
Abstract: The objective of this paper is to introduce self-similar-
ity as a fundamental property exhibited by the bursty traffic
between on-chip modules in typical MPEG-2 video applications.
Statistical tests performed on relevant traces extracted from com-
mon video clips establish unequivocally the existence of self-simi-
larity in video traffic. Using a generic communication architecture,
we also discuss the implications of our findings on on-chip buffer
space allocation and present quantitative evaluations for typical
video streams. We believe that our findings open up new directions
of research with deep implications on some fundamental issues in
on-chip network design for multimedia applications.
Categories and Subject Descriptors: C.4 [Performance of
systems]: Modeling techniques; B.8.2 [Performance and reliabil-
ity]: performance analysis and design aids.
General terms: performance, design
Keywords: system-level design, on-chip networks, communica-
tion analysis, self-similarity, long-range dependence.

1. Introduction and objectives
A fundamental issue in system-level design consists of selecting the
optimal mechanism of communication between different on-chip
modules [16][17]. For complex systems composed of many hetero-
geneous components, the on-chip traffic produced among different
modules has very diverse characteristics. Since the traffic patterns
depend so much on the target application, it is necessary to judi-
ciously allocate the communication resources, especially since the
on-chip buffer space is usually very limited.

Recently, Dally and Towles [1] proposed a novel on-chip inter-
connection network (Fig.1(a)) which can be used instead of the
classical ad-hoc global wiring structure. What makes this generic
architecture very attractive is that it offers well-controlled electrical
parameters which enables high-performance circuits to reduce
latency and increase bandwidth. 

As shown in Fig.1(a), a chip employing such a communication
architecture consists of several network clients (e.g. processors,
memories, and custom logic) which are connected to a network that
routes packets between them. Each client is placed on a tile and
communicates with other clients (not only its neighbors) via the on-
chip network. A router is needed for each tile and it consists of sev-
eral input-output controllers and their associated buffers (Fig.1(b)).
From a practical point of view, the success of such an architecture
depends on the ability to keep the overall area overhead to a mini-
mum1. Since the area of the router is heavily dominated by the
space occupied by the on-chip buffers, the problem of optimal
buffer sizing becomes an issue of critical importance. Indeed, drop-
ping or misrouting packets because of inappropriate buffer sizing
reduces the overall performance and significantly increase the on-
chip power dissipation. We also point out that this severe limitation
of the on-chip buffer space comes in deep contrast with real data
networks where there is ample room for very large buffers. This
makes the on-chip network design problem unique and challenging.   

Fig.1(a) Die module tiles and network logic, Fig.1(b) A generic
input controller and its buffers.

The objective of this paper is to propose a novel traffic analy-
sis approach as a precise way to characterize the on-chip communi-
cation pattern of multimedia applications. More precisely, we
propose a technique for traffic modeling based on self-similar or
Long-Range Dependent (denoted as LRD2) stochastic processes.
By analyzing the statistical properties of the arrival process at dif-
ferent points in a generic architecture like the one in Fig.1, for a
standard MPEG-2 application, we first demonstrate that the self-
similarity is a characteristic behavior of the on-chip traffic. Second,
we characterize quantitatively the degree of self-similarity of the
on-chip traffic using standard techniques based on Hurst parameter
[3]. Knowing the Hurst parameter helps the designer to choose the
minimal buffer size for the router at each tile in Fig.1 which will
guarantee a certain Quality of Service (QoS). 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006...$5.00

�Research supported by NSF CCR-00-93104, DARPA/Marco Gigascale
Research Center (GSRC), and SRC 2001-HJ-898.

1. The authors in [1] suggest about 6% area overhead of network logic for each tile. 
2.  We use interchangeably Self-Similarity and Long-Range Dependence (LRD).

