
Cooperative Asynchronous Update of Shared Memory

Bogdan S. Chlebus ∗ Dariusz R. Kowalski †

ABSTRACT
The Write-All problem for an asynchronous shared-memory
system has the objective for the processes to update the
contents of a set of shared registers, while minimizing the
total number of read and write operations. First abstracted
by Kanellakis and Shvartsman [12], Write-All is among the
standard problems in distributed computing. The model
consists of n asynchronous processes and n registers, where
every process can read and write to any register. Processes
may fail by crashing. The most efficient previously known
deterministic algorithm performs O(n1+ε) reads and writes,
for an arbitrary fixed constant ε > 0, and is due to Anderson
and Woll [4]. This paper presents a new deterministic algo-
rithm that performs O(n polylog n) read/write operations,
thus improving the best previously known upper bound from
polynomial to polylogarithmic in the average number of
read/write operations per process. Using an approach to
store and retrieve information about progress made in aux-
iliary registers, the novelty of the new algorithm is in using
a family of multi-partite graphs with expansion properties
to structure a set of registers as a graph and then have each
asynchronous process explore a part of the graph accord-
ing to its pattern of traversals. An explicit instantiation of
our Write-All algorithm, based on best-known polynomial-
time constructions of lossless expanders and a-expanding

graphs, performs n · 2O(log3 log n) reads and writes. In this
explicit solution to Write-All, the processes perform asymp-
totically less read/write operations than the most efficient
non-explicit solution known before.

∗Department of Computer Science and Engineering, Uni-
versity of Colorado at Denver and Health Sciences Center,
Campus Box 109, Denver, CO 80217, USA. The work of this
author is supported by the NSF Grant 0310503.
†Instytut Informatyki, Uniwersytet Warszawski, ul. Ba-
nacha 2, Warszawa 02-097, Poland. The work of this author
is supported by the KBN Grant 4T11C04425. This work has
been partly done while the author was a postdoc at Max-
Planck-Institut für Informatik, Saarbrücken, Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05,May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Categories and Subject Descriptors:
F.2.0 [Analysis of Algorithms and Problem Complexity]:
General

General Terms:
Algorithms, Performance, Theory

Keywords:
distributed algorithm, read and write register, asynchrony,
problem Write-All, work efficiency, expander, disperser.

1. INTRODUCTION
We consider an asynchronous distributed system with read

and write registers. There are n processes, some of them
may fail by crashing, but at least one process survives. The
Write-All problem is about how to have these processes up-
date cooperatively an array of n Multi-Reader Multi-Writer
registers, while minimizing the total number of read and
write operations.

Write-All is one of two dual distributed-system primitives,
the other is Collect. Write-All is about writing to an array
of registers, with the purpose to update all of them. Collect
is about reading the contents of an array of registers, with
the purpose to get each process know all values stored in
the registers. In both problems processes may cooperate to
improve efficiency.

Known solutions to Collect and Write-All have been de-
veloped with the goal to be efficient in terms of either asyn-
chronous time [23], or the total number of read/write oper-
ations [10, 13], or competitiveness in various models [2, 6].
We use work as performance metric. It is defined as the
total number of register accesses, for reading and writing.

The power of Write-All is captured by solutions of a spe-
cial case when we need to write 1’s into the registers, assum-
ing we start with all of them containing 0’s. There is given
an array of n registers and an additional flag, which are all
initialized to zero. The value 1 of the flag is interpreted as
“done,” and that is why the problem is often called Certified
Write-All. The goal of n processes is to set all array regis-
ters to 1 and next set the flag to 1. To be correct, a solution
has to provide that the flag is set to “done” only after all
n registers have been set to 1.

An approach in which process i first updates the ith cell
and next sets the flag to 1 is not correct for two reasons.
First, even one crash results in some update not performed.
Second, if some process is fast and some other slow, then
the flag is set to “done” before the slow process performs its
update. On the other hand, a direct solution, in which each

process carries out all updates and then sets the flag, has a
drawback that the total work is Ω(n2) when few processes
crash.

The flag improves efficiency if processes check regularly on
its value. This happens when fast processes do most of the
work and then set the flag to “done,” while slow processes
stop after learning that all tasks have been completed. The
flag is not necessary, as long as no process terminates before
the whole array has been updated, but it indicates how to
use auxiliary memory to streamline solutions. A divide-
and-conquer approach has the array recursively divided into
parts and a flag assigned to each part. This results in a
tree of auxiliary memory registers, each node representing a
segment of the array of registers to update.

The first result by exploring this approach was obtained
by Buss, Kanellakis, Ragde and Shvartsman [7] who devel-
oped a deterministic algorithm with a work per process that
was sub-linear but still polynomial. Anderson and Woll [4]
showed that the exponent ε > 0 in the bound O(nε) on
the average work per process can be made arbitrarily small.
The question if a polylogarithmic work per process can be
achieved was left open. In this paper we settle this question
in the affirmative.

A distributed algorithm A is explicit or constructive if
there is a sequential algorithm that finds an instantiation of
A for a given number n of processes in time that is poly-
nomial in n. An algorithm that has not been shown to be
explicit is called existential.

