TRUSS: A RELIABLE, SCALABLE
SERVER ARCHITECTURE

Brian T. Gold
Jangwoo Kim

Jared C. Smolens
Eric S. Chung
Vasileios Liaskovitis
Eriko Nurvitadhi
Babak Falsafi
James C. Hoe
Camegie Mellon
University

Andreas G. Nowatzyk
Cedars-Sinai Medical
Center

0272-1732/05/$20.00 © 2005 IEEE

TRADITIONAL TECHNIQUES THAT MAINFRAMES USE TO INCREASE RELIABILITY—

SPECIAL HARDWARE OR CUSTOM SOFTWARE—ARE INCOMPATIBLE WITH

COMMODITY SERVER REQUIREMENTS. THE TRUSS ARCHITECTURE PROVIDES

RELIABLE, SCALABLE COMPUTATION FOR UNMODIFIED APPLICATION SOFTWARE

IN A DISTRIBUTED SHARED-MEMORY MULTIPROCESSOR.

e e 0000 The day-to-day digital services that
users take for granted—from accounting and
commercial transactions to residential utili-
ties—often rely on available, reliable infor-
mation processing and storage. Server
reliability is already a critical requirement for
e-commerce, where downtime can undercut
revenue by as much as $6 million per hour for
availability-critical services.! Small wonder
that reliability has become a key design met-
ric for server platforms.

Unfortunately, although availability and reli-
ability are becoming increasingly crucial, the
obstacles to designing, manufacturing, and mar-
keting reliable server platforms are also escalat-
ing."”? The gigascale integration trend in
semiconductor technology is producing circuits
with significant vulnerability to transient error
(such as that caused by cosmic radiation) and
permanent failure (such as that from device
wearout).> Reliable mainframe platforms have
traditionally used custom components with
enhanced reliability, but the cost can be pro-
hibitive.? Moreover, these platforms have strong
disadvantages: Either they provide a message-
passing programming interface, which requires
custom software,” or they use a small broadcast-
based interconnect to share a single physical
memory, which compromises their scalability.®

In contrast, most modern servers are

Published by the IEEE computer Society

shared-memory multiprocessors that give pro-
grammers the convenience of a global address
space. Scalable commodity servers are increas-
ingly based on a cache-coherent distributed
shared-memory (DSM) paradigm, which pro-
vides excellent scalability while transparently
extending the global address space. Unfortu-
nately, DSM servers tend to use potentially
unreliable components as building blocks to
exploit economies of scale.

The Total Reliability Using Scalable Servers
(TRUSS) architecture, developed at Carnegie
Mellon, aims to bring reliability to commod-
ity servers. TRUSS features a DSM multi-
processor that incorporates computation and
memory storage redundancy to detect and
recover from any single point of transient or
permanent failure. Because its underlying
DSM architecture presents the familiar
shared-memory programming model,
TRUSS requires no changes to existing appli-
cations and only minor modifications to the
operating system to SUppOrt €rror recovery.

Designing for fault tolerance

Central to TRUSS’ practical fault-tolerant
design is Membrane, a conceptual fault-isola-
tion boundary that confines the effects of a com-
ponent failure to the processor, memory;, or I/O
subsystem in which the failure occurred. With

RELIABILITY

CPU n

Membrane

Figure 1. Logical decomposition of error detection and isola-
tion within the TRUSS distributed shared-memory multi-
processor. Each subsystem must detect and recover from
an error without involvement from other subsystems. In
this manner, each subsystem uses an error detection and
recovery scheme optimized for that particular component.
The Membrane abstraction composes the various compo-
nents into a complete fault-tolerant system.

