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Abstract. Recently, several different approaches for digital inpainting
have been proposed in the literature. We give a review and introduce a
novel approach based on the complex Ginzburg–Landau equation. The
use of this equation is motivated by some of its remarkable analytical
properties. While common inpainting technology is especially designed
for restorations of two dimensional image data, the Ginzburg–Landau
equation can straight forwardly be applied to restore higher dimensional
data, which has applications in frame interpolation, improving sparsely
sampled volumetric data and to fill in fragmentary surfaces. The latter
application is of importance in architectural heritage preservation. We
discuss a stable and efficient scheme for the numerical solution of the
Ginzburg–Landau equation and present some numerical experiments. We
compare the performance of our algorithm with other well established
methods for inpainting.

Keywords: Ginzburg–Landau equation, inpainting, diffusion filtering,
non–linear partial differential equations, variational problems

1 Introduction

Inpainting is the process of restoration of missing image data; it is typically done
by artists. Digital Inpainting is performed by computers requiring the user only
to mark areas to be inpainted in a digitized image. Digital inpainting has several
applications in photography [1], such as scratch removal or retouching. Combin-
ing inpainting algorithms with scratch detection algorithms (see e.g. [2] and the
references therein) allows to almost automatically restore large sets of degraded
images or even complete movies. A difficulty associated with digital inpainting
is to set up a measure of visual sensitivity towards defects which can be used
in computer code. An attempt in this direction is the perceptually based phys-
ical error metric introduced by Ramasubramanian, Pattanaik and Greenberg
[3]. Today, the common opinion is that the human perceptual system is more
sensitive to edges than to texture and most sensitive to junctions; see Caselles,
Coll and Morel [4] as a paradigm of this statement in the computer science and
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mathematical literature. As a consequence a good inpainting algorithm should
connect corresponding edges and extrapolate textures smoothly.

In the following we survey some recently proposed inpainting methods based
on level line strategies, partial differential equations (PDEs) and variational
methods. These methods are most relevant for a comparison with our work.
Other topics related to image inpainting such as texture synthesis with statisti-
cal methods (see e.g. [5,6] and references therein) and image interpolation with
sampling methods (see e.g. [7,8]) are not considered in this paper.

– An inpainting algorithm based on level lines has been proposed by Masnou
and Morel [9,10]. It consists of several stages:
1. All T–junctions — that are points where level lines hit the boundary of

the inpainting domain — are tabulated.
2. A table of pairs of compatible T–junctions is generated. Two T–junctions

are compatible, if their associated level lines belong to the same grey level
intensity and have the same orientation.

3. From the set of candidates of level lines connecting compatible T–junc-
tions, the one having the lowest total generalized elastica energy

∑ ∫
Li,j

(α+ β|κ|p)ds

is selected. Here Li,j denotes the level line connecting the T–junctions
with the indices i and j, and the sum is with respect to all level lines.
For convex inpainting domains these are just straight lines.

The algorithm is computationally expensive: a triangulation of the inpaint-
ing domain has to be calculated and an optimal set of level lines out of all
possible connections has to be found. Combination with a dynamic program-
ming approach and sorting out inadmissible connections at an early stage
keeps runtime complexity relatively low. The implementation presented in [9]
does not allow inpainting domains with holes (doughnut shaped inpainting
domains).

– Ballester et.al. [11] have proposed a variational method for inpainting. They
derive a system of coupled PDEs to extrapolate grey level values and the
gradient direction vector field smoothly into the inpainting domain. The
system of PDEs is solved using level sets of the image intensity function.
This makes the numerical results depend on implementational details, in
particular the order in which the level sets are processed (cf. figure 6).

– Bertalmio et.al. [12] introduced an algorithm which imitates the work of
manual inpainting of artists. The process is heuristically designed such that
an “image smoothness measure” (in their case the image Laplacian) is con-
stantly propagated along the level line direction into the inpainting do-
main. Numerically, their algorithm corresponds to an explicit finite difference
scheme for the partial differential equation

∂u

∂t
= |∇u|

(
∇∆u · ∇⊥u

|∇⊥u|
)
.
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Here ∇u =
(

∂u
∂x1

, ∂u
∂x2

)
denotes the gradient, ∇⊥u =

(
− ∂u

∂x2
, ∂u

∂x1

)
denotes

the vector orthogonal to the gradient, and |·| denotes the Euclidean distance.
To stabilize the explicit scheme it is combined with a nonlinear diffusion
filtering technique for u in the inpainting domain. Bertalmio, Bertozzi and
Sapiro [13] have extended this work and embedded the algorithm into a
framework of the Navier–Stokes equations.

