desired root are required. For problems arising from differential equations, there are many choices. The

issue of globalization is more vexing for BVPs than IVPs, where accurately following the physical transient

often guarantees a good initial guess. Based on the robustness of IVP solvers, BVPs are often approached

through a false time-stepping.

2.4.1. Standard approaches

Two of the more popular methods for globalization of Newton�s method are the line search method and
the trust region method [54,84]. Both have been used to globalize Newton–Krylov methods [27,56]. We

briefly discuss both methods.

In the line search method the Newton update vector, du, is assumed to be a good direction in which to

move. The question a line search algorithm asks is ‘‘how far should one move?’’. Thus a line search pro-

duces a scalar, s, (less than or equal to unity) which is used in

ukþ1 ¼ uk þ sduk: ð17Þ
The simplest test used to select s is to require a decrease in the nonlinear residual

Fðuk þ sdukÞ < FðukÞ: ð18Þ
A simple search that tries s ¼ 1; 0:5; 0:25; . . . until the above criterion is met is shown to work in [84] where

it is referred to as algorithm 8.1.1. More sophisticated line search methods replace the above simple de-

crease of the nonlinear residual with a required sufficient decrease. For more details and background the

reader should consult [84].

The basic concept of the trust region approach is different from a line search in an important way. Here,

one is no longer constrained to move along the original Newton direction, du. The philosophy is that if the
Newton update is not acceptable then the Newton direction should be questioned. One is allowed to search

for a solution inside a region where the linear model is ‘‘trusted’’ to represent the nonlinear residual well,

FðukÞ þ JðukÞduk � Fðuk þ dukÞ: ð19Þ

du is typically selected as a linear combination of two or more candidate steps, one of which is an ap-

proximation to the Newton correction. We will not go into details here but such globalization methods

have been used with JFNK in [27] and are presented in detail in [54].
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Also it is interesting to note that the more crude, but often successful ‘‘damping on percentage change’’

[109,189] can be viewed as a physics-based line search.

2.4.2. Pseudo-transient continuation

Pseudo-transient continuation solves the steady-state problem FðuÞ ¼ 0, for which a solution is pre-

sumed to exist, through a series of problems

f‘ðuÞ �
u� u‘�1

s‘
þ FðuÞ ¼ 0; ‘ ¼ 1; 2; . . . ; ð20Þ

which are derived from a method-of-lines model

ou

ot
¼ �FðuÞ;

each of which is solved (in some cases approximately) for u‘. The physical transient is followed when the

timestep s‘ is sufficiently small, and the problems at each timestep are well solved. Furthermore, the Jac-

obians associated with f‘ðuÞ ¼ 0 are well conditioned when s‘ is small. See [59] for an analysis of this effect
based on the spectrum of the preconditioned operator in the case of the constant coefficient heat equation.

s‘ is advanced from s0 � 1 to s‘ !1 as ‘!1, so that u‘ approaches the root of FðuÞ ¼ 0. We em-

phasize that pseudo-transient continuation does not require reduction in kFðu‘Þk at each step, as do typical

linesearch or trust region globalization strategies [54]; it can ‘‘climb hills.’’ Thus the pseudo-transient

method can escape local minima in a function while searching for its root.

A time-step selection scheme is required to complete the algorithm. One choice is successive evolution–

relaxation (SER) [132], which lets the time step grow in inverse proportion to residual norm progress:

s‘ ¼ s‘�1 � kFðu
‘�2Þk

kFðu‘�1Þk : ð21Þ

Alternatively, a temporal truncation error strategy bounds the maximum temporal truncation error in each
individual component, based on a local estimate for the leading term of the the error. (The idea is not to

control the error, per se, but to control the stepsize through its relationship to the error.) Another approach

sets target maximum magnitudes for change in each component of the state vector and adjusts the time step

so as to bring the change to the target. All such devices are ‘‘clipped’’ into a range about the current time

step in practice. Typically, the time step is not allowed to more than double in a favorably converging

situation, or to be reduced by more than an order of magnitude in an unfavorable one [85].

The theory for pseudo-transient continuation has recently been extended to index-1 differential-algebraic

equations [48], in which not all of the equations possess a time derivative term. This is relevant for systems
of PDEs in which temporal evolution takes place on a manifold of constraints, such as incompressibility in

Navier–Stokes.

2.4.3. Continuation methods

In addition to pseudo-transient continuation, there are two other important types of continuation in the

literature of numerical solutions for nonlinear BVPs, namely, continuation in a physical parameter of

the problem, and mesh sequencing, which is continuation in a discretization parameter – namely a scale for

the mesh spacing.
Physical parameters often provide ‘‘knobs’’ by which the nonlinearity in a problem can be varied. An

easily understood example from computational fluid dynamics is the Reynolds number, which directly

multiplies the convective terms of Navier–Stokes, but there are many other examples including body

forcings and boundary forcings. The solution of Fðu; p‘Þ ¼ 0, where p‘ is such a parameter, can be implicitly

defined as uðp‘Þ.
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We suppose that Fðu; p0Þ ¼ 0 is ‘‘easy’’ to solve; for instance, it may be linear in u, as when p is a

Reynolds number and the governing equations reduce to the Stokes subset. Given u‘�1 corresponding to

p‘�1, we can posit a good initial guess for u‘ at a nearby p‘ from the Taylor expansion

u‘;0 ¼ uðp‘�1Þ þ ou

op

� �‘�1

ðp‘ � p‘�1Þ: ð22Þ

Implicitly differentiating Fðu; pÞ ¼ 0 with respect to p gives

oF

ou

� �
ou

op

� �
þ oF

op

� �
¼ 0 ð23Þ

or

ou

op

� �
¼ � oF

ou

� ��1
oF

op

� �
; ð24Þ

whence the right-hand side of (22) can be evaluated. This presumes that one is able to readily solve linear

systems with the Jacobian, oF=ou; otherwise, poorer approximations are possible, including the simple

‘‘bootstrapping’’ procedure of using just uðp‘�1Þ, itself, for u‘;0. The above approach becomes complicated
near a bifurcation point, where oF=ou can become ill-conditioned and more sophisticated approaches are

required. A nice survey paper on continuation methods is [1].

Mesh sequencing is useful when a nonlinear problem is easier to solve on a coarser grid than the one on

which the solution is ultimately desired, either because the nonlinearity, itself, is milder or because the linear

conditioning of the sequence of nonlinear correction problems is milder. An initial iterate for the next finer

mesh is constructed by interpolation from the solution on the preceding coarser mesh. Asymptotically,

under certain assumptions that are natural when the discretization ultimately becomes fine enough to

accurately resolve the continuous statement of the BVP, it can be shown that the initial interpolant lies in
the domain of convergence of Newton�s method [165] on the finer grid. Unfortunately, it is usually not easy

to determine when this asymptotic range is reached. Consequently, another continuation method, such as

pseudo-transient, may be used to drive the initial interpolant towards the Newton domain on each mesh

step. Such nested continuation methods are often required in practice on highly nonlinear problems, such as

detailed kinetics combustion [105,166], or the tokamak edge plasma equations [104]. Since a decreasing

number of inner continuation steps are required on the finer meshes, the nested approach can be

economical.
3. Preconditioning of the JFNK method

The purpose of preconditioning the JFNK method is to reduce the number of GMRES (Krylov) iter-
ations, as manifested (in the GMRES convergence theory; see [158]) by efficiently clustering eigenvalues of

the iteration matrix. Traditionally, for linear problems, one chooses a few iterations of a simple iterative

method (applied to the system matrix) as a preconditioner. A goal of the JFNK approach is to avoid

forming the system matrix J, and , as will be shown, an effective preconditioner for JFNK can typically be

simpler than the strict Jacobian of the system.

A linear preconditioner can be applied on the left (rescaling the matrix rows and the right-hand side) or

on the right (rescaling the matrix columns and the solution vector), or on both, if suitably factored. Since

left preconditioning changes the norm of the residual by which convergence to a linear iterative method is
generally measured, right preconditioning is often preferred in comparing the intrinsic merit of different
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preconditioning strategies. However, in the Newton context, left preconditioning is also used, since

the preconditioned residual serves as a useful estimate of the size of the Newton correction, itself, when the

preconditioning is of high quality. Either strategy, left or right preconditioning, may be employed in a

Jacobian-free context, and there are pros and cons to both.

Using right preconditioning, one solves

ðJP�1ÞðPduÞ ¼ �FðuÞ: ð25Þ

P symbolically represents the preconditioning matrix (or process) and P�1 the inverse of preconditioning

matrix. Right preconditioning is actually realized through a two-step process. First solve

ðJP�1Þw ¼ �FðuÞ; ð26Þ

for w. Then solve

du ¼ P�1w; ð27Þ

for du. Thus, while we may refer to the matrix P, operationally the algorithm only requires the action of P�1

on a vector. Note that if a distributed or segregated approach is used for preconditioning, then P�1 may be

formed as a linear combination of approximate inverses of submatrices. An example is the additive Schwarz

method of Section 3.2. The right-preconditioned version of Eq. (10) is:

JP�1v � ½Fðuþ �P�1vÞ � FðuÞ�=�: ð28Þ

This operation is done once per GMRES iteration, and is actually done in two steps:

1. Preconditioning: Solve (approximately) for y in Py ¼ v.

2. Perform matrix-free product Jy � ½Fðuþ �yÞ � FðuÞ�=�:
Only the matrix elements required for the action of P�1 are formed. There are two primary choices to be

made:

1. What linearization should be used to form the matrices required in P�1? (A new decision facing the user

of a Jacobian-free Newton–Krylov method.)

2. What linear iterative method should be used for y ¼ P�1v? (A standard decision facing the user of a

Krylov method.)

The following sections focus on specific issues. In practice, many preconditioning approaches use a

combination of these ideas.

3.1. Standard approaches

In systems where forming the Jacobian is a dominant cost of the Newton step, one may employ a ‘‘stale’’

(or frozen) Jacobian from an earlier step in the preconditioner while obtaining the action of the current

Jacobian in the JFNK matrix–vector multiply [27,103–105]. This is referred to as ‘‘MFNK’’ in [104]. This

approach is not truly Jacobian-free since some true Jacobians are formed and stored. However, this usually

expensive task is not done every Newton iteration. This is different from a traditional modified Newton–

Krylov (MNK) method in which the actual matrix approximating the local tangent hyperplane in Newton�s
method (not just its preconditioner) is held constant over several Newton iterations. The MNK approach

has much weaker nonlinear convergence properties. The Jacobian-free method ‘‘feels’’ the true Jacobian (to

within finite difference truncation error) at each iteration.