Membrane, each subsystem must individually
detect errors and stop them from propagating to
the rest of the system. Because the subsystems
detect an error locally—Dbefore it can spread—
the system needs only local recovery to contin-
ue correct operation. In essence, the problem of
designing a fault-tolerant system becomes a col-
lection of subproblems that are easy to separate
and thus more manageable to analyze and solve.
We can group processing nodes, for example,
in a distributed dual- (DMR) or triple-modu-
lar redundant (TMR) scheme to protect against
processing errors. The memory subsystem can
then rely on both local error correction codes
(ECC) and distributed parity for the detection
and recovery of errors in memory storage.
When we compose the two subsystems through
Membrane, the processors on one side simply
see the appearance of a reliable memory system
on the other. Similarly, traditional redundancy
and parity techniques protect storage and other

I/O devices without affecting processor or
memory design®’ (see Figure 1).

To maintain the overall Membrane abstrac-
tion, the operation of the interconnection net-
work itself must be error-free and
uninterrupted. TRUSS builds on a wealth of
prior work in reliable, high-performance
interconnects that guarantee packet delivery
and guard against data corruption®**—long-
standing requirements for high-performance
parallel systems.

Two elements are key in enabling TRUSS
processors and memory subsystems to satisfy
Membrane’s requirements for error-free, unin-
terrupted operation:

* a master/slave computational redundancy
scheme that protects against processor
error or node failure and

* a distributed-parity memory redundancy
scheme that protects against multibit
errors or the complete loss of a node.

In this article, we describe both these ele-
ments and the results of a performance
evaluation.

Evaluation framework

To evaluate TRUSS performance, we used
Flexus, a framework for cycle-accurate full-
system simulation of a DSM multiproces-
sor,'"!! to simulate a 16-node DSM running
Solaris 8. Each node contains a speculative,
eight-way out-of-order superscalar proces-
sor, a detailed DRAM subsystem model, and
an interconnect based on the HP GS1280.'2
We use a wait-free implementation of the
total store order (TSO) memory consistency
model that enforces memory order at run-
time only in the presence of races.! Table 1

Table 1. Parameters in the 16-node DSM multiprocessor simulation.

System element

Parameters

Processing nodes

UltraSPARC Il instruction set architecture; 4-GHz eight-stage pipeline; out-of-order execution, eight-wide

dispatch and retirement; 256-entry reorder buffer

L1 caches

Split instruction and data caches; 64-Kbyte, two-way, two-cycle load-to-use latency; four ports; and 32 miss-

status holding registers (MSHRs)

L2 caches

Main memory
Protocol controller
Interconnect

Unified, 8-Mbyte, eight-way, 25-cycle hit latency; one port; and 32 MSHRs

60-ns access latency, 32 banks per node, two channels, and 64-byte coherence unit
1-GHz microcoded controller and 64 transaction contexts
4x4 2D torus, 25-ns latency per hop, 128-GBytes/s peak bisection bandwidth

52 [EEE MICRO

lists the relevant system parameters.
We evaluated four commercial workloads
and three scientific applications:

e OLTP-DB2 is IBM DB2 version 7.2
enterprise-extended edition running an
online transaction processing (OLTP)
workload modeled after a 100-warehouse
TPC-C installation.

* OLTP-Oracle is Oracle Database 10g
running the OLTP workload.

o Web-Apacheis Apache HTTP Server ver-
sion 2.0 running the SpecWeb99
benchmark.

o Web-Zeusis Zeus Web Server version 4.3
running the SpecWeb99 benchmark.

* Ocean, Fast Fourier Transform (FFT), and
em3d are scientific applications that
exhibit a range of sharing and network
traffic patterns, which we scaled to exceed
the system’s aggregate cache footprint. In
this way, we could evaluate TRUSS
under realistic memory-system con-
tention.

Computational redundancy

In TRUSS, processor pairs reside on sepa-
rate nodes so that the system can tolerate the
loss of an entire node. This requirement gives
rise to two formidable challenges: coordinat-
ing a distributed DMR pair for lockstep oper-
ation and having that pair corroborate data as
part of error detection and isolation.