– Chan and Shen [14,15] use TV–inpainting and solve the differential equation

∂u

∂t
= ∇ ·

( ∇u
|∇u|

)
+ λe

(
u0 − u

)
(1)

up to a stationary point. Here λe is an a–priori defined positive function
which is zero on the domain to be inpainted. Outside the inpainting domain
this equation denoises the image and thus makes the algorithm robust to
noise. The inpainted image is composed from the stationary function in the
inpainting domain and by the initial image u0 outside.
Since this TV–inpainting fails to connect long thin structures Chan and Shen
[15] propose to replace the diffusion term in (1) by ∇ ·

(
g(|κ|)
|∇u| ∇u

)
, where

κ denotes the curvature of u. This results in an inhomogeneous third order
partial differential equation with forcing term λe

(
u0 − u

)
.

In [16] Chan and Shen develop an inpainting algorithm based on connecting
appropriate level lines by Euler elastica curves. Formulated as a fourth order
PDE in terms of the image function u, this algorithm turns out to be a
generalization of TV–inpainting and Bertalmio’s algorithm, containing both
of them as special cases if the involved parameters are set appropriately.

– Esedoglu and Shen [17] combine the Euler elastica functional and the
Mumford–Shah functional to derive a fourth order PDE which concurrently
does inpainting, denoising and segmentation of the image.

– Oliveira et.al. [18] propose an inpainting algorithm optimized for speed. It
consists in repeatedly convolving an arbitrary continuation of u0 in the in-
painting domain with a filter mask. The inpainted image is composed from
the convolved image in the inpainting domain and by u0 outside. This solu-
tion behaves very similar to the solution of the linear diffusion equation on
the inpainting domain with Dirichlet boundary conditions u0. As it is well
known, linear diffusion tends to blur edges, unless the user manually sup-
plies additional information, e.g. an a–priori segmentation of the inpainting
domain.

2 The Ginzburg–Landau Equation

2.1 Motivation

The Ginzburg–Landau equation was originally developed by Ginzburg and Lan-
dau [19] to phenomenologically describe phase transitions in superconductors
near their critical temperature. The equation has proven to be useful in sev-
eral distinct areas besides superconduction. It is used to model some types of
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chemical reactions like the famous Belousov–Zhabotinsky reaction, to describe
boundary layers in multi–phase systems, and to describe the development of
patterns and shocks in non–equilibrium systems (see [20,21,22] and references
therein).

Solutions of the real valued Ginzburg–Landau equation develop homogeneous
areas, which are separated by phase transition regions, that are interfaces of
minimal area, see the comments following equation (6). In image processing
homogeneous areas correspond to domains of constant grey value intensities,
and phase transitions to edges. Thus the quoted properties make the real valued
Ginzburg–Landau equation a reasonable method for high quality inpainting of
binary images.

2.2 Physical Foundations of the Ginzburg–Landau Equation

Investigating the thermodynamic potential of superconductors Ginzburg and
Landau derived the following approximation for the corresponding energy func-
tional, depending on the order function u : Ω → C :

F (u,∇u) :=
1
2

∫
Ω

| − i∇u|2︸ ︷︷ ︸
kinetic term

+α|u|2 +
β

2
|u|4︸ ︷︷ ︸

potential term

(2)

where α and β are physical constants. For a nontrivial minimizer to exist α < 0
and β > 0 is necessary. The factor ‘−i’ in the kinetic term is a holdover from
quantum mechanics and is not essential. The state of minimal energy satisfies
the Euler equation of F (u,∇u):

δF

δu
:= ∆u+

1
ε2

(
1 − |u|2)u = 0 . (3)

The equation has been rescaled such that the minima of the potential term
function are attained at the sphere |u| = 1, which corresponds to the choice
α = − 1

ε2 and β = −α.
In physics ε is called the coherence length and correlates to the width of the

transition region, that is the width of the transient separating different phases.
This can be highlighted in the case when the order function u is one–dimensional
and real valued, u : R → R, satisfying the boundary condition lim

x→±∞u(x) = ±1.

In this case an analytical formula for the solution of (3) can be given:

u(x) =
e

√
2

ε x − 1

e
√

2
ε x + 1

. (4)

In figure 1 we have plotted u(x) corresponding to different values of ε. It can be
realized that the width between the phases ±1 is approximately 4ε. For ε ↘ 0,
u(x) approaches the Heaviside function.
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Fig. 1. Solutions of the one–dimensional real valued Ginzburg–Landau equation for
ε = 1, 0.5, 0.1

2.3 Algorithm

In the following we describe the use of the Ginzburg–Landau equation for image
inpainting of grey valued images. To this end we solve the complex Ginzburg–
Landau equation on the inpainting domain with appropriate boundary data
related to the input data.