Our results. The summary of the contributions is as fol-
lows.

I. We show that Write-All can be solved with the amount
of work that is O(n polylog n) by a deterministic exis-
tential algorithm. More precisely, the work of this al-
gorithm is O(n log18 n/(log log n)3). The most efficient
previously known deterministic solution was given by
Anderson and Woll [4]; it performed work O(n1+ε),
for an arbitrary fixed constant ε > 0. This meant an
exponential gap between the lower and upper bounds
on the average work per process. Our solution narrows
the gap to polynomial, by improving the average work
per process to polylogarithmic.

II. We show that Write-All can be solved with the amount
of work that is n·2O(log3 log n) by a deterministic explicit
algorithm. This is asymptotically better than even
existential instantiations of the algorithm in [4], since
Malewicz [18] showed that, for any ε > 0, the work of
an arbitrary instantiation of that algorithm has to be

Ω(n1+(1−ε)
√

2 ln ln n/ ln n).

Problem Write-All has also been defined with two param-
eters, when the number p of processes and the size t of an
array of registers to update are independent. Our solution
can be adapted to this case to obtain an algorithm with
work O((p + t) polylog min{p, t}). This may be achieved
by a simulation using a solution for n = p = t and then ei-
ther grouping the tasks, when t > p, or the processes, when
p > t.

Previously known efficient deterministic algorithms, like
the one given in [4], relied on trees to store and retrieve infor-
mation about progress made, while processes explored such
progress trees following their individual patterns of traver-
sal. We define multi-expanders, which are used in a way

similar to that of progress trees. We first introduce the no-
tion of a connector which is a bipartite graph that combines
properties of expanders and dispersers. Connectors deter-
mine the pattern of connections between consecutive layers
of multi-expanders. We show that connectors and multi-
expanders with good expansion properties exist; this can
be achieved either by counting, which yields graphs with
stronger properties, or in a constructive way, which results
in weaker properties. Multi-expanders are used to store and
retrieve information about progress made. Each process ex-
plores its individual sparse subgraph of the multi-expander.
The strength and novelty of the analysis we give is in show-
ing how to use expansion properties to gauge the flow of
information and progress made in this asynchronous setting.

Previous work. The problem Write-All was first consid-
ered by Kanellakis and Shvartsman [12]. Buss, Kanellakis,
Ragde and Shvartsman [7] developed a deterministic algo-
rithm with work O(nlog2 3). A deterministic algorithm of
Anderson and Woll [4] attains work O(n1+ε), for any fixed
constant ε > 0. Known randomized solutions are optimal,
but they have been analyzed in terms of performance against
oblivious adversaries only. Such adversaries determine the
order of events at processes prior to the start of an exe-
cution of a randomized algorithm. The randomized algo-
rithm of Martel and Subramonian [20] performs work O(n)
with a large probability on n/ log n processes. Lower bounds
Ω(n log n) on work by deterministic algorithms and Ω(log n)
on time were given in [7, 14, 20].

The algorithm of Anderson and Woll [4] solving Write-
All with work O(n1+ε) uses a progress tree of a certain de-
gree. The algorithm uses a set of permutations, of a size
equal to the degree. Suitable families of permutations have
been shown to exist by the probabilistic method, but no
explicit construction in time polynomial in n and ε−1 is
known. A constructive implementation of the algorithm,
by way of a specific set of permutations, was proposed by
Kannelakis and Shvartsman [13] and studied by Chlebus et
al. [9]. Malewicz [18] considered the impact of the degree
of progress tree on the performance, and showed that, for
infinitely many values of n, there are instances of the algo-

rithm performing at most n1+(1+ε)
√

2 ln ln n/ ln n work.
Algorithms that achieve optimal work O(t), for a number

of processes p smaller than the size t of the array of registers
to update, were studied by Malewicz [19] and Kowalski and
Shvartsman [15]. Such algorithms are known to exist for
t = Ω(p2+ε), for an arbitrary constant ε > 0, see [15]. It
is still an open problem how to achieve work O(t) for t =
Ω(p polylog p).

Related work. The problem Write-All was defined as a
primitive useful in simulating a PRAM on a PRAM subject
to processor failures, see [12]. An overview of simulations of
a fully operational PRAM on one prone to processor failures
can be found in a book by Kanellakis and Shvartsman [13].
Kedem, Palem, Raghunathan and Spirakis [14] developed
randomized simulations of PRAM on a faulty one.

The problem Collect is closely related to Write-All. Col-
lect was abstracted by Saks, Shavit, and Woll [23] in the
context of their work on randomized consensus algorithms.
Ajtai, Aspnes, Dwork and Waarts [2] showed how to adapt
the deterministic algorithm of Anderson and Woll [4] for
Write-All to obtain a deterministic solution to Collect with
O(n3/2 log n) work performance. The first randomized so-

lution to Collect with expected work exceeding the lower
bound by only a polylogarithmic factor was given by Asp-
nes and Hurwood [6], but is has been analyzed only against
oblivious adversaries.