Coordination

Given that a variable-latency switching fab-
ric separates processors in a DMR pair,
TRUSS requires a coordination mechanism
to enforce synchronous lockstep execution in
an inherently asynchronous system. Rather
than attempting to enforce true simultaneity,
we opted for an asymmetric scheme in which
the execution of the slave processor ina DMR
master-slave pair actually lags behind the mas-
ter. (The “processor” is the fully determinis-
tic core and caches into which asynchronous
inputs—interrupts, cache-line fills, and exter-
nal coherence requests—feed.) The coordi-
nation mechanism enforces the perception of
lockstep by replicating at the slave processor
the exact sequence and timing of the external,
asynchronous inputs that the master proces-
sor first observes. Thus, the two processors

Master Slave

Incoming

Repiic,
message at to ated

Figure 2. Replicating incoming messages between master
and slave. As part of the coordination protocol, the master

Delay

Delivery
att,

processor replicates the input and tags it with a delivery

timestamp. Both the input and timestamp are forwarded to

the slave as a special coordination message. On the slave

node, a gated delivery queue presents the forwarded input
to the slave processor’s interface at precisely the cycle that

the timestamp designates (according to a delayed, local

time reference).

execute the same instruction sequence despite
their physical distance.

Figure 2 illustrates the high-level opera-
tion of the master-slave coordination pro-
tocol and associated hardware. The
coordination mechanism directs all inputs
only to the master processor. To ensure that
all coordination messages arrive at the slave
in time for delivery, the slave runs behind
the master at a fixed lag longer than the
worst-case transit time for a coordination
protocol message. To bound this latency,
the master sends coordination messages on
the highest-priority channel, and master-
slave pairs are neighboring nodes in the net-
work topology.

Because the master and slave nodes have no
synchronized clocks, we must be able to mod-
ulate their locally synthesized clocks, for
example, using down spread-spectrum clock
synthesizers.'> Over time, if the master clock
phase drifts too far behind the slave—that is,
if coordination protocol messages arrive too
close to the required delivery time—the coor-
dination mechanism must actively retard the
slave clock until the master clock phase catch-
es up. When the opposite occurs—the slave
clock phase drifts too far behind that of the
master—the mechanism retards the master
clock. This scheme precludes large, unilater-
al changes to the clock frequency because of
thermal throttling or similar mechanisms;
rather, such changes must be coordinated
between master and slave.

NOVEMBER—DECEMBER 2005

Normalized user IPC

1.0
0.8

0.6~
0.4}~
0.2}~

RELIABILITY

Figure 3. Performance with computational redundancy. \We normalize
results to a 16-node nonredundant system and show 90 percent confidence
intervals on commercial workloads.

[EEE MICRO

Error detection and isolation

Coordination establishes lockstep execution,
but TRUSS must also detect and recover from
computational errors to satisfy Membrane’s
requirements. To ensure that no errors leave
the logical processor pair, the master and slave
must corroborate results and, if error detection
reveals an error, recover to a known-good state.

An effective method for processor-side error
detection is fingerprinting,'® which tightly
bounds error-detection latency and greatly
reduces the required interprocessor commu-
nication bandwidth, relative to other detec-
tion techniques. Fingerprints compress the
execution history of internal processor state
into a compact signature, which along with
small on-chip checkpointing, provides error
detection and recovery.

TRUSS compares fingerprints from the two
processors in a lockstep DMR pair. When the
master processor generates output data, it com-
municates first to the slave in a coordination
protocol message, which holds a timestamp
and a fingerprint summarizing the master
computation thus far. At the slave node, the
coordination mechanism waits for the slave
processor to reach the same execution point.
The slave node releases the output data to the
rest of the system only if the master and slave
fingerprints agree. In this way, the pair cor-
roborates and validates execution correctness
up to and including the comparison point.