Tile Network Logic

:

controller

buffers

from 
previous
node

to the
next 
node

(a) (b)

Traffic Analysis for On-chip Networks Design of Multimedia 
Applications�  

Girish Varatkar      Radu Marculescu
Department of Electrical and Computer Engineering

 Carnegie Mellon University 
Pittsburgh, PA 15213-3890

{gvv,radum}@ece.cmu.edu



 The analysis we propose is especially relevant to the large
class of portable embedded multimedia systems where the QoS
requirements vary considerably from one media to another (e.g.
video connections require consistently high throughput, but tolerate
reasonable levels of jitter or packet errors) and buffer space is very
limited. Consequently, the ability to explore several communication
schemes while trying to satisfy QoS requirements is of crucial
importance. As we show later in the paper, making use of the
knowledge of traffic pattern for achieving a certain QoS with opti-
mal resources turns out to be extremely helpful. 

1.1. Contributions of the paper
The contributions of this paper are threefold: 
� First and foremost, we propose a completely new way to address
the problem of on-chip network design. To this end, we show how
self-similar (or LRD) processes can be used effectively to model the
bursty traffic behavior at chip-level. 
� Second, we provide evidence about the presence of self-similar
phenomena in on-chip traffic generated by multimedia applications.
This has very important consequences since self-similar processes
have properties which are completely different from traditional
short-range dependent autoregressive (ARMA) or Markovian pro-
cesses which have been mostly used in system-level analysis
[15][18-20]. 
� Third, knowing the Hurst parameter which characterizes the traf-
fic pattern for a particular application can be used to generate syn-
thetic traces with statistical properties similar to the original ones
[30]. These synthetic traces can be used to dramatically speed up
the simulation process for multimedia applications where tens of
hours of simulation are typically required to gather useful informa-
tion for on-chip network design.

Taken together, our proposed technique allows media systems
designers implementing on-chip communication networks to
choose the appropriate buffer sizes and use large multimedia data
benchmarks more effectively. This will enable systems designers to
optimally trade-off performance metrics and media quality.

1.2 Related work
In recent years, due to the advent of SoCs, the issue of efficient
communication schemes - at chip level - received increased atten-
tion [21-25][28]. One problem with the approaches proposed so far
for on-chip network exploration is that they rely entirely on explicit
simulation. Consequently, due to the huge amount of data contained
in multimedia applications, the simulation-based techniques tend to
become prohibitively expensive in practice [14][21][27]. Typically,
tens of hours are needed to simulate a few minutes of video data.
Moreover, simulating randomly video data, without a precise
(quantitative) measure of traffic characteristics, is dangerous since
the actual implications of traffic on the system performance may be
obscured by using inappropriate data. These issues prompted our
attention towards a more formal approach for on-chip communica-
tion analysis with emphasis on precise characterization of multime-
dia traffic.  

As such, our paper is an attempt to bridge conceptually two
very different worlds: data networks and on-chip networks. To this
end, we first identify, at chip-level, a phenomenon discussed so far
only in the context of traffic for real data networks [2][29]. Second,
we analyze the traffic of a multimedia application which targets a
novel packet-based SoC implementation and illustrate the impact of
our analysis on on-chip network design. 

We hope that beyond its practical implications, the connection
we create between these apparently so different domains will stimu-
late further research on formal methods for on-chip network design. 

1.3 Organization of the paper
Section 2 describes the motivation behind self-similarity and its
definition. In Section 3, we present a detailed analysis of traffic for
the MPEG-2 video decoder and show the results for four different
video clips. In Section 4, we illustrate the implications of the LRD
on the on-chip network design process. Finally, we conclude by
summarizing our main contribution.

2. What is Self-similarity? 
Self-similarity and fractals are concepts pioneered by Mandelbrot
[11]. They describe the phenomenon where a certain property of an
object - for instance, a natural image or a time series - is preserved
with respect to scaling in space and/or time. If an object is self-
similar (or fractal), then its parts, when magnified, resemble - in a
suitable sense - the shape of the whole. For example, a two
dimensional (2D) deterministic Cantor set is obtained by starting
with a black unit square, scaling its size by 1/3, then placing four
copies of the scaled square at the four corners, and repeating this
process recursively ad infinitum (Fig.2).  