Preparations. Let D be the domain of the image, usually a rectangular subset
of R

2. The inpainting domain is denoted by Ω; we assume that it is an open
subset of D.

Let u0 : D → [−1, 1] be the grey–value intensity of an image scaled to
the interval [−1, 1]; the values −1 and 1 correspond to pure white and black,
respectively. The function u0 is identified with the real part of a complex valued
function u0 : D → C by selecting the imaginary part as

�(u0) =
√

1 − (�(u0)
)2
.

such that |u0(x)| = 1 for all x ∈ D.
A complex valued solution u of (3) will still have an absolute value of 1 al-

most everywhere but our inpainting (the real part of the solution) may contain
any value from the interval [−1, 1]. Note that the complex Ginzburg–Landau
equation can be considered a system of partial differential equations. Substitut-
ing back the solution for the imaginary component into the equation for the real
component, we obtain a fourth order equation for the real part.

A common approach to inpaint color images, respectively vector valued im-
ages, is to inpaint the (color) components separately. In real world images the
color components are typically not independent and a separation approach may
lead to artifacts, like spurious colors or rainbow effects. The structure of equa-
tion (3) can formally be generalized to vector valued functions u : D → C

n in
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a straight forward way by replacing the Euclidean distance in (3) by an appro-
priate norm ‖ · ‖ on C

n. For RGB color images we found the maximum norm of
the RGB–components to be most appropriate:

‖u(x)‖ := max{|u1(x)|, |u2(x)|, |u3(x)|} .

Note that with this setting the differential equation (3), where | · | is replaced by
‖ · ‖, cannot be derived from a variational principle.

Now the problem of inpainting consists in finding u : Ω → C (resp. C
3 for

color images) which satisfies equation (3) and the Dirichlet boundary condition
u|∂Ω = u0|∂Ω .

Solving the Equation. To find a solution of equation (3) with Dirichlet bound-
ary condition numerically we use a relaxation method (i.e. a steepest descent
method) and solve the differential equation

∂u

∂t
= ∆u+

1
ε2

(
1 − |u|2)u (5)

up to a stationary point in time.
The reaction–diffusion type equation (5) with real valued u is a variant of

the Allen–Cahn equation
ut = ∆u+ ψ′(u). (6)

According to [23] equation (6) is called Ginzburg–Landau equation if u is vector
valued or complex and the potential ψ(u) has a stable minimum for |u| = 1,
which is true in our case. In [23] equation (5) with real valued scalar u is used to
approximate mean curvature motion. For every ε there exists a unique bounded
solution, which — in the limit ε ↘ 0 — consists of sets where either u = +1
or u = −1 and the interface moves according to mean curvature motion. A lot
of mathematical theory about this matter is available, see [23] and references
therein. Much less is known though when u is complex or vector valued. A
comprehensive study for u : R

2 → C is given in [24].
To numerically integrate equation (5) we use an explicit, forward in time,

finite difference scheme (see e.g. [25]). While irregular inpainting domains (which
appear in text and scratch removal applications, cf. figures 2 and 3) can easily be
handled with explicit schemes, the matrix equations to be solved with implicit
schemes do not reveal regular structures, are difficult to set up numerically, and
cannot be solved efficiently.

In the case of rectangular inpainting domains we have been able to com-
pare the explicit finite difference method with an implicit nonlinearity lagging
scheme [26], as well as semi–implicit techniques, such as Peaceman–Rachford
[26], or a semi–implicit Fourier–spectral method [27], and found that for ε � 1
these methods did not give any obvious advantage concerning stability and com-
putation time. This observation is in accordance with [28] where it is argued
(though not rigorously proven) that even for implicit schemes a timestep restric-
tion δt < O(ε2) is necessary.
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Fig. 2. The painting “Holy Family” from Michelangelo with scratches (top left). The
scratches have been inpainted with the plain Ginzburg–Landau algorithm (bottom left).
The picture shows the result of the same algorithm interleaved with some steps of
coherence enhancing diffusion (bottom right). Detailed views of the red framed parts
are compared (top right)

Fig. 3. Lenna inpainting
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Discretizing (5) in space and time, the explicit finite difference method has
the following form:

ut+1
i,j = ut

i,j + δt ·
(
∆ut

i,j +
1
ε2

(
1 − ‖ut

i,j‖2)ut
i,j

)
(7)

where
∆ui,j = ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j .

Here ui,j denotes the color vector intensity at the pixel point (i, j). As initial
value we set u0|Ω = 0. Equation (7) has been rescaled to get rid of the influence
of space discretization. According to what was said before we have to choose a
timestep δt < ε2, which in particular shows that the time steps have to be ex-
tremely small for ε � 1, which is required for high contrast inpainting purposes.
The iteration process (7) is stopped at time t if

max
i,j

{|ut
i,j − ut−1

i,j |}

drops below a certain threshold.