When the slave detects mismatched finger-
prints, indicating an execution error, it restores
a checkpoint of architectural state changes to
itself and the master, and both resume execu-
tion. If the slave node does not detect an error,

it discards the previous checkpoint and con-
tinues execution. TRUSS recovers from the
permanent failure of a master or slave node by
either bringing a new master-slave pair online
or running the remaining functional node
(master or slave) in a nonredundant mode.

TRUSS integrates the error detection and
isolation protocol into a three-hop, invalida-
tion-based coherence protocol. In the base pro-
tocol, remote nodes forward responses for dirty
cache lines directly to the requesting node.
TRUSS extends this three-hop forwarding
chain to include an additional hop (master to
slave) to validate the outbound data. This extra
step introduces overhead in any request-reply
transaction to a logical processor. For dirty
cache reads, for example, the extra step fully
manifests in the read transaction’s critical path.
Outbound data that is not part of a request-
reply (writebacks, for example) requires a sim-
ilar comparison step, but the latency is hidden
if no other node is waiting on the writeback
result. For operations without irreversible side
effects, the master issues the message before it
checks the result with the slave.

Because the master accepts request messages
while the slave releases replies, a complication
arises with network flow control. Guarding
against deadlock requires that a node not
accept a lower-priority request if back-pres-
sure is blocking it from sending a response on
a higher-priority channel. Because the master
cannot directly sense back-pressure at the
slave’s send port, the coordination protocol
must keep track of credit and debit counters
for the slave’s send buffers at the master node.
The coordination protocol does not accept an
inbound message at the master node unless
the counters guarantee that the slave can also
absorb the inbound message.

Performance issues

The key performance issues in the coordi-
nation protocol are the impact on the round-
trip latency of request-reply transactions and
network contention from the extra traffic in
the master-to-slave channels. Figure 3 shows
TRUSS performance relative to a 16-node
nonredundant system. For TRUSS, we
extended the 4x4 2D torus from the baseline
system to a 4x4x2 3D torus, where master
and slave nodes are on separate planes of the
interconnect topology. This arrangement pre-

serves the master-to-master latency for side-
effect-free communications.

In the base system, OLTP-Oracle spends less
than 40 percent of execution time in off-chip
memory accesses, spending 21 percent of the
total time waiting for dirty data. Overhead wait-
ing for this dirty data, along with queuing effects
when reading shared data, account for the 15
percent performance penalty in the TRUSS sys-
tem as compared to the baseline. OLTP-DB2,
however, spends 73 percent of execution time
on off-chip memory accesses, most of which
goes to dirty coherence reads. The additional
latency associated with these accesses, coupled
with related increases in queuing between mas-
ter and slave, account for the 35 percent per-
formance penalty in the TRUSS system.

Although both Web-Apache and Web-Zeus
spend over 75 percent of execution time in off-
chip memory accesses, few of these read mod-
ified data from another processor’s cache.
Moreover, because bandwidth does not gener-
ally bound these applications, they can support
the additional traffic in the master-to-slave
channels. Consequently, Web servers incur a
marginal performance penalty in the TRUSS
system, relative to the baseline system.

Because their working sets exceed the aggre-
gate cache size, the scientific applications we
studied do not spend time on dirty coherence
misses and therefore do not incur additional
latency from error detection. In ocean and
em3d, contention in the master-to-slave chan-
nels creates back pressure at the master node
and leads to delays on critical-path memory
accesses, which accounts for the small perfor-
mance loss in both applications.

Memory redundancy

TRUSS protects the memory system using
Distributed Redundant Memory (Drum), an
N+1 distributed-parity scheme akin to redun-
dant arrays of inexpensive disks (RAID) for
memory.” In this scheme, /V data words and
one parity word, which the system stores on
N+1 different computational nodes, form a
parity group, and parity maintenance becomes
part of the cache-coherence mechanism."” The
parity word provides sufficient information
to reconstruct any one of the data words with-
in the parity group. Drum complements exist-
ing within-node error-protection schemes,

such as word- or block-level ECC, and

chip-'*"” or module-level'® redundancy. It also
guards against multibit transient errors—soon
reaching prohibitive frequencies in memo-
ry'—or a single memory component or node
failure in a distributed system.