A deterministic Collect algorithm developed by Chlebus,
Kowalski and Shvartsman [10] attains work O(n polylog n).
This algorithm is parameterized by graphs embedded in
the code. A constructive solution relies on the family of
a-expanders described by Ta-Shma, Umans, and Zucker-
man [26], yielding an explicit algorithm with the amount
of work that is only O(n polylog n), where the exponent
is larger than in the existential solution. Iterative Col-
lect can be used to implement atomic snapshot objects [1,
5]. Competitive-efficient solutions to iterative Collect were
given in [2, 6, 10].

Expander-based communication schemes can be designed
to guarantee fast proliferation of information in an asyn-
chronous shared-memory setting, as was shown by Chlebus,
Kowalski and Shvartsman [10]. Expander-like graphs have
been used to extract randomness from weak sources of ran-
domness using a few additional random bits, as first shown
by Santha [24] and Sipser [25], see [8, 22, 26, 27] for recent
work. Efficient constructions of graphs with good expansion
properties were given in [16, 22, 26, 27].

Structure of this document. Section 2 discusses the
model and compares solutions of Write-All and Collect. Sec-
tion 3 defines connectors, which are later used in a construc-
tion of multi-expanders given in Section 4. The algorithm
is described in Section 5 and analyzed in Section 6. We
conclude with a discussion in Section 7.

2. MODELS AND PROBLEMS
Models. We consider n asynchronous processes and a set
of shared memory registers such that each process can read
from any register and write to any one. This model is often
called the Asynchronous PRAM. The PRAM model used in
parallel computing, see [11], is understood as a synchronous
machine with a constant-time access of any processor to any
shared register. If the assumption of global synchrony is
abandoned, leaving only the capability of any process to ac-
cess any shared-memory register for either reading or writ-
ing, then the result is the Asynchronous PRAM, see [4, 5,
20], which is used in this paper.

The size of shared registers, in terms of the number of
bits that a register can store, significantly affects design of
algorithms. The logarithmic size of registers captures an ar-
chitecture where memory registers are implemented in hard-
ware. A logarithmic size of registers is sufficient to imple-
ment all known most efficient solutions to Write-All, see [4,
9, 14, 15, 18]. In this paper we follow this approach and
work with an Asynchronous PRAM in which every register
is of a logarithmic size. In contract to Write-All, solutions to
Collect require the size of registers to be polynomial. Such
size can be achieved when shared memory is implemented
in message passing, see [17].

A process of an asynchronous PRAM performs two ac-
tions during an event in an execution: a constant-time local
computation, followed by either a read from an arbitrary
register or a write to one. Such writes and reads are the
only externally-visible operations. An execution is repre-
sented as an externally-visible trace, specified as a sequence
F = 〈k0, k1, k2, . . .〉, where each ki is a process name. The j-

th event in the trace is the currently pending read or write
operation of the process with name kj . An occurrence of
such a j-th event in an execution means that it has been
actually performed by the process kj . We consider execu-
tions determined by infinite traces. A name of a specific
process may or may not occur infinitely many times in the
trace, but there is at least one name that does occur in this
way. If a name occurs finitely many times, then this means
that the process has crashed. When each process name oc-
curs infinitely many times, like in executions for solutions to
Collect, then such traces/executions are fair, see [17].

Problems. A deterministic solution of Collect with an aver-
age polylogarithmic work per process was given by Chlebus,
Kowalski and Shvartsman [10]. In this paper, we present a
solution to Write-All with a similar work efficiency. First
we compare the problems Write-All and Collect, and discuss
properties of the solutions given in this paper and in [10].

Let us define the two problems in terms of the same ter-
minology and notations. Suppose that there are n processes
and and array A[1..n] of n shared-memory registers A[i], for
1 ≤ i ≤ n. There could be more registers available, in the
case of Write-All. Properties of these registers are different
for the two problems, even though they are referred to by
the same name.

Problem Write-All :

Initial configuration: All the values are A[i] = 0,
for 1 ≤ i ≤ n.

To achieve: Set each A[i] to 1, for 1 ≤ i ≤ n.

Problem Collect:

Initial configuration: Each A[i] stores some initial
value, for 1 ≤ i ≤ n.

To achieve: Every A[i] stores all the original ini-
tial values in A[1..n].

From a low-level technical point of view, there is a similar-
ity that registers are of the Multi-Reader type, but except
for that the features are opposing. Among them is the fact
that the environment for Collect is without failures, while
crashes may happen in executions of solutions of Write-All.
However, because of asynchrony, a wait-free solution of ei-
ther Collect or Write-All that is efficient in an environment
without crashes has the same asymptotic performance with
crashes. This is because the processes that crashed might
be considered very slow in an environment without failures:
suppose that each of them does not really crash but stops
performing any action until the remaining processes have
learned all values, and only then completes its computation.

Since the problems Write-All and Collect are related, it
is natural to ask if having a work-efficient solution to one of
them helps in obtaining a solution of a comparable work per-
formance for the other one as well. A solution to Write-All
was shown to be helpful to solve Collect by Ajtai, Aspnes,
Dwork and Waarts [2]. They used an approach of Ander-
son and Woll [4], that allows to achieve work O(n1+ε) while
solving Write-All, to obtain a solution for Collect with work
O(n3/2 polylog n).