In BVPs, incomplete lower-upper (ILU) factorizations [157] have been frequently employed when ap-

proximately inverting Jacobian matrices in the preconditioner. For systems of equations characterized by

tight intra-equation coupling, a blocked ILU factorization may be more effective than a standard ‘‘point’’
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ILU factorization preconditioner [81,123]. Here the degrees of freedom defined at a common point are

interlaced and a full factorization (usually dense for systems typical of Navier–Stokes equations or mag-

netohydrodynamics equations, with a dozen or fewer independent fields) is performed amongst them. The

overall factorization is incomplete above the block level, with fill-in limited between degrees of freedom

defined at different points.

In systems of conservation laws in which convection dominates, high-order convection schemes are

desired for accuracy. Using the Jacobian-free method, one can construct the preconditioner from a low-

order upwinded discretization that is more stable with respect to incomplete factorization, saving memory
and often resulting in more effective preconditioning [88,95,123]. Convergence of the nonlinear system

occurs to the higher-order discretization represented in the right-hand side residual. Operationally, this

split-discretization Jacobian-free preconditioned product is

JP�1v � Fhighðuþ �P�1lowvÞ � FhighðuÞ
�

: ð29Þ

Here, FhighðuÞ denotes the nonlinear function evaluated with a high-order discretization and P�1low denotes a
preconditioning operator formed with a low-order discretization.

3.2. Newton–Krylov–Schwarz

Newton–Krylov–Schwarz (NKS) is a preconditioned Jacobian-free Newton–Krylov method in which

the action of the preconditioner is composed from those of preconditioners defined on individual geometric

subdomains. Historically, the primary motivation for NKS (first called by this name in [34]) is parallel

processing through divide-and-conquer. Scalability studies based on dimensionless ratios of communica-

tion and computation parameters for message-passing aspects of Schwarz-type iterative methods appeared

in [89,91]. Recently, a sequential (i.e., non-parallel) motivation for Schwarz methods has become apparent

[187]: their localized working sets can be sized to fit in the Level-2 caches of contemporary microprocessors.

Furthermore, multilevel Schwarz, algebraically similar to the AFAC form of multigrid [120], can have
bounded condition number in the asymptotic limit of finely resolved meshes and is therefore an ‘‘optimal’’

method from the perspective of convergence rate.

If we decompose the domain of a PDE problem into a set of possibly overlapping subdomains Xi, the

standard additive Schwarz preconditioner can be expressed as

P�1ASM ¼
X
i

RT
i J
�1
i Ri; ð30Þ

where the three-phase solution process (reading operators from right to left) consists of first collecting data

from the local and neighboring subdomains via global-to-local restriction operators Ri, then performing a

local linear solve on each subdomain J�1i , and finally sending partial solutions to the local and neighboring

subdomains via the local-to-global prolongation operators RT
i . The solve with the local Jacobian can be

replaced with an approximate solve, such as a local incomplete factorization or a multigrid sweep.

While the three phases are sequential and synchronized by communication requirements, each term in

the sum can be computed concurrently, leading to parallelism proportional to the number of subdomains.

This is in contrast with a global incomplete factorization, whose concurrency is determined by the dis-
cretization stencil and the matrix ordering and cannot be scaled to an arbitrary number of processors.

Parallel experience with NKS methods is growing. We mention the shared-memory implementation of

[124] and the distributed-memory implementations of [33,37,83]. Domain-based parallelism is recognized as

the form of data parallelism that most effectively exploits contemporary microprocessors with multi-level

memory hierarchy [49,187]. Schwarz-type domain decomposition methods have been extensively developed
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for finite difference/element/volume PDE discretizations over the past decade, as reported in the annual

proceedings of the international conferences on domain decomposition methods, of which the most recent

volume is [61].

In practice, we advocate the restricted additive Schwarz method (RASM), which eliminates interprocess

communication during either the restriction or prolongation phase of the additive Schwarz technique [39].

One version of the RASM preconditioner can be expressed in operator notation as

P�1RASM ¼
X
i

R0
T

i J
�1
i Ri: ð31Þ

It performs a complete restriction operation but does not use any communication during the interpolation

phase, R0
T

i . This provides the obvious benefit of a 50% reduction in nearest-neighbor communication

overhead. In addition, experimentally, it preconditions better than the original additive Schwarz method

over a broad class of problems [39], for reasons that are beginning to be understood in the function space

theory that underlies Schwarz methodology [30].

As originally introduced in [55], additive Schwarz preconditioning includes a coarse grid term in the sum
(30). Indeed, the coarse grid is essential for optimal conditioning in the scalar elliptic case. Table 1 shows

the successive improvements towards optimality of a hierarchy of methods, all of which fit within the

additive Schwarz algebraic framework, Eq. (30). The most primitive is point Jacobi, in which each sub-

domain is one point and there is no overlap. Subdomain Jacobi clusters all the points in one subdomain

into a single subdomain solve, which is performed concurrently within each subdomain, with no overlap.

One-level additive Schwarz has the same concurrency as Jacobi, except that the subdomains overlap, and

nontrivial communication is required to set up the subproblems. To achieve the mesh-independent esti-

mates shown (iterations depending only upon the number of processors or subdomains), some operator-
dependent, not very severe in practice, assumptions need to be made about the extent of overlap. Finally,

the Schwarz preconditioner supplemented with a low-dimensional but global coarse grid problem (two-

level) achieves independence of the number of subdomains, at the price of an increasingly complex problem

linking the subdomains.

NKS methods have been developed and studied by Cai and collaborators [31–33,37], Pernice and col-

laborators [143], Tidriri [169,171], and Knoll and collaborators [105,107,123], among many others. The

combination of pseudo-transient continuation and NKS has been called WNKS, and is discussed in [69].

3.3. Multigrid approaches

There has been considerable success in applying the multigrid method as a preconditioner to Krylov

methods on linear problems [5,100,125,135]. As a result of this success, JFNK researchers have begun to
consider the performance of linear multigrid as a preconditioner to a Jacobian-free Newton–Krylov
Table 1

Iteration count scaling of Schwarz-preconditioned Krylov methods, translated from the theory in terms of mesh spacing and sub-

domain diameter into the corresponding quantities of discrete problem size N and processor number P , assuming quasi-uniform grid,

quasi-unit aspect ratio grid and decomposition, and quasi-isotropic elliptic operator

Preconditioning Iteration count

2D 3D

Point Jacobi OðN 1=2Þ OðN 1=3Þ
Subdomain Jacobi OððNP Þ1=4Þ OððNPÞ1=6Þ
One-level additive Schwarz OðP 1=2Þ OðP 1=3Þ
Two-level additive Schwarz Oð1Þ Oð1Þ
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method [29,41,82,108,110,141,153]. In the multigrid preconditioned Newton–Krylov method (NKMG), the

system y ¼ P�1v, in Eq. (28), is approximately solved for y using a linear multigrid algorithm.

Whereas the primary motivation for Schwarz-type preconditioning is concurrency, the primary moti-

vation in NKMG is optimal operation complexity. By this we mean a preconditioner that not only renders

the number of preconditioned Krylov iterations per Newton iteration independent of grid resolution, but

imposes a cost per iteration that grows only linearly in the number of discrete unknowns. NKMG has also

been quite effectively implemented in parallel [29,141].

The basic building blocks of a multigrid algorithm are the mesh interpolation operators, restriction R
and prolongation P, and a method of constructing the coarse grid operators. In the limit (for nested

multilevel methods), the ‘‘perfect’’ coarse grid operator is the Schur complement of the fine grid operator

with the degrees of freedom not represented on the coarse grid eliminated. The corresponding perfect re-

striction is the elimination step and the corresponding prolongation the backsolve. In practice, one uses

much less expensive grid transfer operators, such as multilinear interpolation, or even simple injection

restriction and piecewise constant prolongation. In [5,135] it is shown on some challenging problems that

multigrid as a preconditioner may outperform multigrid as a solver, and in general it is also more robust,

due to the outer Krylov method. In [100] it is shown that a suboptimal multigrid method, which is not a
scalable solver as a result of overly simplified restriction and prolongation operators, can produce a scalable

method when used as a preconditioner.

In [110] the restriction and prolongation operators are piecewise constant and piecewise linear. Since the

systems considered there contain second-order operators, the choice of R and P as piecewise constant

violates the level transfer ‘‘order rule’’, mP þ mR > 2 [188]. Here mP and mR are the order of interpolation

plus one for the prolongation and restriction operators, respectively. Thus, this approach cannot be con-

sidered an optimal multigrid method. In [110] it is demonstrated that multigrid methods make excellent

preconditioners for JFNK, superior to comparably complex SGS and ILU, with a typical approximate
inverse being only one V-cycle. It is also demonstrated that the algorithmic simplifications which may result

in loss of convergence for multigrid as a solver (such as piecewise constant prolongation in place of

piecewise linear prolongation) have a much weaker effect when multigrid is the preconditioner.

In [108] two different approaches for defining the coarse grid approximations to the preconditioner are

considered. The first approach is to restrict the dependent variables (u) down through a series of grids, re-

discretize the equations FðuÞ, and then form each of the preconditioner elements independently. This may

be troublesome for multi-scale nonlinear physics and/or nonlinear discretizations, in addition to the fact

that theoretically this is not an optimal multigrid method. The second method is to build the coarse grid
operators using an additive correction [78] procedure, which can also be viewed as a Galerkin, or vari-

ational, approach [188]. Here, the coarse grid operator, Pc is constructed from the fine grid operator, Pf

as:

Pc ¼ R � Pf �P: ð32Þ

When R and P are piecewise constant, this should be viewed as an additive correction multigrid method

[78,161]. This is attractive for complex physics codes and/or unstructured grids since no discretizations on

the coarse grids are required. Details of this specific multigrid approach, used as a preconditioner to

GMRES, on a scalar problem can be found in [100]. In [108] both approaches of forming the coarse grid

operators were found to give good algorithmic performance.

Recently, Mavripilis [118] has considered nonlinear multigrid as a preconditioner to JFNK with en-

couraging results. The steady-state Navier–Stokes equations and a time-dependent reaction diffusion

problem were considered, both on unstructured grids. While FAS as a preconditioner generally outper-
formed FAS as a solver in terms of CPU time, the overall winner was consistently linear multigrid as a

preconditioner to JFNK.
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3.4. Physics-based preconditioning

An important new class of preconditioners for the Jacobian-free Newton–Krylov method is referred to

as physics-based or PDE-based. The motivation behind this approach is that there exist numerous, legacy

algorithms to solve nonlinear systems, both IVPs and BVPs. These algorithms typically were developed

with some insight into the time scales or physical behavior of the problem. As a benefit of this insight, a

reduced implicit system, or a sequence of segregated explicit or implicit systems may be solved in place of

the fully coupled system. Examples include the semi-implicit method for low-speed flow [74], the SIMPLE

algorithm for incompressible flow [138], Gummel�s method for the semiconductor drift-diffusion equations

[70], and numerous other structure-based operator splitting methods for reaction-diffusion systems [20,136].
The SIMPLE algorithm [138] is a classical segregated solution method in computational fluid dynamics.