Drum’s main goal is to protect memory
with little or no performance overhead. As in
other distributed parity schemes,”” Drum
relies on ECC to detect multibit errors and
does not require a parity lookup upon mem-
ory read operations. In the common case of
error-free execution, Drum incurs the over-
head of updating parity on a memory write
operation, such as a cache block writeback.

Contention in distributed parity schemes

A distributed parity scheme can introduce
several sources of contention and performance
degradation, as Figure 4 shows. Other
approaches to distributed parity in a DSM
lock the directory entry while the directory
controller waits for a parity-update acknowl-
edgement.”” Generally, acknowledgments help
simplify recovery by accounting for all pend-
ing parity updates. In workloads such as
OLTD, however, which have frequent, simul-
taneous sharing patterns, concurrent reads
stall while the directory entry waits for the
parity-update acknowledgment.

A second bottleneck exists at the memory
channel and DRAM banks, where program-
initiated memory requests and parity updates
contend for shared resources. Other proposed
techniques® uniformly distribute parity infor-
mation across a node’s memory banks. This
approach can benefit memory bank load bal-
ancing, but for workloads with bursty write-
back traffic,' parity updates contend with
processor requests at the memory channels
and increase memory access time.

Finally, parity updates in distributed parity
schemes increase the number of network mes-
sages. Therefore, in networks with low bisection
bandwidth, parity updates can increase network
traversal time. However, modern DSMs, such
as the HP GS1280," typically use interconnect
fabrics designed for worst-case demand, so par-
ity updates in such systems are unlikely to affect
message latencies significantly.”

Optimizations
Distributed parity in Drum incurs minimal
performance overhead through three opti-

NOVEMBER—DECEMBER 2005 55

N

(@)

RELIABILITY

D

Home Parity

Writeback A
\ Memory

Bank contention

Bank

%‘ controller

Lot
irectory Qo
locked -]
C 3 Data
Y Parity

Bank
Channel

contention
Bank

< |emc=oc=oc=oc=oc==oc

(b)

Bank

il

Figure 4. Contention in distributed parity schemes. Directory contention (a) occurs when incoming requests must wait while
the directory is locked, stalling critical-path accesses. Memory contention (b) occurs when the addition of parity updates to
the memory subsystem stalls critical-path data accesses.

mizations: eliminating parity-update
acknowledgments, opting for a lazy schedul-
ing of parity updates, and dedicating memo-
ry banks to parity words.

Eliminating parity-update acknowledg-
ments alleviates contention at the directory
and reduces the number of network messages,
but it can lead to overlapping updates for the
same data. Fortunately, parity-update opera-
tions are commutative, so performing the
updates out of order does not affect parity
integrity. For error recovery, however, the sys-
tem must stop and collect all in-flight messages
to guarantee that the memory controllers have
completed all updates. The added overhead of
quiescing in-flight messages has negligible
impact on overall execution time because the
system infrequently recovers from multibit
errors or hardware failures.

Lazy parity-update scheduling prioritizes
data over parity requests at the memory con-
troller, which yields lower memory response
time for data requests. Because parity requests
are not on the execution’s critical path, the
memory controller delays them arbitrarily
during error-free execution. Drum stores
delayed parity requests in a separate parity
buffer queue in the memory controller, which
identifies and uses idle memory channel and
bank cycles for parity requests after servicing
bursty data requests. The Drum memory con-
troller also supports the coalescing of parity
requests within the parity buffer queue;

[EEE MICRO

recomputing the parity effectively coalesces
the two requests for the same address, there-
by reducing the number of accesses to the par-
ity bank.

To attain higher data throughput, Drum
segregates parity values to a few dedicated
memory banks, which reduces memory bank
contention between data and parity requests,
and improves row buffer locality.