A question more relevant in this context is if one could
achieve a transformation in the opposite direction: to ob-
tain a Write-All solution from an algorithm for Collect. One
could argue that this is the case by pointing that repeating
a pattern of memory accesses for reading, in an execution

of an algorithm solving Collect, as a pattern of memory ac-
cesses for writing, in an execution of an algorithm solving
Write-All, would result in a pattern that also handles Write-
All. This is true in the sense that any solution of Collect can
be mapped into one for updating an array of large registers.
If we use a solution of Collect given in [10], then the result-
ing algorithm has O(n polylog n) work performance. This
solution of updating shared memory relies significantly on a
polynomial size of registers, and on the ability to manipulate
an arbitrary subset of the set {1, 2, . . . , n} in a single-step
read/write operation, which is then counted as contributing
only a unit to the amount of work. A solution like this one
cannot be implemented on an Asynchronous PRAM with a
logarithmic size of registers.

Both solutions of problems Collect and Write-All, given
in [10] and in this paper, respectively, use graphs with ex-
pansion properties in their codes. The two approaches differ
significantly, which results in different types of performance
bounds for best explicit solutions obtained. Whereas an ex-
plicit solution of Collect with work performance that is only
O(n polylog n) was given in [10], the most-efficient explicit
algorithm for Write-All given in this paper performs work

n · 2O(log3 log n).

3. CONNECTORS
Processes executing our algorithm communicate by read-

ing and writing to shared registers according to patterns
determined by specific graphs with expansion properties.
Such general graphs can be defined in many ways, see for
instance [8, 16, 21, 22, 26, 27]. The graphs we use combine
properties of expanders and dispersers.

First we fix some graph terminology.
For a set X of nodes in a graph G, the notation NG(X)

means the set of all neighbors of nodes in X; the subscript G
is dropped when the underlying graph G is clear from con-
text. The set of all nodes w such that there is a path of
length at most i in graph G from the node w to some node
in X is denoted N i

G(X), for a positive integer i.
Next we recall definitions of expansion properties. Let

G = (V, W, E) be a bipartite graph, with left-hand side
nodes in V and right-hand side nodes in W ; the elements of
set V are called inputs and those in set W are called outputs.
Let K > 0, α > 1 and ε > 0 be real numbers.

Graph G is said to be a (K, ε)-disperser, if every subset
X ⊆ V of at least K nodes is connected to at least (1−ε)|W |
neighbors.

Graph G is said to be a (K, α)-expander, if every subset
X ⊆ V of at most K nodes is connected to at least α|X|
neighbors; number α is called the expansion of G.

An expander is lossless if its inputs are of the same degree
and its expansion is close to the input degree.

A simple graph is a-expanding if every two disjoint sets of
nodes of size at least a are joined by an edge.

Now we introduce new types of graphs:
Let H ′ = (V, W, F) be a bipartite graph, where |V | =

|W | = n. Graph H ′ is defined to be a weak (n, δ′, ε′)-
connector when it has the following four properties:

Definition of a weak (n, δ′, ε′)-connector:

(degree bounds) The degrees of inputs in V are
all equal to δ′ and the degrees of outputs in
W are all between (1− ε′)δ′ and (1 + ε′)δ′.

(left expansion) The inequality

|NH′(A)| ≥ (1− ε′)δ′ · |A|

holds for every set A ⊆ V of a size that is
at most nε′/(2δ′).

(right expansion) The inequality

|NH′(B)| ≥ (1− ε′)2δ′ · |B|

holds for every set B ⊆ W of a size at
most n/δ′.

(left dispersion) The inequality

|NH′(A)| > n− n/(δ′ε′)

holds for every set A ⊆ V of a size at least n/(δ′ε′).

Lemma 3.1. If n ≥ 8b′, then there is a weak (n, δ′, ε′)-
connector H ′ for δ′ = b′ log3 n and ε′ = 1/(3 log n), for a
sufficiently large constant b′ > 0.

Let H = (V, W, F) be a bipartite graph with the inputs
in V , and the outputs in W , where |V | = |W | = n. We
say that H is a (n, δ, ε)-connector when it has the following
properties:

Definition of (n, δ, ε)-connector:

(regularity) Every node is of degree δ.

(expansion) The inequality

|NH(A)| ≥ (1− ε)δ · |A|

holds for every set A ⊆ V or A ⊆ W of a
size at most nε/(6δ).

(dispersion) The inequality

|NH(A)| > n− 4n/(δε)

holds for every set A ⊆ V or A ⊆ W of a
size at least 4n/(δε).

Notice that connectors have inputs and outputs treated
symmetrically, unlike weak connectors. We can construct
connector H using a weak connector H ′ proved to exist in
Lemma 3.1.

Theorem 3.2. There exists a (n, δ, ε)-connector for the
parameters δ = b log3 n and ε = 1/ log n, for a sufficiently
large constant b > 0 and when n is a sufficiently large power
of 2.