Its use as a preconditioner to a Jacobian-free Newton–Krylov method is demonstrated in [141]. One em-

ploys multiple iterations of the SIMPLE algorithm in ‘‘delta form’’ as the preconditioner. By ‘‘delta form’’

we mean that the linear system Pu ¼ b is solved for du, i.e., Pdu ¼ b� Pu0 (y ¼ P�1v in Eq. (28)) and

u ¼ u0 þ du. This is frequently refered to as residual form in the numerical linear algebra community. In

this paper we attempt to reserve the use of the word residual to describe the right-hand side of the Newton

problem. It is necessary to cast the preconditioner in ‘‘delta form’’ since this is the form of the problem

upon which the outer Newton–Krylov iteration operates. Split, or segregated, methods are employed as
preconditioners for Newton–Krylov on a system of time-dependent reaction diffusion equations [130], time-

dependent MHD equations [43,44], and steady-state incompressible Navier–Stokes equations [108,141],

and time-dependent incompressible Navier–Stokes equations [113,141]. Also in [113], a standard approx-

imate linearization method used for phase-change heat conduction problems, is employed as a precondi-

tioner for a JFNK solution of phase-change heat conduction problems. In this section we present detail on

constructing preconditioners for stiff-wave systems using the semi-implicit method and constructing pre-

conditioners using structure-based operator splitting.
3.4.1. Stiff wave systems

To demonstrate how to construct a physics-based preconditioner for a stiff wave system, consider the 1D

shallow water wave equations with a stiff gravity wave (a hyperbolic system):

oh
ot
þ ouh

ox
¼ 0; ð33Þ
ouh
ot
þ ou2h

ox
¼ �gh oh

ox
: ð34Þ

Here u is the fluid velocity, h is the hydrostatic pressure, x is the spatial coordinate, t is time, g is gravity, andffiffiffiffiffi
gh
p

is the fast wave speed. The fast wave time scale is the time scale we wish to ‘‘step over’’ in evolving the

mesoscale dynamics of interest. A semi-implicit method is constructed by linearizing and implicitly dis-

cretizing only those terms which contribute to the stiff gravity wave. Here, advection in the momentum

equation is time split and done explicitly. Thus, some physics insight is required to produce the implicit
system. With nþ 1 as new time and n as old time, and suppressing spatial discretization, we have

hnþ1 � hn

Dt
þ oðuhÞnþ1

ox
¼ 0; ð35Þ
ðuhÞnþ1 � ðuhÞn

Dt
þ oðu2hÞn

ox
þ ghn

ohnþ1

ox
¼ 0: ð36Þ



372 D.A. Knoll, D.E. Keyes / Journal of Computational Physics 193 (2004) 357–397
Note that the nonlinear term in h is linearized by evaluating the square of the wave speed (gh) at old time.

We evaluate oðu2hÞ=ox at old time since it does not contribute to the linearized gravity wave.

We rearrange the momentum equation as

ðuhÞnþ1 ¼ �Dtghn oh
nþ1

ox
þ Sn Sn

�
¼ ðuhÞn � Dt

oðu2hÞn

ox

�
: ð37Þ

Eq. (37) is then substituted into Eq. (35) to give the following scalar parabolic equation:

hnþ1 � hn

Dt
� o

ox
Dtghn

oðhÞnþ1

ox

 !
¼ oSn

ox
: ð38Þ

Eq. (38) is solved for hnþ1, and then one can easily solve for ðuhÞnþ1 using Eq. (37). Again, for this simple

problem the source of the linearization and time splitting is the linearized wave speed (a time discretization

error) and the fact that advection in Eq. (36) is at a different time level. The innovation of physics-based

preconditioning is realizing that the linearized time split solution of Eqs. (37) and (38) can be used as the

preconditioner to an implicitly balanced [98] Newton–Krylov solution of Eqs. (33) and (34). This is possible
since JFNK does not require the formation of the Jacobian, and thus time-splitting approaches, such as the

semi-implicit method, can be used as preconditioners. Since the action of the true operator is maintained in

the evaluation of the full nonlinear residual and the forward Jacobian used in the Newton–Krylov iteration,

the inverse Jacobian used in the preconditioner can be further weakened without compromise to the so-

lution in the interest of minimizing execution time. For instance, a few cycles of a multigrid method, which

is ideal for diffusion problems, can be used to approximate the solution of Eq. (38) in the preconditioner.

To be more specific, the function of a preconditioner is to map ½resh; resuh�, or ‘‘y’’, to ½dh; duh�, or ‘‘v’’.
Using the semi-implicit method in delta form (suppressing spatial discretization) the linearized equations are:

dh
Dt
þ oduh

ox
¼ �resh; ð39Þ
duh
Dt
þ ghn

odh
ox
¼ �resuh: ð40Þ

Substituting Eq. (40) into Eq. (39), and eliminating duh, produces

dh
Dt
þ o

ox
Dtghn

odh
ox

� �
¼ �resh þ

o

ox
ðDtresuhÞ: ð41Þ

This parabolic equation can be approximately solved for dh. Then duh can be evaluated:

duh ¼ �Dtghn odh
ox
� resuh: ð42Þ

To summarize, we use a classical semi-implicit method, to map ðresh; resuhÞ to ðdh; duhÞ with one ap-

proximate parabolic solve. The utility of this preconditioning approach is verified on the 2D shallow water

equations including the Coriolis force in [126]. In addition, this framework has been used to develop

preconditioners for MHD problems [43,44] and the compressible Euler equations [151]. In [43] a connection
is made between the concept of the semi-implicit method as a preconditioner and the Schur complement of

the Jacobian.

3.4.2. Structure-based preconditioning

Traditional techniques based on operator structure, which may be only marginally appealing as solvers

or stationary operator splittings, may be effective and efficient preconditioners. Two structure-based
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techniques of particular interest are direction-based splitting and phenomenon-based splitting. To illus-

trate, consider a canonical system of unsteady convection–diffusion–reaction problems, symbolized by

ou

ot
þ RðuÞuþ SðuÞu ¼ 0:

u is a discrete gridfunction of p components per point. The following discussion assumes a standard finite

volume discretization.
The operator S, representing convection and diffusion, typically has discretization stencils that strongly

couple near neighbors of the same gridfunction component but typically only weakly couple different

components, except through convective velocities and perhaps through composition-dependent constitutive

laws. R, representing reaction (volumetric terms), may strongly couple different components, but typically

involves only the unknowns defined at a single gridpoint. The remaining transient term is typically diagonal

(or narrow banded in an unlumped finite element discretization).

The combination of the transient term and R is well preconditioned with a block-diagonal operator, with

no spatial coupling. The combination of the transient term with S is well preconditioned with independent
multigrid solves for each component, with no intercomponent coupling. Each of these two preconditionings

is substantially less computationally complex than a block ILU preconditioning for the entire discrete

operator, and it is natural to consider multiplicative or additive forms of operator splitting in which each is

applied independently.

Consider a simple backward difference for the transient term in advancing through timestep dt from u to

uþ du. Discretized implicitly at the advanced level and linearized about u, we have

du
dt
þ SðuÞðuþ duÞ þ RðuÞðuþ duÞ ¼ 0;

or, in delta-form,

du
dt
þ SðuÞduþ RðuÞdu ¼ �FðuÞ:

where FðuÞ � SðuÞuþ RðuÞu ¼ 0.
Let the linear system to be solved by Krylov iteration at a given Newton iteration be written Jdu ¼ �F,

where J ¼ aIþ Sþ R and a is the reciprocal of the timestep. Apply an operator-split preconditioner P to

Krylov vector v with preconditioned output v0 as follows:

• Phase 1, block-diagonal (reaction) coupling

v�  ðaIþ SÞ�1v:

• Phase 2, segregated scalar (spatial) coupling

v0  ðaIþ RÞ�1 � a � v�:

Thus, we have approximated the Jacobian inverse with

ðaIþ RÞ�1 � a � ðaIþ SÞ�1;

which is equivalent to approximating J with an operator that has first-order temporal splitting error,

namely with aIþ Sþ Rþ a�1SR. This differs from the unsplit original J only in the last term. When the

time step is small, so is this difference.

Structure-based operator-split preconditioning has been employed in radiation transport [29,130],

charge transport in semiconductors [10,86], and fluid flow [52,113,141].
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Due to architectural factors in high-end computers, the operator-split preconditioners discussed herein –

and perhaps several other varieties – are natural to try, to replace block preconditioners that have heavier

storage and memory traffic costs. Where operator-splitting is already used as a solver, it can easily be

converted into a preconditioner by putting it into delta-form and wrapping a matrix-free Newton–Krylov

acceleration around it. A small number of Newton steps (two or three) cleans up the splitting error. In cases

in which there are strong couplings across different components stored at different mesh points, the type of

phenomenon-based operator splitting described above is not expected to be successful; hence it is probably

best exploited in an adaptive way in a polyalgorithmic preconditioner.
The salient point of this subsection is that a JFNK ‘‘wrapper’’ can provide implicit balance [98] to an

inner operator-split solver. This is true even if the operator split preconditioner does not allow one to use

the large time step size that is otherwise achievable by the outer JFNK solver.

Structured grids are often still used in practice, being natural for many problems in regular geometries

such as rectangular parallelipipeds or spherical annuli. In such contexts, directional splitting, of which the

Alternating Direction Implicit method (or ‘‘ADI’’) is paradigmatic, remains a popular solver. The operator

algebra is identical to that above, except that R may represent, for instance, x-directional splitting and S

y-directional. The complexity advantages of ADI are obvious, application of each inverse reduces to a set of
independent one-dimensional (e.g., block tridiagonal) problems. For all of the same qualitative reasons as

for physics-based methods, and with only slight qualitative differences, such direction-based operator

splittings may make excellent preconditioners, at least in serial computing environments. An outer

Newton–Krylov iteration on each time step should quickly remove the splitting error.

Though the results of this section are developed for first-order implicit time-discretization, the real

benefits of JFNK come from its ability to make higher-order implicit time discretizations worthwhile.