Performance

Figure 5 shows the performance of various
parity-update organizations, all normalized to
a configuration that is not fault-tolerant.

Without prioritized scheduling and dedi-
cated memory banks for parity requests, mem-
ory contention causes ocean and FFT to suffer
22 and 18 percent performance losses, respec-
tively. Memory bandwidth bounds perfor-
mance in both applications, and the
applications’ footprints exceed the aggregate
cache size, which creates significant contention
for memory channels and banks. With lazy
scheduling and dedicated parity banks, the
performance losses for ocean and FFT drop
significantly, to 5 and 4 percent. Because write-
backs in these applications are bursty, delayed
parity requests have ample time to finish.

With parity acknowledgments, directory
contention causes OLTP-DB2 and OLTP-
Oracle to show 8 and 7 percent performance
losses. OLTP exhibits migratory sharing of
modified data, where many processors read and

[CINominal

[H Lazy scheduling with dedicated parity banks

[JAcknowledgment free [[]Drum

T I - ——
y i I i o J I = —]

O

o osgl B [1 B | bt B O b B e bl B[b

@

(2]

35 06 NN B I D SOUOOORN B DN D SUDSOROOR B - D D OUSURURUNI B DN R SOUCUUORN B NN D DUGRUURON B I R SUURRRSN

e}

(0]

N

c—u 04 NN B I D SOUUROORN B I D SUDSOUOOR! B - D R OUDORURUNI B DN D SOUOUUORN B DN D DUDROURON B I R SUURRRSN

£

2 02 ORI D D CUUSUROON B NN R SUUPUOOON B DN R UURIOOON B DEEEE A SUPURROOS B I B SUUOORN B I B SORRN

OLTP-DB2 OLTP-Oracle Web-Apache Web-Zeus Ocean FFT em3d

Figure 5. Performance of four parity-update approaches. In the nominal distributed-parity scheme, the directory waits for par-
ity-update acknowledgments and treats all parity updates and data requests equally in the DRAM subsystem. Drum com-
bines the acknowledgment-free and lazy-scheduling-with-dedicated-parity-banks schemes.

write a set of addresses over time. As data blocks
pass from one processor’s cache to another, out-
standing parity updates and acknowledgments
delay the release of directory locks. Subsequent
reads for these addresses must wait until the
parity acknowledgment completes. With the
enabling of lazy scheduling and dedicated par-
ity banks, the performance loss grows to 14 per-
cent for OLTP-DB2 and 12 percent for
OLTP-Oracle because lazy scheduling further
delays parity acknowledgments. However, with
no parity acknowledgments, these applications
recoup all their performance losses, with or
without lazy scheduling and bank dedication.
With its combination of acknowledgment-free
parity updates, lazy scheduling, and dedicated
parity banks, Drum is the only solution that
regains the performance losses for all the appli-
cations studied. Its performance loss relative to
the baseline (non-fault-tolerant) design is only
2 percent on average (at worst 4 percent in
ocean).

eliability and availability will continue to

be key design metrics for all future serv-
er platforms. The TRUSS server architecture
bridges the gap between costly, reliable main-
frames and scalable, distributed, shared-mem-
ory hardware running commodity application
software. Using the Membrane abstraction,
TRUSS can confine the effects of a compo-
nent failure, enabling error detection and
recovery schemes optimized for a particular
subsystem. Hicho

Acknowledgments

This research was supported in part by NSF
awards ACI-0325802 and CCF-0347560,
Intel Corp., the Center for Circuit and Sys-
tem Solutions (C2S2), and the Carnegie Mel-
lon CyLab. We thank the SimFlex team at
Carnegie Mellon for the simulation infra-
structure and valuable feedback on early drafts
of this article.

References
1. D. Patterson, keynote address, “Recovery

Oriented Computing: A New Research
Agenda for a New Century,” 2002; http://
roc.cs.berkeley.edu/talks/pdf/HPCAkeynote.
pdf.