Alternative constructions of connectors. We show a
construction relying on the existence of graphs with good
expansion properties. Additionally, this construction is ex-
plicit if the used expanders are explicit.

Let ε = 1/ log n. Suppose ∆ is such that there are two
(n, n)-bipartite regular graphs H1 and H2 such that H1 is
an (nε/(6∆), (1 − ε/2)∆)-lossless expander of degree ∆ ≥
b log3 n and H2 is a 4n

(∆+δ′)ε -expanding graph of degree δ′,

where ∆ > 2δ′/ε. Coalesce the pairs of corresponding nodes
and take the union of the sets of edges, to obtain an (n, n)-
bipartite regular graph G of degree δ = δ′ + ∆.

The dispersion condition holds for G, since δ = δ′ + ∆
is the degree of G and by the expansion for H2, which is a
subgraph of G. To show the expansion property, note that it

follows from the definition of a lossless expander H1 that for
every set A ⊆ V of a size at most nε/(6∆) the inequalities

|NG(A)| ≥ (1− ε/2) ·∆|A| ≥ (1− ε)δ|A|

hold, since ∆ > δ(1− ε) for sufficiently large n.
It is known that such graphs H1 with ∆ = Θ(log3 n) exist,

as do graphs H2 with the degree δ′ = Θ(log n). This results
in the same quality of connectors as in graphs showed to
exist by direct counting.

Explicit graphsH1 with ∆ = 2O(log3 log n) were constructed
in [8]. Explicit construction of H2 with δ′ = O(polylog n)
was presented in [26]. For the explicit version of construc-

tion, the degree δ of graph G is 2O(log3 log n), which is asymp-
totically larger than polylog n.

4. MULTI-EXPANDERS
Let G = (V, E), with |V | = (n + 1)D, be a balanced

(D + 1)-partite graph, that is, there is a partition of V into
disjoint subsets V0, V1, . . . , VD of size n each so that every
edge in E links two nodes in consecutive sets Vj and Vj+1.
Graph G is a (n, D, δ, ε)-multi-expander when the following
four multi-expansion conditions hold:

Definition of (n, D, δ, ε)-multi-expander:

Me0: The i-th node in layer Vj is joined to the
i-th node in layer Vj+1, for every 1 ≤ i ≤ n
and 0 ≤ j < D.

Me1: The inequalities

(1− ε)D−j · δD−j ≤ |ND−j(v)∩VD| ≤ δD−j

hold for every 1 ≤ j ≤ D and every v ∈ Vj .

Me2: The equality |ND(v) ∩ VD| = n holds for
every v ∈ V0.

Me3: If 0 ≤ j + i ≤ D, then

|N i(A)∩Vj+i| > min{|A|δi·(1−ε)i, n−4n/(δε)} ,

and if 0 ≤ j − i ≤ D, then

|N i(A)∩Vj−i| > min{|A|δi(1−ε)i, n−4n/(δε)},

for every 0 ≤ j ≤ D and every 0 < i ≤ D
and for every set A ⊆ Vj .

The sets Vj are called layers. The property Me1 is about
how many nodes in the last layer can be reached, while Me2
is about reachability through all the layers to the last one.
The property Me3 expresses iterated expansion and disper-
sion. In this section we show that multi-expanders exist.
From now on we fix δ = b log3 n, for a constant b as in
Theorem 3.2, and ε = 1/ log n. We also assume that n ≥ 8b.

Theorem 4.1. There exists a family of graphs 〈Gn〉, where
Gn is a (n, D, δ, ε)-multi-expander, for δ = b log3 n, ε =
1/ log n, and D = dlogδ ne, for sufficiently large n and a
sufficiently large constant b > 0. The degrees of nodes in
graph Gn are at most 5δ log n = O(log4 n).

To build such graphs Gn, we may use (n, δ, ε)-connector H,
that exist by Theorem 3.2. Connect two consecutive layers
Vj and Vj+1 by mapping the pattern of connections of H, for
j = 1, . . . , D − 1, where Vj and Vj+1 play the role of inputs
and outputs of H. The obtained graph has properties Me0,

Me1 and Me3. For instance, properties Me1 and Me3 for G′

follow directly from the properties of a (n, δ, ε)-connector H:
iterate regularity and expansion of a connector while mov-
ing through consecutive layers. Property Me2 does not need
to hold, and the construction is augmented by adding more
edges in a certain constructive way, details are omitted.

Explicit multi-expanders. If we use the explicit con-
nectors from Section 3, then the obtained graph is an ex-

plicit (n, D, δ, ε)-multi-expander, where δ = 2O(log3 log n),
ε = 1/ log n, and D = dlogδ ne, for sufficiently large n.
This is because our construction of a multi-expander from
a connector is explicit. The maximum degree of Gn is

5δ log n = 2O(log3 log n).

5. ALGORITHM
We describe an algorithm that we call Layered-Write.

Suppose there are some n processes and an array A[1..n] of
n registers whose entries are all zeroes.

We use a multi-expander G = Gn as given in Theorem 4.1.
Every node of this graph is represented by a unique shared-
memory register. The topology of Gn is a part of code of
the algorithm. The array A[1..n] makes the layer VD. We
assign a unique node in the layer V0 to each process.