Operationally, the only changes are in the presence of linear combinations of earlier time values of u on the

right-hand side. As stated earlier, this was a motivation for some of the early development of JFNK.
The work of Dawson et. al. [52] on two-phase subsurface flow and that of Kerkhoven and Saad [86] on

the drift-diffusion semiconductor equations are excellent examples of the use of split-based preconditioners,

along with the work of Brown and Hindmarsh [26]. In [86], the outer Newton–Krylov method is regarded

as the accelerator to the inner fixed point method. Understanding and quantifying the limitations of split-

based preconditioners is an active area of research.

3.5. Matrix-free preconditioning approaches

As shown in the previous sections, there are numerous ways to take advantage of the matrix-free matrix–

vector multiply while still forming matrices that are reduced in complexity as compared to the full Jacobian.

In the ‘‘physics-based’’ example (Section 3.4.1), the approximate preconditioning matrix is derived from a

scalar parabolic problem, while the Jacobian matrix is derived from a multi-component hyperbolic system.
In the ‘‘structure-based’’ paradigm (Section 3.4.2), several independent systems replace a coupled system of

greater overall complexity. However, preconditioner matrix objects are still formed. Storage and memory

bandwidth limitations always provide a motive to investigate preconditioning approaches that do not

require the formation of any matrix.

There is a continuum of choices ranging from forming no preconditioner to forming the complete Ja-

cobian. In this section, we briefly outline a few ideas that lie closest to true matrix-free preconditioning. The

only iterative method that can be implemented in a fashion that is literally matrix-free is a Krylov method.

Since Krylov methods may present a different matrix polynomial approximation to the matrix inverse for
every initial iterate, they have not always enjoyed a reputation as preconditioners. It is now well known,

however, how to employ one Krylov method to precondition an outer Krylov method with P�1 ‘‘changing’’

on each outer Krylov iteration. The price is generally some extra dense vector storage, which must be

traded against the cost of a sparse matrix. The Flexible GMRES [156] (FGMRES) and GMRES-R [180]
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methods were developed to address the issue of using a preconditioner (Krylov or otherwise) that may vary

within the GMRES iteration.

These flexible accelerators open up a number of preconditioning options such as using a relaxation

method preconditioner with variable termination from outer iteration to outer iteration. On some con-

vection–diffusion problems in [156], FGMRES with GMRES as a preconditioner (a fully matrix-free op-

tion) outperformed GMRES with an ILU preconditioner. In the 1D shallow water problem previously

discussed, the preconditioning matrix is symmetric and positive definite, thus we could use conjugate

gradient as the preconditioner iterative method and be truly matrix-free. However, in this case, we should
use FGMRES on the outside. In the JFNK context, however, where the Krylov solve is often performed

inexactly throughout all but the endgame of the Newton cycle, plain GMRES is surprisingly forgiving of

mildly inconsistent preconditioning.

The next step up in matrix formation is to implement a relaxation method in such a manner that only the

main diagonal (or main block diagonal) need be formed. This is done in [47,149]. In [47] a nonlinear SOR

method is used as a preconditioner, requiring only the diagonal. Another step up is represented by [145]

where an approximate factorization of ADI type is implemented. There storage is retained for only one of

the required block inverses. This matrix is re-populated and inverted several times to approximate the
preconditioner inverse. In both [145,149] it is demonstrated that the price paid for this reduced storage

method in the preconditioner is an increase in the execution time, as compared to the matrix counterparts.

As is justifiably touted in the multigrid community, the FAS algorithm represents a low storage mul-

tigrid algorithm. No global matrices need be formed for simple point smoothers. For block Jacobi

smoothers, storage is only required for a local block diagonal. Thus, FAS can be viewed as a matrix-free

preconditioner, as in [118].

Finally, we mention an idea that is often exploited in the context of problems that are dominantly elliptic.

There exists a technology of ‘‘fast Poisson solvers’’ [76] based onFast Fourier Transforms (FFTs) or other fast
transformations (including fast biharmonic solvers [18]). The FFT and the multidimensional fast Poisson

solvers (accommodating some spatially uniform, but directionally varying diffusion coefficients) that can be

assembled from it require workspace equal to just a few gridfunction vectors and operation count only a log-

factor higher than linear in the size of the gridfunction vector. Such FFT-based preconditioners, defined

simply by subroutine calls on vectors, with no explicit matrix formation or storage whatsoever, may be highly

effective in linear problems, or in nonlinear problems solved by JFNK in which the nonlinearity is a relatively

controllable perturbation of one of the elliptic operators for which a fast inversion is known.

3.6. Nonlinear preconditioning

We briefly mention here two views of nonlinear preconditioning. Then we provide a more detailed di-

scription of the second, more recent view. As discussed by Chan and Jackson [47], their original motivation
for ‘‘nonlinear preconditioning’’ was storage. Since the outer JFNK method did not form or store the

Jacobian they desired a preconditioning process which had the same properties. They referred to this as

nonlinear preconditioning, and we have also described it as matrix-free preconditioning in the previous

subsection. Within the definition of [47], the use of FAS multigrid would also be called a nonlinear pre-

conditioner [118].

A second view of nonlinear preconditioning has evolved recently [35]. Here the goal of nonlinear pre-

conditioning is to attack the ‘‘nonlinear stiffness’’ of a problem and thus improve the global convergence

properties of Newton�s method. In [35] the phrase ‘‘unbalanced nonlinearities’’ was used in place of
‘‘nonlinear stiffness’’. We give a brief description of ‘‘nonlinear stiffness’’ and then describe the nonlinear

preconditioner put forth in [35].

A system of ordinary differential equations is described as ‘‘stiff’’ if it encompasses a wide range of time

scales. The discretization of an elliptic partial differential equation on a fine grid can also be referred to as
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‘‘stiff’’, because the Fourier representation of the error contains a wide range of wavenumbers. We use the

phrase ‘‘nonlinear stiffness’’ to describe a problem in which the solution structure has disparate spatial scales

as a result the nonlinearity of the problem. Classic examples are shock waves and reaction fronts. The lo-

cation of a front or layer may be determined by a delicate balance involving nonlinear terms. Until the

location is correct, Newton�s method tends to take very small steps. The advance of the front or layer

typically occurs one grid point per step, while the solution away from the controlling feature barely changes.

As discussed in Section 2.4, the lack of a global convergence theory for Newton�s method is a severe

drawback that has been met in practice with a variety of inventions. Some, generally those rooted in the
physics known to lie behind particular discrete nonlinear systems, are applied outside of Newton�s method

and exercise their beneficial effect by changing the system or the initial iterate fed to Newton�s method.

Others, generally those rooted in mathematical assumptions about the behavior of FðuÞ near a root, are

applied inside, and have their effect by modifying the strict Newton correction before it is accepted. A new

technique, the additive Schwarz preconditioned inexact Newton (or ‘‘ASPIN’’), nests multiple applications

of Newton�s method. ASPIN involves a (generally nonlinear) transformation of the original rootfinding

problem for FðuÞ to a new rootfinding problem,FðuÞ ¼ 0, to which an outer Jacobian-free Newton method

is applied. The formation of FðuÞ at a given point u, which is required many times in the course of per-
forming the outer Jacobian-free Newton–Krylov iteration, in turn involves the solution of possibly many

smaller nonlinear systems by Newton�s method.

Without such a transformation, Newton�s method may stagnate for many iterations in problems that are

‘‘nonlinearly stiff’’. A classical example is transonic compressible flow with a shock. The size of the global

Newton step may be limited in such a problem by high curvature in the neglected terms of the multivariate

expansion of FðuÞ coming from just a few degrees of freedom defined near the shock. Cai and collaborators

[35,36,38] devised ASPIN to concentrate nonlinear work at such strong nonlinearities, and produce a more

balanced global nonlinear problem, on which Newton behaves better, with less damping.
From an algebraic viewpoint, ASPIN is a generic transformation that requires only the unique solv-

ability of subsystems of the original FðuÞ in the neighborhood of the root u�. From a physical viewpoint,

ASPIN is a family of methods in which the subsystems may be chosen by domain decomposition, segre-

gation of equations arising from different physical phenomena, identification of nonlinear stiffness, or still

other criteria. As with all Schwarz methods, many flavors of nonlinear Schwarz preconditioning are pos-

sible – additive, multiplicative, or general polynomial combination of sub-operators; single-level or multi-

level; overlapping or non-overlapping.

It is shown in [35] that Newton�s method applied to a nonlinearly preconditioned version of the velocity-
vorticity driven cavity problem (without standard globalization), based on domain decomposition con-

verges rapidly (e.g., in 5–10 Newton iterations) at Reynolds numbers far beyond those at which Newton�s
method applied to the original discretization of the problem hopelessly stagnates. Globalization has also

been used to find solutions at high Reynolds number, but more Newton iterations are required.

It is shown in [38] that Newton convergence of the nonlinearly transformed version of the problem of

shocked flow in a variable cross-section duct is much less sensitive to mesh refinement than the original

discretization.

As stated, the difficulties of Newton on the driven cavity problem can be ameliorated by standard
globalization methods or by continuation in Reynolds number and the shocked flow problem through mesh

sequencing in other contexts. Nevertheless, it is interesting to see that a purely algebraic method, ASPIN, is

effective at rebalancing nonlinearities so that Newton converges easily. We expect that it will have wide

applicability in problems with complex nonlinearities as a means of increasing nonlinear robustness.

Unfortunately, it is difficult to obtain direct approximations to the dense Jacobian of the transformed

system, J, so as to improve the linear conditioning of the resulting Newton correction problems.

Therefore, these problems are subject to linear ill-conditioning as mesh resolution increases. To conquer

this linear ill-conditioning, multi-level methods of ASPIN need to be devised. The straightforward FAS



D.A. Knoll, D.E. Keyes / Journal of Computational Physics 193 (2004) 357–397 377
multigrid approach on FðuÞ may not be practical since the nonlinear correction to be computed at each

coarse level requires an evaluation of the fine-grid residual, which is subsequently restricted to compute

the coarse-grid defect that drives the correction. Since each fine-grid residual involves a host of fine-grid

nonlinear subproblems, this is expensive. An alternative multi-level method is investigated, with prom-

ising results, in [36].
4. Applications

The focus of this section is to survey uses of JFNK in various fields of computational physics. We

provide some references to the use of more standard Newton-based methods, as well. The subsequent

section is an enumeration of ‘‘tricks’’ and techniques that span individual applications, illustrated in some

of the work grouped by application domain here. In these sections (and previous ones as well) we have

adopted a liberal referencing strategy. All related work that we are aware of is referenced. However, in

many cases, we do not discuss the specific contributions found in each publication as this would add

signifcant length to the current paper.