2. J. Hennessy, “The Future of Systems
Research,” Computer, vol. 32, no. 8, Aug.
1999, pp. 27-33.

3. S. Borkar, “Challenges in Reliable System
Design in the Presence of Transistor Vari-
ability and Degradation,” /EEE Micro, vol. 25,
no. 6, Nov.-Dec. 2005, pp. 10-16.

4. W. Bartlett and L. Spainhower, “Commercial
Fault Tolerance: A Tale of Two Systems,”
IEEE Trans. Dependable and Secure Com-
puting, vol. 1, no. 1, Jan. 2004, pp. 87-96.

5. W. Bartlettand B. Ball, “Tandem’s Approach
to Fault Tolerance,” Tandem Systems Rev.,
vol. 4, no. 1, Feb. 1998, pp. 84-95.

6. T.J. Slegel, et al., “"IBM's S5/390 G5 Micro-
processor Design,” IEEE Micro, vol. 19, no.
2, Mar./Apr. 1999, pp. 12-23.

7. D. Patterson, G. Gibson, and R. Katz, "A

NOVEMBER—DECEMBER 2005

]

RELIABILITY

[EEE MICRO

Case for Redundant Arrays of Inexpensive
Disks (RAID),” Proc. Int’l Conf. Management
of Data (SIGMOD-88), ACM Press, 1988, pp.
109-116.

J. Duato, S. Yalamanchili, and L. Ni, Inter-
connection Networks: An Engineering
Approach, Morgan Kaufmann, 2003.

D.J. Sorin et al., “SafetyNet: Improving the
Availability of Shared Memory Multiproces-
sors with Global Checkpoint/Recovery, Proc.
29th Ann. Int’l Symp. Computer Architecture
(ISCA-02), IEEE CS Press, June 2002, pp.
123-134.

N. Hardavellas et al., “Simflex: A Fast, Accu-
rate, Flexible Full-System Simulation Frame-
work for Performance Evaluation of Server
Architecture,” SIGMETRICS Performance
Evaluation Rev., vol. 31, no. 4, Apr. 2004, pp.
31-35.

T. F. Wenisch et al., “Temporal Streaming
of Shared Memory,” Proc. 32nd Ann. Int’l
Symp. Computer Architecture (ISCA-05),
IEEE CS Press, 2005, pp. 222-233.

Z. Cvetanovic, “Performance Analysis of the
Alpha 21364-Based HP GS1280 Multi-
processor,” Proc. 30th Ann. Int’l Symp.
Computer Architecture (ISCA-03), IEEE CS
Press, 2003, pp. 218-229.

K. Hardin et al., “Design Considerations of
Phase-Locked Loop Systems for Spread
Spectrum Clock Generation Compatibility, ”
Proc. Int'l Symp. Electromagnetic Compati-
bility (EMC-97), IEEE Press, 1997, pp. 302-
307.

J.C. Smolens et al., “Fingerprinting: Bound-
ing Soft-Error Detection Latency and Band-
width,” Proc. 11th Int’l Conf. Architectural
Support for Programming Languages and
Operating Systems (ASPLOS-XI), ACM
Press, 2004, pp. 224-234.

M. Prvulovic, Z. Zhang, and J. Torrellas,
“ReVive: Cost-Effective Architectural Sup-
port for Rollback Recovery in Shared Mem-
ory Multiprocessors,” Proc. 29th Ann. Int’l
Symp. Computer Architecture (ISCA-02),
IEEE CS Press, 2002, pp. 111-122.

T.J. Dell, “A White Paper on the Benefits of
Chipkill-Correct ECC for PC Server Main
Memory,” IBM Corp., 1997.

“HP Advanced Memory Protection Tech-
nologies,” Hewlett Packard, 2003; http:/
h200001.www2.hp.com/bc/docs/support/
SupportManual/c00256943/c00256943.pdf.