The one-dimensional Cantor set can be obtained by projecting the
2D Cantor set onto a horizontal time axis. This can be further
interpreted as an ON/OFF time series which model data traffic [26].   

Stochastic self-similarity admits the infusion of probabilistic
behavior. Unlike the deterministic fractals, the objects do not
possess the exact resemblance of their parts at finer levels of detail.
If we think, for instance, in terms of time series which may
characterize some real data traces and relax a little bit the measure
of resemblance, say, by focusing on certain statistics of rescaled
time series, then it may be possible to expect an approximate
similarity with respect to these relaxed measures. Second-order (or
temporal) statistics are the statistical properties that capture
burstiness (or variability) in time series which characterize, for
instance, traffic patterns in real networks [2][5]. In particular, the
autocorrelation function, as a function of the time lag, decreases
polynomially rather than exponentially. The existence of such non-
trivial correlation �at a distance� is referred to as LRD.

In the case of video traces, we concentrate on traffic
characteristics at the macroblock level. If we look within each
frame of a video, there are certain objects. All the macroblocks
within a single object carry similar amounts of information and
hence they get coded using almost the same number of bits. Since
the macroblocks within an object generally occur next to each other
in a frame, this leads to long range correlations. This may be the
intuitive reason behind observing the LRD phenomenon in video
traffic, at macroblock level.
 We also note that, from a practical point of view, LRD has a
considerable impact on queueing performance of the
communication architecture. The traditional short-range dependent
(or Markovian) processes have an autocorrelation function which

  Fig.2. Deterministic fractal example: Two-dimensional Cantor set 



decays exponentially fast. But the LRD processes exhibit a much
slower decay of correlations; that is, their correlation functions
typically obey some power-law decay. Intuitively, the presence of
LRD indicates that while long-range correlations are individually
small, their cumulative effect is non-negligible. This produces
scenarios which are drastically different from those experienced
with traditional short-range dependent models such as Markovian
processes. This is the subtle point where the long-range dependence
analysis we propose surpasses classical Markovian analysis and
proves its practical value. 
2.1 Definition of Long-Range-Dependence
The mathematical definition of long-range-dependence is given as
follows. Let X =( : t = 0,1,...) be a wide-sense stationary

stochastic process with mean m, variance and autocorrelation
function r(k), . According to [2] X is said to exhibit long-
range dependence if                                               

                                 as                        (1)
where 0 <  < 1,  is a slowly varying function and ~ denotes

the ��asymptotically close� condition; that is,  =

1, for all x > 0.
From equation (1) we see that LRD is characterized by an

autocorrelation function that decays hyperbolically rather than
exponentially fast. It also implies that the spectral density obeys a
power-law function near the origin (also called 1/f - noise). This
captures the intuition behind LRD, namely that while high-lag
correlations are individually small, their cumulative effect matters
and gives rise to features which are very different from those of
short-range dependent processes. In what follows, we describe two
methods for testing LRD in any time series X. 
2.2 Variance-Time Analysis
Let X be a wide-sense stationary time series. For each m = 1,2,3,...

let : k = 1, 2, 3,... denote the new wide sense stationary
time series obtained by averaging the original time series X over
non-overlapping blocks of size m. That is, for each m = 1,2,3,...;

 is given by , k > 0. 

The variances of , m = 1,2,3,... for short-range dependent
processes will eventually decrease linearly in log-log plots against
m with a slope equal to -1. On the other hand, for processes with

LRD, the variances of the aggregated processes , decrease
linearly (for large m) in log-log plots against m with slopes
arbitrarily flatter than -1. 

Cox [4] shows how a specification of the sequence (var( ):
m >0) is equivalent to a specification of the autocorrelations given
by (1). More importantly, for a constant c, we have 

                              var  as ,                                 (2)
with 0 <  < 1. Actually, this value of  is related to the rate at
which autocorrelations decay for large values of the lag. From
equation (1), we can see that the autocorrelations decay
hyperbolically with decay constant . 