Every register representing a node stores just a single-bit
value, which is initialized to zero. The bit value stored at the
node v in V0 assigned to process p is called the completion bit
of the process. There is also a global flag initialized to zero.
A graph induced by the nodes P(p) =

SD
j=0(N

j(v) ∩ Vj) is
called the progress graph for process p, where v ∈ V0 is the
node assigned to p. This graph plays a role similar to that
of a progress trees used in the algorithms in [4, 9, 18, 19].
Every node of G is in some progress graph. We refer to P(p)
as both a set of nodes and a graph induced by these nodes,
the specific meaning is clear from context.

Every process p traverses its progress graph P(p). The
traversal starts at node v ∈ V0 assigned to p. In an odd-
numbered step, process p performs the consecutive step of
a DFS-like traversal of graph P(p). In an even-numbered
step, it reads the value stored at the global flag. A process
terminates as soon as it detects that this flag is set to 1.

Now we define the traversal rules. If process p arrives at
node w ∈ P(p) ∩ Vj for the first time and j < D, then p
systematically checks the values of all neighbors z of w in
the next layer Vj+1 in some order. If the bit-value of such
a z is equal to zero, then p processes the node z recursively.
When finally all bits of the neighbors z are set to value 1,
then p returns back to the neighbor of w in the previous
layer from which p arrived to w originally.

This traversal is similar to the ordinary DFS one, with an
additional caveat regarding order: if w is the i-th node of
layer Vj , then p always checks first on the i-th node in layer
Vj+1, which is consistent with property Me0 of graph G.
This implies that if a process p is fast, then it traverses all
the layers and updates the register A[p] as a first thing to do
regarding the array A, which is a natural priority. Process p
completes its traversal when its completion bit in layer V0

is set to 1. Then it sets the global flag to 1 and halts.

Theorem 5.1. The algorithm Layered-Write performs
work O(n log18 n/(log log n)3).

A proof of Theorem 5.1 is given in Section 6.

Explicit version of the algorithm. An instantiation
of the algorithm is explicit when we use an explicit multi-
expander. To this end take the one described in Section 4.
The complexity of this algorithm will increase by the fac-

tor (2O(log3 log n))5 = 2O(log3 log n), if the formula O(nD3δ5)
is applied to estimate the work. This is because the de-
gree of the explicit multi-expander is by this factor bigger
than the one in the existential multi-expander, while D is
O(log n/ log log n).

Corollary 5.2. There is an explicit instantiation of al-
gorithm Layered-Write for n processes which performs

work n · 2O(log3 log n).

6. ANALYSIS OF THE ALGORITHM
Nodes in every layer Vj of multi-expander G are ordered,

where this ordering is the one used to state the property
Me0. Let v(i, j) denote the i-th node in layer Vj . We say
that a node w in G is checked if there is value 1 written
in it, otherwise it is void. Initially all nodes are void. For
a node v ∈ Vj , for some layer number 0 ≤ j < D, the
progress graph rooted at v is a graph induced by the nodes

in P(p, v) =
SD

j′=j+1(N
j′−j(v) ∩ Vj′).

Lemma 6.1. The algorithm is correct and each process
performs O(n) steps by its termination.

We partition the trace into consecutive segments. The
position when the i-th segment ends is denoted by τi. The
sequence of positions 〈τi〉i≥0 is defined inductively as follows.
The position τ0 is set to 0. Suppose that we have the i-th
segment already defined, by some position τi. For each posi-
tion µ > τi, and every k such that 0 ≤ k ≤ D−1, consider a
set A(k, µ) consisting of these processes that perform at least
12 dn

δk−3 and less than 12 dn
δk−4 steps each after position τi and

up to the position µ. Let A(0, µ) be a set consisting of these
processes that perform at least 12dnδ3 steps each by posi-
tion µ. Define τi+1 to be the minimum position µ after τi

such that |A(k, µ)| ≥ δk, for some 0 ≤ k ≤ D − 1. Accord-
ingly, for every such a segment i + 1, we define a set Pi+1

to be the set A(k, τi+1), where k is the biggest index such
that 0 ≤ k ≤ D − 1. Note that it always exists provided
position τi+1 exists, by the definition of τi+1. If the former
case applies, then Pi+1 is of the size δk, for 0 ≤ k ≤ D − 1,
and the (i + 1)-st segment is said to be k-dense.

Lemma 6.2. The segments are well defined, and at most
O(nDδ5) steps are performed during one segment, for all
sufficiently large n.

Consider the first D2 segments. There must be a num-
ber `, for 0 ≤ ` ≤ D − 1, such that there are at least D
`-dense segments among the considered ones. If ` = 0 has
this property, then by definition of 0-dense segment some
process performs 12dnδ3 steps, and during them it also per-
forms all tasks in the worst case, unless it learns earlier that
some of them are completed, and sets the global flag to 1.
Hence the algorithm performs work O(nDδ5) by Lemma 6.2.