18. "Hot Plug Raid Memory Technology for Fault
Tolerance and Scalability,” HP white paper,
Hewlett Packard, 2003. http://h200001.
www?2.hp.com/bc/docs/support/Support-
Manual/c00257001/c00257001.pdf.

19. S.C. Woo et al., “The SPLASH-2 Programs:
Characterization and Methodological Con-
siderations,” Proc. 22nd Ann. Int'l Symp.
Computer Architecture (ISCA-95), IEEE CS
Press, 1995, pp. 24-36.

Brian T. Gold is a PhD student in electrical
and computer engineering at Carnegie Mellon
University. His research interests include reli-
able computer systems and parallel computer
architectures. Gold has an MS in computer

engineering from Virginia Tech. He is a stu-
dent member of the IEEE and ACM.

Jangwoo Kim is a PhD student in electrical
and computer engineering at Carnegie Mellon
University. His research interests include reli-
able server architecture and full system simu-
lation. Kim has an MEng in computer science
from Cornell University. He is a student
member of the IEEE.

Jared C. Smolens is a PhD student in elec-
trical and computer engineering at Carnegie
Mellon University. His research interests
include microarchitecture, multiprocessor
architecture, and performance modeling.
Smolens has an MS in electrical and com-
puter engineering from Carnegie Mellon
University. He is a student member of the
IEEE.

Eric S. Chung is a PhD student in electrical
and computer engineering at Carnegie Mellon
University. His research interests include
designing and prototyping scalable, reliable
server architectures and transactional memo-
ry. Chung has a BS in electrical and comput-
er engineering from the University of
California at Berkeley. He is a student mem-

ber of the IEEE and ACM.

Vasileios Liaskovitis is an MS student in elec-
trical and computer engineering at Carnegie
Mellon University. His research interests
include computer architecture and algo-
rithms for pattern recognition. Liaskovitis has
a BS in electrical and computer engineering

from the National Technical University of
Athens, Greece. He is a student member of
IEEE and ACM.

Eriko Nurvitadhi is a PhD student in electri-
cal and computer engineering at Carnegie
Mellon University. He received an MS in
computer engineering from Oregon State
University. His research interests are in com-
puter architecture, including prototyping and
transactional memory. He is a student mem-

ber of the IEEE and ACM.

Babak Falsafi is an associate professor of elec-
trical and computer engineering and Sloan
Research Fellow at Carnegie Mellon Univer-
sity. His research interests include computer
architecture with emphasis on high-perfor-
mance memory systems, nanoscale CMOS
architecture, and tools to evaluate computer
system performance. Falsafi has a PhD in com-
puter science from the University of Wiscon-
sin and is a member of the IEEE and ACM.

James C. Hoe is an associate professor of elec-
trical and computer engineering at Carnegie

Mellon University. His research interests
include computer architecture and high-level
hardware description and synthesis. Hoe has
a PhD in electrical engineering and comput-
er science from MIT. He is a member of the
IEEE and ACM.

Andreas G. Nowatzyk is the associate direc-
tor of the Minimally Invasive Surgery Tech-
nology Institute at the Cedars-Sinai Medical
Center, where he works on highly reliable,
high-performance computer systems that
process real-time image data in operating
rooms. Nowatzyk has a PhD in computer sci-
ence from Carnegie Mellon University. He is
a member of the IEEE and ACM.

Direct questions and comments about this
article to Babak Falsafi, Electrical and Com-
puter Engineering Dept., Carnegie Mellon
University, 5000 Forbes Ave, Pittsburgh, PA
15213; babak@ece.cmu.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

Advancing in the IEEE Computer Society can elevate your standing in the profession.

Application to Senior-grade membership recognizes

ten years or more of professional expertise

Nomination to Fellow-grade membership recognizes

exemplary accomplishments in computer engineering

GIVE YOUR CAREER A BOOST = UPGRADE YOUR MEMBERSHIP

www.computer.org/join/grades.htm

NOVEMBER—DECEMBER 2005