4.1. Fluid dynamics/aerodynamics

Computational fluid dynamics has been a rich area for algorithmic development, testing, and applica-
tion. In this section we can only sample the diverse literature to JFNK and computational fluid dynamics.

The majority of this work has been on steady-state BVPs.

Vanka and Leaf [181] were an early advocates of Newton�s method for incompressible fluid flow, as were

MacArthur and Patankar [116]. Early explorations of Newton�s method in compressible flow can be traced

back to Venkatakrishnan [182,183]. This work is representative of the finite volume/finite difference CFD

community. There has also been extensive development of nonlinearly implicit algorithms within the finite

element community [65,164].

The incompressible Navier–Stokes equations have been used as a testbed for much JFNK algorithm
development and testing, with emphasis on standard test problems, such as the driven cavity [64] and

the natural convection cavity [51]. In fact, the driven cavity problem was considered in one of the

original JFNK papers [27]. McHugh and co-workers [81,121,122] studied inexact Newton methods and

mesh sequencing, the performance of various Krylov methods within JFNK, the use of low-order

spatial differencing within the preconditioner, as well as block ILU compared to point ILU precon-

ditioning. The work of Shadid and co-workers [164,176] is not JFNK, but NK. It has elucidated

important issues related to inexact Newton methods, oversolving, and backtracking in a CFD context.

Knoll and co-workers [108,110,113,129] studied the ideas of multigrid preconditioning in JFNK in the
context of the incompressible Navier–Stokes equations. They are also among the first to consider

operator-split based preconditioning. Pernice and co-workers [139,141] studied hybrid combinations of

nonlinear multigrid, the SIMPLE algorithm, and JFNK. Most notably, the work in [141] applied

JFNK, with a SIMPLE/multigrid preconditioner, to a 3D 512 cubed grid thermally driven flow

problem on up to 512 processors.

JFNK methods have been developed and applied to the compressible Euler and Navier–Stokes equa-

tions primarily by the aerodynamics community. Newton–Krylov–Schwarz (NKS) development occupied

ICASE and Boeing in the mid-1990s [33,37,88,93,170,172]. The combined impact of parallelization,
pseudo-transient continuation, and NKS is documented in [68]. Nearly matrix-free preconditioning tech-

niques have been developed for the compressible Navier–Stokes equations [145]. Mavriplis studied the use

of agglomeration multigrid as a preconditioner to JFNK on unstructured grids [118]. Other JFNK

applications in compressible flow include [9,63,80,134,147].
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4.2. Plasma physics

Problems in plasma physics provide a rich variety of time scales and nonlinearities. These result from the

free electrons in an ionized gas (plasma) and the ability of the plasma to support and propagate electrostatic

and electromagnetic waves. JFNK methods have made a significant impact in computational plasma

physics within the past decade, and a number of plasma physics studies have been enabled by JFNK

[21,45,46,96,97,106,114,144,190,192]. We briefly discuss the work in three separate areas of plasma physics.
4.2.1. Edge plasma modeling

The edge plasma (scrape-off, boundary layer) of a tokamak fusion experiment is that region of plasma
which lies between the last closed flux surface and the vessel wall. This set of equations describes partially

ionized flow with nonlinear and anisotropic heat conduction, thermal non-equilibrium (seperate ion and

electron temperatures), and finite-rate ionization and recombination (i.e., chemistry).

The earliest use of JFNK in computational plasma physics was on the tokamak edge plasma fluid

equations [154]. For the original use of Newton�s method on the edge plasma equations see

[94,101,102,109,186], with other Newton method applications following soon after [185,193]. The JFNK

method has become the mainstay of edge plasma simulation within the US fusion community, as embodied

in the UEDGE code [154].
JFNK applications in this area have utilized the numerical formation of a Jacobian and standard ILU

factorization to perform the preconditioning process. In a set of papers [103,104] on two different edge

plasma physics models it is demonstrated that the use of a stale Jacobian in the preconditioning process

provides significant CPU savings. It is also demonstrated the a pseudo-transient approach (Section 2.4.1)

provides a good globalization approach to this challenging boundary value problem.

In [95] a higher-order, nonlinear, convection scheme is applied to the edge plasma fluid equations. It is

demonstrated that forming the preconditioner from a low-order spatial discretization provided a simul-

taneous savings in memory requirements and CPU time, as compared to using the higher-order method in
both the preconditioner and the residual evaluation. In [107] some initial investigation is done on the

application of one-level Schwarz preconditioning to the edge plasma equations. In [155] Newton–Krylov–

Schwarz methods are applied to the edge plasma equation for parallelism. Also in [155], the superiority of

JFNK over an operator split approach is demonstrated.
4.2.2. Fokker–Planck

The Fokker–Planck equation is used to model semi-collisional transport of charged particles in phase

space. There are a wide variety of applications of the Fokker–Planck approach in plasma physics. JFNK
has been applied to Fokker–Planck-based models of the tokamak edge plasma [127] and of inertial elec-

trostatic confinement (IEC) devices [40–42,46]. The major challenge of the Fokker–Planck model is that it is

nonlinear integro-differential. Thus a standard implementation of Newton�s method results in a dense

Jacobian matrix [58]. The storage requirements of such a problem limit its use, although it is well under-

stood that such an implicit implementation has other significant advantages [58].

In [127] the Landau form of the Fokker–Planck equation is solved where the integral effect arises

through coefficients that are integral functions of the distribution function (1D in configuration space and

1D in phase space). The preconditioner is formed by lagging the integral coupling while maintaining this
coupling in the residual evaluation. A standard ILU method is applied to the resulting sparse precondi-

tioning matrix. This preconditioner is frequently used by others as a solver. However, as the collision

frequency increases, the fastest time scale in the problem is being evaluated at the previous iteration. It is

clearly demonstrated in [127] that as collision frequency increased, the JFNK method significantly out-

performed the method which lagged the integral coupling.
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In [40,41] the Fokker–Planck equation is solved in Rosenbluth form in 2D phase space. Here, two

subsidiary potential (elliptic) equations must be solved. This is done inside the residual evaluations using a

multigrid-GMRES method. The preconditioning matrix for JFNK (2D, 9-point) is evaluated with the

coefficients lagged and the preconditioning matrix is approximately inverted using simple multigrid ideas

[100]. This approach is shown to have superior accuracy and scale efficiently to fine grids.

4.2.3. MHD

The equations of magnetohydrodynamics (MHD) represent a combination of the Navier–Stokes equa-
tions andMaxwell�s equations without displacement current (the speed of light time scale has been removed).

The MHD equations are typically used to simulate plasma phenomena on the ion time scale, with the fast

electron time scales removed. By retaining the Hall term in the generalized Ohm�s law (so-called Hall MHD)

some electron physics is retained. This adds an additional fast wave to the system, the Whistler wave. As

compared to the Navier–Stokes equations, the MHD equations are more complicated since they support a

family of waves that propagate at different speeds in an anisotropic manner. In [44] JFNK is applied to a 2D

incompressible MHD equation system (a three-equation system). A semi-implicit, physics-based, precon-

ditioner is developed and the resulting scalar elliptic problems are approximately solved with simple mul-
tigrid methods (Section 3.3). The resulting implicitly balanced [98] algorithm is demonstrated to have a

second-order accurate time step. It is shown that this algorithm can efficiently step over stiff wave time step

constraints while maintaining a second-order accurate time step. Excellent time step and grid refinement

scaling is demonstrated, as well as significant CPU gains as compared to an explicit simulation.

In [43] JFNK is applied to a 2.5D incompressible Hall MHD equation system (a five-equation system).

The parabolic operator that arises from the semi-implicit treatment of the Whistler wave is fourth order in

space. In one approach, the conjugate gradient method is used to approximately invert this system in the

preconditioner. In another approach the fourth-order equation is re-cast as two second-order equations
and this system is approximately inverted with multigrid. In both cases the JFNK method with physics-

based preconditioning is shown to significantly outperform an explicit approach.

4.3. Reactive flows and flows with phase change

Reactive flows and flows with phase change are examples of nonlinear multiple time scale problems.

There are many engineering and industrial applications that are simulated by such systems. Operator

splitting has been used extensively to simulate reactive flows [136]. Early Newton method research as

applied to reactive flows may be found in [87,165,167].

In [105,123] the performance of the JFNK method is studied in low Mach number compressible com-

bustion. The base model is a BVP and represents a laminar diffusion flame. In [105] the SER method is

employed for pseudo-transient continuation with standard ILU type preconditioners (similar to [104]). In
[123] (within a Schwarz context) standard ILU preconditioners are compared to block ILU preconditioners,

where the blocksize follows the number of conservation equations within a control volume. Block ILU

preconditioning is shown to be superior in memory and in terms of preconditioner performance. The edge

plasma Navier–Stokes neutrals model discussed in Section 4.2.1 and in [95,104] also contains finite-rate

‘‘chemistry’’ in table look-up form. This model has mass, momentum, and energy exchange between

‘‘phases’’ as a result of the finite-rate ‘‘chemistry’’. A particularly challenging version of this problem results

from including both molecules and atoms in the neutral fluid [114]. The addition of molecules brings in fast

(stiff) reactions. Here, block ILU is essential to effective preconditioning. The standard ILUmachinery can be
thought of as attacking the intra-equation coupling, while the blocking attacks the inter-equation coupling.

Another recent example of the application of JFNK methods to reactive flows is the work of Mukadi

and Hayes [131]. Their application is the transient simulation of an automotive catalytic convertor. In this

study the effects of spatial discretization on preconditioner performance are considered.
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Shadid et al. [164] use standard inexact Newton–Krylov methodology (not JFNK) to simulate reactive

flows in 3D, on unstructured grids, and on massively parallel architectures. Simulations with several

chemical species and reactions have been performed [162].

JFNK methods are applied to phase change heat conduction problems in [99,113]. This is done for pure

material (isothermal phase change) alloys and pure materials with multiple phase transitions. The key to

implementing the JFNK methodology on this class of problems is the use of the enthalpy formulation [99]

(enthalpy as the dependent energy variable). In the initial study of this problem, the phase-change physics is

ignored in the preconditioner and the preconditioning operator is formed only from heat conduction. In a
subsequent study, the ‘‘effective heat capacity’’ method [113] (a linearized solver for this problem) is used as

a preconditioner. This is an approximate route to bringing the phase change physics into the precondi-

tioner. This is shown to provide a factor of five reduction in GMRES iterations and a factor of four

improvement in execution time.