Next suppose that the number ` with the property is at
least 1. Consider only the first D among the `-dense seg-
ments, and, for the sake of simplicity of notation, assume
that they are numbered from 1 to D, although such segments
do not need to cover a contiguous region. Let U(i, j) denote

a set of nodes in layer Vj which are void at the end of the
ith k-dense segment. Denote by c the number c = 12n/δ`−3,
which is the minimum number of traversing steps performed
by a process associated with the considered segment, that
is, a process in Pr, where r is the position of the segment.
The following i-invariant holds for 1 ≤ i < `:

|U(i, j)| ≤ 4n/(δj−D+iε), for every D − i + 1 ≤ j ≤ D (1)

It can be shown by induction on i using the following fact:

Lemma 6.3. Let S ⊆ V`−i and S′ ⊆ S be of a size at least
|S|/2, while U ⊆ Vj is of a size at most 4n/(δj−D+i−1ε), for
D − (i − 1) + 1 ≤ j ≤ D. Then there is a set S′′ ⊆ S′ of a
size at least |S′|(1− 1/δ) such thatX

v∈S′′

|N j−(`−i)(v) ∩ U | ≤ 28nδ2/ε .

Concluding the analysis. We apply the invariant (1) for
i = ` − 1. Note that ` − 1 < D, hence the `-th `-dense
segment is among the first D `-dense segments and among
the first D2 segments.

Consider the `-th `-dense segment and a set R containing
δ` processes p such that p performs at least c steps during
the considered segment, which exists by the definition of a
`-dense segment. Let S be the set

S
p∈R{v(p, 0)}, and let

R∗ be a set of these processes p ∈ R that traverse the whole
progress graph rooted in v(p, 0) during the first c steps of
the considered segment. Let S∗ =

S
p∈R{v(p, 0)} be the set

of nodes corresponding to the processes in R∗.
Let ∆ be the maximum degree of a node in graph G.

From the proof of Theorem 4.1, we have that ∆ ≤ 5δ log n.
Moreover, each node v in G has exactly δ neighbors in the
next layer, and exactly δ neighbors in the previous layer,
except for the nodes in layer V0 that may have at most ∆
neighbors in layer V1 and the nodes in layer V1 that may
have at most ∆ neighbors in layer V0.

Apply Lemma 6.3 to the layers from D− (`− 1) + 1 to D

and obtain that there is a set Ŝ ⊆ S of a size at least |S|(1−
1/δ)`+1 > |S|/2 such that the number of void nodes in Ŝ at
the beginning of the considered segment is at most

DX
j=D−(`−1)+1

X
v∈Ŝ

|N j(v) ∩ U | ≤ (` + 1) · 28n∆δ/ε ,

where U here denotes the set of void nodes at the begin-
ning of the considered segment in the layers from VD−(`−1)+1

to VD. Consequently, the set Ŝ∗ ⊆ Ŝ of nodes v such that the
progress graph rooted at v contains at most c/4 = 3n/δ`−3

void nodes in the layers from D − (i − 1) + 1 to D at the
beginning of the considered segment is nonempty. Indeed,
otherwise the number of void nodes would be at least

|S \ (Ŝ ∩ S∗)| · 3n/δ`−3 ≥ δ` · 3n/δ`−3 > (` + 1) · 28n∆δ/ε,

for a sufficiently large constant b = δ/ log3 n, say for b > 10.

Similarly Ŝ∗ ⊆ S∗, which implies that S∗ is nonempty.
Each process p ∈ S∗ has traversed all nodes in the progress

graph rooted at v(p, 0). This is the progress graph P(p),
which by property Me2 contains all nodes in layer VD. Dur-
ing the first D2 segments in execution the global flag is set
to 1 and all processes halt. By Lemma 6.2, the total work
during these D2 segments is O(nD3δ5), for δ = O(log3 n)
and D = O(logδ n) = O(log n/ log log n).

This completes the proof of Theorem 5.1.

7. DISCUSSION
It remains an open problem to find an explicit solution to

Write-All with bound O(n polylog n) on its work.
Algorithm Layered-Write can be implemented as a ran-

domized one, by selecting a connector at random in the
beginning of an execution. This algorithm performs work
O(n polylog n) with a large probability against the strongest
adaptive adversary who knows all random bits prior to the
start of an execution. Previously given randomized solutions
were analyzed only against a weaker oblivious adversary.

Write-All has been abstracted and studied because this
primitive can be applied in simulations of a PRAM on weaker
variants, say, those allowing process crashes. Then Write-
All is applied iteratively, and the next iteration imposes
the reversed roles for the auxiliary memory and the reg-
isters to be updated. For this not to incur an additional
overhead, the capacities of dedicated and auxiliary mem-
ory need to be comparable. The solution we describe uses
Θ(nD) = Θ(n log n/ log log n) auxiliary memory cells. To
adapt this to O(n) registers of a size O(log n) each, partition
the dedicated registers into groups of size D each, and treat
them as individual registers for the purpose to build a multi-
expander graph. Each process updates the whole group of
registers as a single task. This results in work performance
increased by a factor of only D = O(log n/ log log n).

8. REFERENCES
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,

and N. Shavit, Atomic snapshots of shared memory,
Journal of the ACM, 40 (1993) 873 - 890.