2.3 R/S Analysis
Historically, stochastic processes with long-range dependence are
important because they provide an elegant explanation of an
empirical law that has been observed in many naturally occurring
time series. What has since come to be known as the Hurst effect
can be described as follows. Given the observations ( : k =

1,2,...,n) with sample mean  and variance (n), the rescaled
adjusted range statistic (denoted as R/S) statistics is given by 

     (3)

where , . In his study
of the rescaled adjusted range [3], Hurst found that many historical
records appeared to be well represented by 

                         , as ,                            (4)
with Hurst parameter H about 0.7. On the other hand, if �s are
Gaussian pure noise or short range dependent, then H = 0.5 in
equation (4) and the discrepancy is referred to as the Hurst effect.
The Hurst effect is fully accounted for by stationary stochastic
processes with long-range dependence. The relation between Hurst
parameter and the rate at which the autocorrelation decays is given
by . 

In practice, R/S analysis is based on a heuristic graphical
approach, originally described in [11][12]. Formally, given a
sample of N observations, ( : k = 1, 2,..., N), one subdivides the
whole sample into K non-overlapping blocks and computes the
rescaled adjusted range  for each of the new

starting points 

which satisfy ( )+ . Here  is defined as in (3)

with  replaced by  and  is the sample

variance of . The slope of the least square

fit line fitting the set of values of R/S gives the asymptotic value of
parameter H. 

3. Traffic analysis for MPEG-2 video decoder
Our main observation is that, the traffic between different modules
for a MPEG-2 decoder exhibits LRD. This is explained through the
example of an MPEG-2 video decoder (Fig.3a) [9]. The decoder
consists of the VLD (Variable Length Decoder), IQ (Inverse Quan-
tization), IDCT (Inverse Discrete Cosine Transform), Motion Com-
pensation (MC) units, and the associated buffers. 
3.1 Modelling and measurement setup
We model the MPEG-2 Video decoder using the Stateflow compo-
nent of Matlab which uses the semantics of Statecharts, formally
proposed by Harel [10]. To create the Stateflow model of the
MPEG-2 video decoder, the sequential C-code of the decoder was
split into several processes and the communication among pro-
cesses made explicit by using synchronization signals. We model
the process graph obtained from the application in Fig.3a following
the Producer-Consumer paradigm; that is, we describe the VLD
process as the Producer and the IDCT/IQ unit as the Consumer.
The VLD decodes the input stream, generates macroblocks, and
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puts them into the buffer. These are picked up by the Consumer to
compute IDCTs and output data to reconstruct the frames. We
assume that all computing processes are mapped onto the architec-
ture discussed in Section 1 as shown in Fig.3b. The remaining
unused tiles can be used to map other applications (e.g. audio,
encryption, etc.)

Using the Mpegstat tool [13], we analyze a MPEG-2 video
stream and find the detailed information about the macroblocks in
the frames of a video. Depending upon whether a frame is I, P or B
type, the macroblocks are processed differently and they follow dif-
ferent paths in the block diagram and then take different times to
process. This results in various traffic patterns for different videos. 

We monitored the arrival processes at the IDCT and MC mod-
ules recording their corresponding traces (that is, Trace 1 and Trace
2 in Fig.3a). The corresponding traces obtained were further evalu-
ated using the variance-time method and the R/S method mentioned
in Section 2. Using these methods, we were able to obtain the vari-
ance-time plots and R/S plots for the two traces. These results are
discussed in the following section. 

3.2 Results and discussion
Our approach to traffic modeling is ��data driven�. We rely upon
four video sequences (Clouds, Simpsons, Disc_ir, Hawaii) of
different video screen sizes ranging in length from 27 seconds
(88000 macroblocks) to 1 second (43000 macroblocks). This
represents all kinds of different scenes as shown in Table 1 by the
statistics of I, P and B frames. 