4.4. Radiation diffusion and radiation hydrodynamics

Radiation diffusion and radiation hydrodynamics are further examples of nonlinear multiple time-scale

systems. The equations of radiation hydrodynamics are used to simulate astrophysical phenomena and

problems in inertial confinement fusion. These equations are formed by combining the compressible Na-

vier–Stokes equations with one of many models for radiation transport. In many regimes of interest there is

strong nonlinear coupling between the flow field (often called the ‘‘material’’) and the radiation (photon)
field. Operator splitting has been used extensively to simulate radiation hydrodynamics [20]. Early Newton

method research as applied to radiation hydrodynamics is found in [189]. The simplest of radiation

transport models is the diffusion model, and this is where one finds most of the initial JFNK effort. As with

many other multiple time-scale systems, the non-equilibrium radiation diffusion problem has both a dy-

namical time-scale and normal modes. Reaction and diffusion time scales can be very fast compared to the

thermal front time scale. One wants to be able to follow the dynamical time scale [152].

Early 1D work [111,112] focused on presenting the ideas behind JFNK to the radiation transport

community, as well as elucidating the ability of JFNK to provide increases in both accuracy and efficiency
as compared to more standard linearized and operator split methods. The work in [111] demonstrates that

the JFNK approach has superior nonlinear convergence rates compared to a Picard iteration.

Two-dimensional examples have focused on the development of multigrid-based preconditioning strat-

egies [153] and on the use of operator-splitting as a preconditioner [130]. Analysis and results of operator-

split based preconditioning on such problems indicate that the approach can break down [29]. Thus, there

can exist a window where JFNK can integrate a system accurately but traditional operator splitting does not

provide adequate preconditioning. This happens when there is an extremely large spread between the dy-

namical time scale (on which JFNK can integrate a system accurately) and the normal modes of the system.
Options to overcome this hurdle include Schur complement approaches considered in [29], coupled multigrid

preconditioning, or augmenting the operator splitting with a two-stage approach that includes a defect

correction and a fine grid block Jacobi smoother (blocked at the component level) on the Jacobian [128].

Two recent efforts in radiation transport couple JFNK with nonlinear multigrid. In [8] JFNK is used as a

smoother in an FAS scheme for a radiation transport problem. The problem considered has integral

coupling, which is an opportune setting for JFNK. In [118] FAS is used as a preconditioner to JFNK for

a non-equilibrium radiation diffusion problem similar to that in [130]. This system is solved on an

unstructured grid using agglomeration multigrid in the preconditioner.
Coupled radiation hydrodynamics problems are beginning to come under investigation using JFNK.

Typically, in radiation hydrodynamics the radiation transport is done implicitly and coupled via operator

splitting to an explicit method for the hydrodynamics. The research in [189] considers the implicit Newton

solution to the coupled problem. The work in [12] compares a nonlinearly consistent (JFNK) method
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applied to the radiation model and coupled to the hydrodynamics model in a predictor–corrector fashion.

While this new approach is more accurate than the standard linearize-and-split approach, it is still able to

achieve only first-order accuracy in time.

4.5. Geophysical flows

Problems in porous media flow and atmospheric flows can possess widespread time scales and/or strong

nonlinearities. Both of these problems motivate the consideration of JFNK methods. We briefly mention

results coming from two different applications of JFNK methods to subsurface flow and one application of

JFNK to atmospheric flow.

In [173] JFNK is applied to Richard�s equation, a nonlinear parabolic model for variably saturated flow,

and the perfomance of various Krylov methods is considered. In [82] JFNK is applied to Richards�
equation. Semicoarsening multigrid [5,160] and simpler multigrid [5] are applied to approximately invert

the preconditioning matrix. The preconditioner is the the symmetric part of the complete Jacobian. The

work in [79], while not Jacobian-free, develops effective two-level preconditioners for the Newton–Krylov

solution of Richard�s equation.
In [52] JFNK methods are applied to multiphase flow in a permeable media. A two-stage preconditioner

is developed. The first stage is a decoupling stage (similar to ABF [10]) while the second stage solves

separate (scalar) elliptic systems, as promoted in [113,130]. The two-stage preconditioner is shown to

outperform an additive split-based preconditioner. In the recent work of Hammond and co-workers [73]
JFNK and an operator-split preconditioner are applied to a multicomponent reactive subsurface transport

model. The JFNK method is shown to provide advantages relative to conventional methods in this field.

There is a growing interest in increasing the predictive nature of atmospheric flow simulations such as those

involved in wildfire modeling [150] and hurricane modeling. Both of these problems are by nature highly

nonlinear and contain multiple time scales. Currently, simulation efforts in this community are dominated by

operator splitting approaches, and thus they may contain unmonitored numerical error. The work in

[126,149,151] represents an initial effort to bring JFNK into this community. In [126] JFNK is applied to the

shallow water wave equations in 2D, including the Coriolis effect. Physics-based preconditioning with simple
multigrid is shown to be very effective on this classic stiff wave problem. Here, the outer JFNK method is

integrating a three-component hyperbolic system, while the preconditioner requires only the approximate

implicit solution of a scalar parabolic equation. It is clearly shown that a second-order in time discretization,

solved with a JFNKmethod, can integrate this system at the dynamical time scale (stepping over the stiff wave

time scale) to obtain excellent time accuracy. The work in [151] extends the work in [126] by considering the

compressible Euler equations, and thus a more complicated equation of state. This requires a more sophis-

ticated physics-based preconditioner. Here, the outer JFNK method is integrating a four-component hy-

perbolic systemwhile the preconditioner only requires the approximate implicit solution of a scalar parabolic
equation. The JFNK method developed in [151] is being used for simulating wildfires and hurricanes.

4.6. Other applications

In addition to the well-established applications mentioned above, one can find recent application of

JFNK methods to granular flow [50], plasma reactor simulation [168], and semiconductor simulation [19].
5. Illustrations

This section provides computational illustrations of some of the techniques and ‘‘tricks’’ of JFNK

methods – making them work, and making them work effectively on real problems. As the heading
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indicates, this section is illustrative, not exhaustive. We make reference back to the appropriate areas in

Sections 2–4.

5.1. Jacobian lagging

Here, we present results from [104], which considers an eight-equation system for the coupled edge

plasma/Navier–Stokes neutral model. We consider the effect of Jacobian lagging only in the preconditioner

(as discussed in Section 3.1), versus Jacobian lagging in the outer Newton iteration. Here ILU is used to

approximately invert the preconditioning matrix. In Table 2 (Table 1 in [104]) a single grid simulation is

considered using pseudo-transient continuation. SNK is a standard Newton–Krylov method (not Jacobian-

free) and forms the Jacobian every Newton iteration. JFNK performs the Newton–Krylov iteration matrix-

free, while the Jacobian used in the preconditioner is formed with a frequency of p Newton iterations.
MNK (modified Newton–Krylov) is a standard Newton–Krylov method but the Jacobian is formed with a

frequency of p Newton iterations for use in both the matrix vector multiply and the preconditioner. Within

the pseudo-transient continuation method, to be consistent, the time step is advanced only every p Newton

iterations. This frequency is somewhat arbitrary and intended to demonstrate possible savings. Recall that

it is not our goal to be time accurate, but to under-relax the Newton iteration. Table 2 clearly shows an

execution time advantage for the JFNK approach. The potential for CPU savings will be sensitive to p, the
continuation method being used, and the application.

5.2. Mesh sequencing

The nonlinear convergence rate enhancement resulting from mesh sequencing has been investigated in

several studies for BVPs and is discussed in Section 2.4.2. Table 3 (which is Table 4 in [104]) presents single
grid and mesh sequencing results from an eight-equation system for the coupled edge plasma/Navier–

Stokes neutral model in 2D. The impact of mesh sequencing for this BVP is clear, and the impact increases

with grid refinement.

5.3. Multigrid preconditioning

We provide some results on the impact of multigrid as a preconditioner to JFNK (discussed in Section

3.3 as NKMG). We consider the steady-state solution of the incompressible Navier–Stokes BVP in the

stream function–vorticity formulation. Fig. 1 is from [110] and plots the average number of GMRES it-

erations per Newton iteration as a function of grid dimension for five different solution methods. The

solution methods vary in the preconditioner MG (multigrid), ILU(0), or BSGS (block symmetric Gausss-

Sidel) and the number of GMRES vectors stored before restart. Advection is ignored in all preconditioners.

It can be seen that the simple multigrid-based preconditioner significantly outperforms ILU(0) as the grid is
refined. Furthermore, this allows storage of fewer GMRES vectors. While restart is employed on this
Table 2

Iteration and execution time performance for an 8-equation 2D BVP (64� 32 grid) for a coupled edge plasma/Navier–Stokes neutral

model (from [104])

Solution method Newton iterations GMRES iterations Avg. GMRES per Newton Rel. CPU

SNK, p ¼ 1 158 485 3.1 3.56

MNK, p ¼ 5 681 318 0.5 3.26

JFNK, p ¼ 5 234 1570 6.7 1.46

JFNK, p ¼ 10 182 2624 14.4 1.0



Table 3

Effect of mesh squencing on total execution time for an 8-equation 2D BVP coupled edge plasma/Navier–Stokes neutral model (from

[104])

Problem size Without mesh sequencing (h) With mesh sequencing (h) Rel. speedup

32� 16 0.4 0.4 1.0

64� 32 4.3 0.84 5.1

128� 64 14.7 1.5 9.8
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Fig. 1. Comparison of NKMG and NK-ILU(0) on 2D Navier–Stokes, varying number of GMRES vectors stored (from [110]).
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problem, allowing 200 total GMRES iterations, its success is limited. We employ the standard restarting

algorithm referred to as ‘‘Algorithm 6.11’’ in [157]. In terms of normalized execution time for a converged

solution on the 160� 160 grid, we have: NKMG/GMRES(20)¼ 1.0, NKMG/GMRES(10)¼ 2.6, NK-

ILU(0)/GMRES(100)¼ 3.1, NK-ILU(0)/GMRES(50)¼ 2.7, and NK-BSGS(3)/GMRES(50)¼ 5.3. Only
NKMG/GMRES(20) converges in a reasonable time on the 320� 320 grid, with an execution time of 5.6,

relative to the four times smaller 160� 160 case. On the 160� 160 grid, NKMG would not converge with

less than 10 GMRES vectors stored, while NK-ILU(0) would not converge with less than 50 GMRES

vectors stored.

Fig. 2 is from [108], and is a plot of CPU time scaling, as a function of grid dimension, using both the

distributed and the coupled multigrid approaches in the preconditioner, piecewise constant restriction and

prolongation, and a Galerkin coarse grid operator. The problem being solved is the natural convection

problem simulated using a stream-function, vorticity, energy equation system. The data are for 80� 80,
160� 160, and 320� 320 problems. We include a reference line for linear scaling, and we see that both

approaches scale better than linearly.