[2] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts, A
theory of competitive analysis of distributed
algorithms, in Proc., 33rd IEEE Symposium on
Foundations of Computer Science (FOCS), 1994, pp.
401 - 411.

[3] N. Alon, and J.H. Spencer, “The Probabilistic
Method,” 2nd ed., J. Wiley, New York, 2000.

[4] R.J. Anderson, and H. Woll, Algorithms for the
certified write-all problem, SIAM Journal on
Computing, 26 (1997) 1277 - 1283.

[5] J. Aspnes, and M. Herlihy, Wait-free data structures
in the asynchronous PRAM model, in Proc., 2nd
ACM Symposium on Parallel Algorithms and
Architectures (SPAA), 1990, pp. 340 - 349.

[6] J. Aspnes, and W. Hurwood, Spreading rumors
rapidly despite an adversary, Journal of Algorithms,
26 (1998) 386 - 411.

[7] J. Buss, P.C. Kanellakis, P.L. Ragde, and
A.A. Shvartsman, Parallel algorithms with processor
failures and delays, Journal of Algorithms, 20 (1996)
45 - 86.

[8] M. Capalbo, O. Reingold, S. Vadhan, and A.
Wigderson, Randomness conductors and
constant-degree lossless expanders, in Proc., 34th
ACM Symposium on Theory of Computing (STOC),
2002, pp. 659 - 668.

[9] B.S. Chlebus, S. Dobrev, D.R. Kowalski, G. Malewicz,
A.A. Shvartsman, and I. Vřto, Towards practical
deterministic write-all algorithms, in Proc., 13th ACM
Symposium on Parallel Algorithms and Architectures
(SPAA), 2001, pp. 271 - 280.

[10] B.S. Chlebus, D.R. Kowalski, and A. A. Shvartsman,

Collective asynchronous reading with polylogarithmic
worst-case overhead, in Proc., 36th ACM Symposium
on Theory of Computing (STOC), 2004, pp. 321 - 330.

[11] F. Fich, The complexity of computing on a parallel
random access machine, in J. Reif, editor, “Synthesis
of Parallel Algorithms,” Morgan Kaufmann, San
Mateo, CA, 1993.

[12] P.C. Kanellakis, and A.A. Shvartsman, Efficient
parallel algorithms can be made robust, Distributed
Computing, 5 (1992) 201 - 217.

[13] P.C. Kanellakis, and A.A. Shvartsman,
“Fault-Tolerant Parallel Computation,” Kluwer
Academic, New York, 1997.

[14] Z.M. Kedem, K.V. Palem, A. Raghunathan, and
P. Spirakis, Combining tentative and definite
executions for dependable parallel computing, in
Proc., 23rd ACM Symposium on Theory of Computing
(STOC), 1991, pp. 381 - 390.

[15] D.R. Kowalski, and A.A. Shvartsman, Writing-all
deterministically and optimally using a non-trivial
number of asynchronous processors, in Proc., 16th
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2004, pp. 311 - 320.

[16] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan
graphs, Combinatorica, 8 (1988) 261 - 277.

[17] N.A. Lynch, “Distributed Algorithms,” Morgan
Kaufmann, San Mateo, CA, 1996.

[18] G. Malewicz, A method for creating near-optimal
instances of a certified write-all algorithm, in Proc.,
11th European Symposium on Algorithms (ESA),
2003, pp. 422 - 433.

[19] G. Malewicz, A work-optimal deterministic algorithm
for the asynchronous certified write-all problem, in
Proc., 22nd ACM Symposium on Principles of
Distributed Computing (PODC), 2003, pp. 255 - 264.

[20] C. Martel, and R. Subramonian, On the complexity of
certified write-all algorithms, Journal of Algorithms,
16 (1994) 361 - 387.

[21] N. Pippenger, Sorting and selecting in rounds. SIAM
Journal on Computing, 16 (1987) 1032–1038.

[22] O. Reingold, S.P. Vadhan, and A. Wigderson, Entropy
waves, the zig-zag graph product, and new
constant-degree expanders and extractors, Annals of
Mathematics, 155 (2002) 157 - 187.

[23] M. Saks, N. Shavit, and H. Woll, Optimal time
randomized consensus - making resilient algorithms
fast in practice, in Proc., 2nd SIAM–ACM Symposium
on Discrete Algorithms, (SODA), 1991, pp. 351 - 362.

[24] M. Santha, On using deterministic functions in
probabilistic algorithms, Information and
Computation, 74 (1987) 241 - 249.

[25] M. Sipser, Expanders, randomness, or time vs. space,
Journal of Computer and System Sciences, 36 (1988)
379 - 383.

[26] A. Ta-Shma, C. Umans, and D. Zuckerman, Loss-less
condensers, unbalanced expanders, and extractors, in
Proc., 33rd ACM Symposium on Theory of Computing
(STOC), 2001, pp. 143–152.

[27] A. Wigderson, and D. Zuckerman, Expanders that
beat the eigenvalue bound: explicit construction and
applications, Combinatorica, 19 (1999) 125 - 138.