We focus on long sequences (Xi: i = 1,2,..., N) of data, where
Xi represents the number of bits which contain the compressed and
coded information for a macroblock in a frame of an MPEG video.
Based on statistical analysis of the sequences, our main finding is

that LRD is a characteristic of the MPEG-2 video traffic traces
between different modules of a MPEG-2 decoder. 

The monitored trace file consists of two columns. The first one
records the time measured from the beginning of the trace at which
a block of the video stream arrived at a module in the system. The
second column gives the integer size in bits of the macroblock. The
actual traffic therefore consists of alternating sequence of
macroblock arrivals and silence periods. We consider the discrete
version of the process where the process is averaged within a
window of size [8]. To compute H, we perform two tests1:
•  The first test corresponds to the variance-time analysis of the time
series X [2]. As an illustration, Fig.4 shows the plots corresponding
to Simpsons video clip. We plot the least square fit line in the graph.
The slope of the line gives the value of the parameter , from
which we find out the Hurst parameter as H = 1 - /2. 
•  The second test corresponds to the R/S analysis of the time series
[3]. The plots corresponding to the rescaled adjusted range statistics
for Simpsons video clip are shown in Fig.5.  

For convenience, a summary of the estimated Hurst parame-
ters is also given in Table 2. As we can see, the values of H lie
between 0.5 and 1 clearly indicating the presence of LRD. Also, the
values of H obtained from both methods are sufficiently close to
each other to further support the claim about the presence of LRD.

4. Implications of LRD traffic in designing on-
chip networks
Beyond its statistical significance, long-range dependence has con-
siderable impact on queueing performance of on-chip network.
Only a small number of analytical queueing results are available for
LRD traffic [6]. In traffic analysis, we typically deal with time
series with hundreds of thousands of observations. If we try to fit
the best ARMA model to such a process, then the number of param-
eters will tend to infinity2. Using an excessive number of parame-
ters is undesirable as it increases the uncertainty of the statistical
inference and parameters are difficult to interpret. So we need to
model these processes with parametrically parsimonious models
(that is, using the minimal number of parameters) .

 Norros in [7] used Fractional Brownian Motion (FBM) model
which parsimoniously captures the LRD effects. This model finds
out the lower bound for the probability that the queue length Q
exceeds a certain buffer size x, under the assumption of having an
infinite buffer. Mathematically:         

                                                                 (5)

Video Clip I frames P frames B frames Macroblocks per 
frame

Clouds       24      12       0         1200

  Simpsons     136      136     542         108

Disc_ir      18       9        0        1024

    Hawaii     195      96       0         300

Table 1. Statistics for different clips
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Fig.3a The block diagram of the MPEG-2 decoder
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       Fig.3b A possible mapping of the MPEG-2 decoder onto
                   architecture in Fig. 1 

1.    We present the complete set of results for both tests in [31]. 

Video
Clip

Trace 1 
H by Variance-

time method

Trace 1
H by

 R/S plot method 

Trace 2 
H by Variance-

time method

Trace 2
H by

 R/S plot method 

Clouds 0.7240 0.7646 0.7603 0.7639

Simpsons 0.6874 0.7432 0.7407 0.7943

Disc_ir 0.8108 0.8180 0.8421 0.8131

Hawaii 0.7238 0.7453 0.5455 0.6839

Table 2. The Hurst parameter values for different clips by two methods 

2. It will be as good as approximating a hyperbolically decaying function by a sum of 
exponentials.

δ
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β
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with

                     (6)

where: m is the mean input rate,  is the utilization of the queue
(that is, the ratio of average service time to average interarrival
time); H and a are the Hurst parameter and the ��peakedness� values
which can be obtained from plots like those in Figs.4-5. 