5.4. Physics-based preconditioning

Here, we present some results from physics-based preconditioning, concentrating on the stiff-wave

problem discussed in Section 3.4.1. First, we present a result from [126] where the JFNK method is applied



0 5 10 15 20
0

5

10

15

N
or

m
al

iz
ed

 C
P

U
 ti

m
e

Linear scaling
NKMG, Coupled, Meth. 2, 21
NKMG, Dist., Meth. 2, 21

Fig. 2. Scaling (CPU time vs problem size) of Newton–Krylov-Multigrid (NKMG) for coupled and distributed preconditioners, for

Gr ¼ 1:0� 105 (from [108]).

384 D.A. Knoll, D.E. Keyes / Journal of Computational Physics 193 (2004) 357–397
to the 2D shallow water wave equations with the Coriolis force. This is a three-component hyperbolic

system with a stiff gravity wave. As discussed in Section 3.4.1, a semi-implicit method is used to construct

the preconditioner. Thus, the preconditioner action only requires an approximate inversion of a scalar

parabolic equation, and this approximate inversion is accomplished with low complexity multigrid. In [126]
a stiff-wave model problem is used to demonstrate that a nonlinearly consistent method (JFNK) can use

time steps on the order of the dynamical time scale while maintaining comparable accuracy to a semi-

implicit method run at the stiff-wave explicit CFL. An example of the algorithmic scaling of the method is

given in Table 4, which is from [126]. As a result of spatial discretization mismatch between the semi-

implicit method and the true nonlinear function, the preconditioner actually improves under grid refine-

ment. The number of Newton iterations per time step is fairly constant, while the average number of

GMRES iterations per time step decreases. As a result, the actual execution time beats the linear execution

time scaling, which would be a factor of eight for each refinement (a factor of two in each space dimension
and two in time).

Table 5 is from [44] and demonstrates the algorithmic scaling of physics-based preconditioning (with

MG) on a three-equation MHD problem. This MHD problem contains a stiff Alfv�een wave whose time scale

is typically well separated from the dynamical time scale of interest. The data in Table 5 are from three

different stiff wave CFL time step sizes over a range of grids. The scaling in terms of nonlinear iterations per

time step and linear iterations per nonlinear iteration is good over a range of grids. As in the shallow water

wave problem, the parabolic problem in each preconditioner application is approximately inverted using

simple multigrid methods.
Table 4

Algorithm performance study (from [126])

NX � NY Newton=Timestep GMRES=Newton Advection CFL Normalized CPU scaling Linear CPU scaling

32� 32 4.12 26.26 0.1394 1.00 1.0

64� 64 4.01 15.68 0.2322 5.00 8.0

128� 128 4.00 8.45 0.2421 24.19 64.0

256� 256 4.00 5.22 0.2435 397.57 512.0



Table 5

Algorithm performance study, on various grids, with Dt ¼ 20; 40; 160� DtCFL for the tearing instability in 2D MHD

Grid Newton=timestep GMRES=Newton GMRES=timestep CPU (s)

Dt ¼ 20DtCFL
32� 32 3.0 2.6 7.8 12.8

64� 64 3.0 2.0 5.9 102

128� 128 2.8 1.4 3.8 793

256� 256 3.0 1.0 3.0 6537

Dt ¼ 40DtCFL
32� 32 3.0 3.8 11.5 8.2

64� 64 3.0 3.3 10.0 73.6

128� 128 3.0 2.0 6 517

256� 256 3.0 1.6 5.0 4248

Dt ¼ 160DtCFL
32� 32 3.0 9.3 28.0 4.2

64� 64 3.0 6.3 19.0 29

128� 128 3.1 4.6 14.2 234

256� 256 3.6 5.9 21.5 3220

DtCFL is stiff wave CFL (from [44]).
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5.5. Newton–Krylov–Schwarz: parallelism and scaling

We conclude this section with an discussion of the use of JFNK to parallelize a legacy application code.

We consider an aerodynamics application based on the code FUN3D, a tetrahedral, vertex-centered un-

structured mesh code originally developed by W.K. Anderson of the NASA Langley Research Center for

compressible and incompressible Euler and Navier–Stokes equations [3,4]. FUN3D employs a control

volume discretization with a variable-order Roe scheme for approximating the convective fluxes and a

Galerkin discretization for the viscous terms. FUN3D has been used for design optimization of airplanes,
automobiles, and submarines, with irregular meshes comprising several million mesh points. The optimi-

zation involves many analyses, typically sequential. Thus, reaching the steady-state solution in each

analysis cycle in a reasonable amount of time is crucial to conducting the design optimization. A repre-

sentative achievement to date for million meshpoint simulations on thousands of processors is about 10 ls
per degree of freedom for convergence of the steady-state residuals below the square-root of machine

precision.

In work that was recognized with a 1999 Gordon Bell Prize in the ‘‘special’’ category, and subsequently

published in [69], FUN3D was ported to the PETSc [7] JFNK framework, using the single program multiple
data (SPMD) message-passing programming model, supplemented by multithreading at the physically

shared memory level. For a fixed-size problem with 11 million degrees of freedom, the time decreased from

2589 to 154 s for solving the BVP on 128–3072 processors, which amounts to an efficiency of 70%.

Achieving high sustained performance with an emphasis on total solution time requires attention to

three factors. The first is a scalable implementation, in the sense that time per iteration is reduced in inverse

proportion to the number of processors (strong scaling), or that time per iteration is constant as problem

size and processor number are scaled proportionally (weak scaling). The second is good per processor

performance on contemporary cache-based microprocessors. The third is algorithmic scalability, in the
sense that the number of iterations to convergence does not grow with increased numbers of processors (or

problem size). The third factor arises because the requirement of a scalable implementation generally forces

parameterized changes in the algorithm as the number of processors grows. If the convergence is allowed to

degrade, however, the overall execution is not scalable, and this must be countered algorithmically.
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The following is an incomplete list of parameters that need to be tuned in various phases of a pseudo-

transient Newton–Krylov–Schwarz algorithm:

• Nonlinear robustness continuation parameters: discretization order, initial time step, pseudo-time step

evolution law.

• Newton parameters: convergence tolerance on each time step, globalization strategy (line search or trust

region parameters), refresh frequency for Jacobian preconditioner.

• Krylov parameters: convergence tolerance for each Newton correction, restart dimension of Krylov sub-

space, overall Krylov iteration limit, orthogonalization mechanism.
• Schwarz parameters: subdomain number, amount of subdomain overlap, coarse grid usage.

• Subdomain parameters: incomplete factorization fill level, number of sweeps.

Many of these parameters received comment in the presentation of the JFNK and WNKS algorithms in

Sections 2 and 3. In relation to the FUN3D example, we point out that although convergence is to a

second-order convection scheme discretization, much of the early nonlinear iteration uses a first-order

convection scheme, until the location of the shock has stabilized. Only after this is the discretization

sharpened up in the right-hand side nonlinear residuals (and consequently in the vector finite difference

approximation of the Jacobian-vector products). Otherwise, Newton is difficult to use on this problem, even
with pseudo-timestepping. First-order discretization for the convective terms is used for the Jacobian

preconditioner throughout.

Choices for these parameters are extensively studied in [69], where there is no claim that the optimal

combination has been found. JFNK algorithms are evidently rich in options. This can be overwhelming to

a new user, but it provides a great deal of architectural and application adaptivity to the experienced user.
6. PDE-constrained optimization

It is increasingly recognized that PDE-based analyses are rarely ends in themselves, but more properly

part of a scientific process that includes some type of sensitivity analysis or optimization, in which the

system of PDEs serves as a constraint. The optimization process may arise, for instance, in design, in

control, in parameter identification (inverse problems), or in data assimilation. Some property, such as the

integrated dissipation rate or the norm of some discrepancy between measured and modeled outcomes, is to

be minimized, subject to the constraint that a governing system of PDEs is satisfied. Without the PDE

constraint, the optimization algorithm may find more optimal values of the objective that are physically
infeasible, and therefore uninteresting.

Jacobian-freeNewton–Krylovmethods have important roles to play in PDE-constrained optimization. At

the very least, the fact that PDEsneed to be solved in the inner loopof a conventional constrained optimization

algorithm requires time- and memory-efficient PDE solvers. A Newton method makes good use of a ‘‘warm’’

initial guess, and therefore performs well in projecting the result of an optimization step onto the constraint

manifold inside an iterative optimization method such as Reduced Sequential Quadratic Programming

(RSQP) [191]. However, it has become apparent in recent years that there are potentially much more efficient

classes of optimization algorithms that employ a Jacobian-free Newton–Krylov method as the outer opti-
mization loop, not as the inner projection step. These methods search for saddle points of the Lagrangian

formulation of the constrained optimization by looking for the roots of the gradient of the Lagrangian with

respect to all of its parameters – the design parameters, the state variables of the PDE, and the Lagrange

multipliers. In these contemporary optimization methods, called Lagrange-Newton–Krylov (LNK)methods

[14,15,92], the PDE constraints are not necessarily satisfied accurately at every step, but are only guaranteed to

be satisfied asymptotically, as a design parameter optimum is approached.

Our discussion of the LNK family of methods in this survey is introductory only, since a systematic

treatment demands first a survey of constrained optimization methodology, and also since this application
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of JFNK is relatively young. However, a presentation of the prospects for JFNK would be incomplete

without mentioning its use in LNK, and such a presentation can be self-contained if one accepts treating

equality-constrained optimization as a nonlinear rootfinding problem.

One of the chief practical differences between JFNK applied to PDEs and JFNK applied to La-

grangian constrained optimization is that the Jacobian of the direct analysis involves only first derivatives

of the conservation laws with respect to the state variables, whereas the Jacobian of the Lagrangian

problem (the so-called Karush–Kuhn–Tucker matrix) involves second derivatives of the objective func-

tion and the PDE conservation laws. It is relatively routine to obtain approximations to first derivatives
of well-scaled objects in standard floating point contexts with finite differences. This is not true for second

derivatives since a second difference amplifies the roundoff to levels generally unacceptable for standard

double-precision floating point. Therefore, the subject of automatic differentiation makes an important

appearance in optimization. Moreover, the Jacobian of the Lagrangian problem involves in a funda-

mental way the transpose of the Jacobian of the PDE constraints with respect to the state variables. In

the JFNK context, it is not known how to form Jacobian-transpose-vector products with finite Fr�eechet
derivatives. Automatic differentiation, whose so-called ‘‘reverse mode’’ permits efficient Jacobian-trans-

pose applications, is therefore important for this reason, as well. Indeed, it is no coincidence that LNK is
only now becoming a practically important method, with the advent of quality automatic differentiation

software [16,17].
6.1. Newton’s method in constrained optimization

Equality constrained optimization leads, as mentioned, through the Lagrangian formulation, to a

multivariate nonlinear rootfinding problem for the gradient (the first-order necessary conditions), which

is amenable to treatment by Newton�s method. To establish notation, consider the following canonical

framework, in which we enforce equality constraints on the state variables only. (Design variable con-

straints require additional notation, and inequality constraints require additional algorithmics, so we

leave their generalization to the literature [191].) Choose design variables u 2 Rm to minimize the scalar

objective function, /ðu; xÞ, subject to state constraints, hðu; xÞ ¼ 0, where x 2 Rn is the vector of state
variables. In the Lagrange framework, a stationary point of the scalar Lagrangian function
Lðx; u; kÞ � /ðx; uÞ þ kThðx; uÞ
is sought, where k 2 Rn. When Newton�s method is applied to the first-order optimality conditions, a linear

system known as the Karush–Kuhn–Tucker (KKT) system arises at each step. There is a natural ‘‘outer’’

partitioning: the vector of parameters is often of lower dimension than the vectors of states and multipliers.

This suggests an approximate Schur complement-like block preconditioning process at the outer level.

Within the state-variable subproblem, in turn, Schwarz provides a natural ‘‘inner’’ partitioning for con-

currency.

To emphasize differences of computational scale relevant to the algorithmics, we mention three classes of
PDE-constrained optimization:

• Design optimization: (especially shape optimization): u parametrizes the domain geometry of the PDE

(e.g., a lifting surface) and / is a cost-to-benefit ratio of forces, energy expenditures, etc. Typically, m
is small compared with n and does not scale directly with it as the mesh is refined. However, m may still

be hundreds or thousands in industrial applications.

• Optimal control: u parametrizes a continuous control function acting in part of the domain or on part of

the boundary of the domain and / is the norm of the difference between desired and actual responses of

the system. For boundary control, m / n2=3.
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• Parameter identification/data assimilation: u parametrizes an unknown continuous constitutive or forcing

function defined throughout the domain and / is the norm of the difference between measurements and

simulation results. Typically, m / n.
Written out in partial detail, the first-order optimality conditions are:
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to reduce the gradient of the Lagrangian to zero. With subscript notation for the partial derivatives, the

Newton correction (KKT) equations are:
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for a; b 2 fx; ug, and where kþ ¼ kþ dk.

6.2. Newton-RSQP and LNK

The RSQP method [191] consists of a three-stage iteration. We follow the language and practice of

[14,15].

• Design step (Schur complement for middle blockrow):

Hdu ¼ f ;

where H and f are the reduced Hessian and gradient, respectively:

H � Wuu � JT
u J
�T
x W T

ux þ JT
u J
�T
x Wxx

�
� Wux

�
J�1x Ju;

f � �gu þ JT
u J
�T
x gx � JT

u J
�T
x Wxx

�
� Wux

�
J�1x h:

• State step (last blockrow):

Jxdx ¼ �h� Judu:

• Adjoint step (first blockrow):

JT
x kþ ¼ �gx � Wxxdx� W T

uxdu:
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In each overall iteration, we must form and solve with the reduced Hessian matrix H , and we must solve

separately with Jx and JT
x . The latter two solves are almost negligible compared with the cost of forming H ,

which is dominated by the cost of forming the sensitivity matrix J�1x Ju. Because of the quadratic conver-

gence of Newton, the number of overall iterations is few (asymptotically independent of m). However, the

cost of forming H at each design iteration is m solutions with Jx. These are potentially concurrent over the m
independent columns of Ju, but prohibitive.

In order to avoid computing any Hessian blocks, the design step may be approached in a quasi-Newton

(e.g., BFGS) manner [191]. Hessian terms are dropped from the adjoint step right-hand side.
• Design step (severe approximation to middle blockrow):

Qdu ¼ �gu þ JT
u J
�T
x gx;

where Q is a quasi-Newton approximation to the reduced Hessian, H .
• State step (last blockrow):

Jxdx ¼ �h� Judu:

• Adjoint step (approximate first blockrow):

JT
x kþ ¼ �gx:

In each overall iteration of this quasi-Newton RSQP, we must perform a low-rank update on Q or its

inverse and we must solve with Jx and JT
x . This strategy vastly reduces the cost of an iteration; however, it is

no longer a Newton method. The number of overall iterations is many. Since BFGS is equivalent to un-

preconditioned CG for quadratic objective functions, OðmpÞ sequential cycles (p > 0, p � 1=2) may be

anticipated. Hence, quasi-Newton RSQP is not scalable in the number of design variables, and no ready

form of parallelism can address this convergence-related defect.

To summarize, conventional RSQP methods apply a (quasi-)Newton method to the optimality condi-

tions: solving an approximate m� m system to update u, solving an n� n system to update x and k con-
sistently, and iterating. The unpalatable expense arises from the exact linearized analyses for updates to x
and k that appear in the inner loop. We therefore consider replacing the exact elimination steps of RSQP

with preconditioning steps in an outer loop, arriving at LNK.

Consider applying a Krylov–Schwarz method directly to the ð2nþ mÞ � ð2nþ mÞ KKT system, Eq. (43).

For this purpose, we require the action of the full matrix on the full-space vector and a good full-system

preconditioner, for algorithmic scalability. One Newton SQP iteration is a perfect preconditioner – a block

factored solver, based on forming the reduced Hessian of the Lagrangian H – but, of course, far too ex-

pensive. Backing off wherever storage or computational expense becomes impractical for large-scale PDEs
generates a family of attractive methods.

To precondition the full system, we need approximate inverses to the three left-hand side matrices in the

first algorithm of Section 6.2, namely, H , J , and JT. If a preconditioner is available for H , and exact solves

are available for J and JT, then it may be shown [90] that conjugate gradient Krylov iteration on the

(assumed symmetrizable) reduced system and conjugate gradient iteration on the full system yield the same

sequence of iterates. The iterates are identical in the sense that if one were to use the values of u arising from
the iteration on the reduced system in the right-hand side of the block rows for x and k, one would re-

construct the iterates of the full system, when the same preconditioner used for H in the reduced system is
used for the Wuu block in the full system. Moreover, the spectrum of the full system is simply the spectrum of

the reduced system supplemented with a large multiplicity of unit eigenvalues. If one retreats from exact

solves with J and JT, this equivalence no longer holds; however, if good preconditioners are used for these

Jacobian blocks, then the cloud of eigenvalues around unity is still readily shepherded by a Krylov method,

and convergence should be nearly as rapid as in the case of exact solves.
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This Schur-complement-based preconditioning of the full system was proposed in this equality-con-

strained optimization context by Biros and Ghattas in 1998 [14]. From a purely algebraic point of view

(divorced from optimization), the same Schur-complement-based preconditioning was advocated by Keyes

and Gropp in 1987 [90] in the context of domain decomposition. There, the reduced system was a set of

unknowns on the interface between subdomains, and the savings from the approximate solves on the

subdomain interiors more than paid for the modest degradation in convergence rate relative to interface

iteration on the Schur complement. The main advantage of the full system problem is that the Schur

complement never needs to be formed. Its exact action is felt on the design variable block through the
operations carried out on the full system.

Biros and Ghattas have demonstrated the large-scale parallel effectiveness of the full system algorithm on

a 3D Navier–Stokes flow boundary control problem, where the objective is dissipation minimization of flow

over a cylinder using suction and blowing over the back portion of the cylinder as the control variables [15].

They performed this optimization with domain-decomposed parallelism on 128 processors of a T3E, using

an original optimization toolkit add-on to the PETSc [7] toolkit. To quote one result from [15], for 6� 105

state constraints and 9� 103 controls, full-space LNK with approximate subdomain solves beat quasi-

Newton RSQP by an order of magnitude (4.1 versus 53.1 h).
Automatic differentiation has two roles in the new JFNK optimization algorithm: formation of the

action on a Krylov vector of the full KKT matrix, including the full second-order Hessian blocks, and

supply of approximations to the elements of J (and JT) for the preconditioner. LNK will generally be

applied to large problems of n state variables and m parameters. Upon surveying existing AD tools, it is

concluded in [92] that the preconditioned matrix-vector product can be formed in time linear in these two

parameters.
7. Conclusions and prospects

We conclude with brief remarks on future directions for JFNK methodology, as influenced by directions

for scientific and engineering applications, computer architecture, mathematical software, and the on-going

development of other numerical techniques.

Computational simulation of systems governed by PDEs is being relied upon as never before for ac-

curate results on which to base massive economic investments, public and corporate, as well as critical

governmental policies. For instance, the ASCI program is intended to provide a computational alternative
to nuclear weapons testing and the SciDAC program to help target investments in fusion energy devices

and next-generation accelerators. The 40 Teraflop/s, 5120-processor Japanese Earth Simulator is intended

to allow unprecedented resolution and forward time integration horizons for climate prediction.

The typical governing equation system confronted in these Grand Challenge problems is nonlinear,

coupled, multiscale, and multirate. The typical computational environment is distributed shared memory.

To address this combination requires scalable nonlinear implicit solvers, for which we propose precondi-

tioned Jacobian-free Newton–Krylov methods. As shown here, JFNK methods offer asymptotically rapid

nonlinear convergence, and with proper preconditioning can also be both linearly scalable and efficiently
parallelizable.

Preconditioning is where the battle for scalability is won or lost, both algorithmic scalability and parallel

scalability. Therefore, in this paper we have reviewed a set of preconditioning techniques so varied that all

that some of them have in common is that their action does not directly rely on the matrix elements of the

true Jacobian. The distinction between the implicit forward action of the true Jacobian and the inverse

action of an approximate Jacobian, which may be defined only by a subroutine call that maps a residual

into an approximate delta correction, is fundamental to the culture of JFNK. As new ideas and imple-

mentations for preconditioners evolve, the JFNK method readily absorbs them.
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The generality of preconditioning and multiplicity of Jacobian representations exploited in JFNK dic-

tates an open software infrastructure, such as, e.g., the PETSc [7] or Aztec [175] solver frameworks, and

invites the reuse of valuable existing user application solver code, which is reinterpreted as a component of

the preconditioner.

Future work planned by the authors include the release, in one or more of these JFNK software

frameworks, of tutorial examples of the advanced use of JFNK in a variety of fields. We also invite existing

and new users of JFNK to post us with their own successes and challenges and to join in expanding the

algorithm and application scope of this compelling methodology.
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