To asses the accuracy and impact of our predictions on the
overall performance of the on-chip network, the complementary
buffer length distributions for two different video traces are shown
in Fig.6. (The values of H and a from the Fig.4 were used to plot
these graphs). In these graphs, the dashed curves indicate the pre-
dicted probability values given by eqs. (5) and (6) while the contin-
uous curves indicate the results obtained by simulation. There are a
few conclusions which can be derived from these plots: 
� First, the predicted and simulated curves show a very good agree-
ment as a function of buffer length. That is, the small difference
between them is because the simulation corresponds to just one
instance of the arrival process while the analytical formula gives the
result averaged over many traces. That is the reason why simulation
curves which represent just one instance of the stochastic process
with that particular value of Hurst parameter lie close to the curve
predicted by the deterministic formula and sometimes overestimate
or underestimate the buffer length. 
� Second, the dash-dot lines (obtained for H = 0.5) correspond to
short-range dependent (SRD) models (like the Markovian ones).
From plots in Fig. 6, we can see that Markovian models signifi-
cantly underestimate (typically 1-2 orders of magnitude) the buffer
overflow probabilities since it assumes the distribution of the

arrival process to be short-range dependent i.e. exponential. This
may cause severe performance degradation at chip-level.
� Third, we �enriched� the Disc_ir trace by concatenating Clouds
followed by Simpsons followed by Disc_ir and the second graph in
Fig.6 corresponds to the simulation of this edited trace. Again, we
can see a very good agreement between the buffer overflow predic-
tion by the LRD formula (5) and the simulation values.

There is also another way of using the plots in Fig. 6 (and
therefore eqn. (5)) for on-chip network design. For instance, if the
QoS needed by the target application asks for not more than 1% of
lost macroblocks, then from the first plot in Fig.6, one can easily
see that we need a buffer length of 9000 bits at the IDCT module.
This way, we have a theoretical basis for choosing the buffer length.
On the other hand, the Markovian analysis will predict a buffer
length of 3000 bits and that will result in around 10% bits lost
(instead of the target 1%). This represents a very serious perfor-
mance degradation for an MPEG-2 video decoder. More generally,
a multimedia system designer may have a set of typical video clips
(e.g. news reader, weather channel etc.) that are expected to run
using a MPEG-2 decoder. We can find the Hurst parameter for each
of these clips and use it to predict different buffer lengths corre-
sponding to the same degree of lost bits. We can then choose the
maximum predicted buffer length and have a theoretical support for
assuring the QoS guarantee to the consumer. 

Last but not least, compared to simulation-based buffer sizing,
the LRD analysis framework offers a fast approach for buffer siz-
ing. More precisely, for the simulation-based approach, if we want
to asses the impact of changing the speed of the processors in the
on-chip network, then we need to rerun the simulations all over
again for all the typical video clips. This is extremely time-consum-
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Fig.5 R/S plots for simpsons video clip at IDCT module (Trace 1 in Fig.3a) and at the MC module (Trace 2 in Fig.3a).
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Fig.4 Variance-time plots for Simpsons at the IDCT module (Trace 1 in Fig.3a) and at the MC module (Trace 2 in Fig.3a).

Markovian Behavior

Video Clip Behavior

Ideal LRD Behavior



ing since tens of hours of simulation may be needed. Conversely, in
the LRD-based analysis, the value of H will not be affected as it
depends only on the underlying video clip statistical properties.
Consequently, we just need to change the value of utilization factor
ρ in eq.(6) and get instantaneously the new buffer length.

5. Conclusion
We have presented a technique for on-chip traffic analysis using
self-similar processes. For a recently proposed communication
architecture based on packet switching, we have shown that, under
various input traces, the arrival process at different nodes, for an
MPEG-2 video application, exhibits self-similar phenomena. Char-
acterizing the degree of self-similarity via the Hurst parameter
helps in finding the optimal buffer length distribution which turns
out to be the critical issue for the routers at each node in the on-chip
communication network. We plan to explore the application of traf-
fic characterization for other systems in the video domain. We
believe that our findings open up new directions of research with
deep implications on fundamental issues in on-chip network design. 
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Fig.6 Complementary queue length distribution plots predicted by eqs. (5) and (6) for different video clips. The dashed curves
indicate simulation results for an infinite queue with the arrival process following empirical trace (the server utilization is 0.5).
The straight lines indicate the prediction by a SRD model (H = 0.5 in eqs.(5) and (6)).