Postprocessing. The solution of the Ginzburg–Landau equation reveals high
contrast in the inpainting domain, which makes it particularly suited for inpaint-
ing purposes. However, the level lines of the solution of the Ginzburg–Landau
equation at the boundary of the inpainting domain might look kinky. In general
this cannot be considered a bad habit as figure 4 shows, but in certain pictures
(for instance in artistic drawings) this may look disturbing. For such applications
we suggest to apply a couple of coherence enhancing diffusion steps (see e.g. [29])
to steer the direction of inpainting. In figure 2 we have inpainted a scratched
digitized painting by Michelangelo. The inpainting with the Ginzburg–Landau
equation is of high contrast, but the level lines look kinky as the enlargements
of details in figure 2 show. The kinks can be smoothed via coherence enhancing
diffusion.

2.4 Three Dimensional Inpainting

The Ginzburg–Landau equation can be generalized to any number of space di-
mension. Thus in particular it can be applied to inpaint three dimensional grey
valued image intensity functions u : R

3 → R; for example allowing optical im-
provement of sparsely sampled data or frame interpolation (treating a movie as
a stack of images). The generalization for inpainting of three dimensional vector
valued data (e.g. color images) is straight forward.

Inspired by the work of Davis et. al. [30] we also applied our algorithm for
completion, respectively continuation, of 2D–surfaces, which are represented as
zero level sets of auxiliary functions u : R

3 → R. A typical settings for the
auxiliary function is the signed distance function to the surface or by setting
u = ±1 on opposite sides of the surface. Then the inpainting algorithm is applied
to a volume containing the missing parts of the surface. The missing surface
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Fig. 4. A corner of the cube was manually cut out (left). The completion attained
from the linear diffusion equation resembles a membrane stretched across the edges
(middle). With the Ginzburg–Landau equation a perfect corner is achieved (right)

is completed by the zero level set of the solution. We view an example of our
algorithm applied to a synthetic three dimensional object in figure 4. The missing
corner of the cube was manually cut out. The middle picture shows the result of
surface completion using the linear diffusion equation for inpainting. As expected
the resulting surface looks like a membrane stretched over the existing edges.
In contrast the Ginzburg–Landau inpainting algorithm develops a hard corner.
It depends on the individual application whether one prefers smooth and soft
surfaces or hard edges and corners. By tuning the value of ε Ginzburg–Landau
inpainting allows the user to choose any degree of “smoothness”.

A more realistic application is shown in figure 5 where a hole in the left
cheekbone has been filled. Using this kind of processing for medical data is
quite dangerous but could be useful for refinement of data obtained in heritage
recording projects [31].

3 Results and Conclusion

Results of our inpainting algorithm for text removal are presented in figure 3.
In the Lenna picture 28779 pixels (which is about 11% of the image) have been
overdrawn with white color. The inpainting was finished within a few seconds
on a 1.5 GHz Pentium 4 PC running unoptimized C++ code under Linux. On
a first look no visual deficiencies can be seen in the inpainted image. Closer
examination reveals some fringes and kinks, most notable at the bottom edge of
the hat. Combination with a couple of coherence enhancing diffusion steps (cf.
subsection “Postprocessing” in section 2.3) can reduce these disturbing effects.

Further numerical experiments have shown that best results are obtained for
locally small inpainting areas which makes our approach well suited for removing
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Fig. 5. The hole in the cheekbone has been filled

cracks or superimposed texts. By locally small we mean that the Hausdorff
distance between Ω and ∂Ω

d(Ω) = sup
x∈Ω

inf
y∈∂Ω

(|x− y|)

is smaller than the typical size of the image structures in the surrounding of Ω.
This is intuitive since the intensity information can only be extended “reliably”
from a given pixel into a small neighborhood. The inpaintings produced with
the algorithms outlined in this paper differ by the contrast. Some reveal blurry
inpainting away from the boundary like the Gaussian heat flow. The approach of
Masnou & Morel produces high contrast inpaintings with straight or polygonal
level lines, thus revealing artifical (desired or not) kinks. Our approach produces
high contrast inpaintings as well. Using the parameter ε > 0 we are able to
compromise between blurry and high contrast models, which can be used to
weaken the visibility of unwanted kinks.

Our approach, as well as the inpainting algorithms outlined in section 1,
is not applicable to inpaint textured regions. In such cases texture synthesis
or combined texture–synthesis/inpainting algorithms are more appropriate, see
[32] and references therein. See also [33] for a short comparison between local
inpainting and texture synthesis approaches.

To juxtapose the results of the Ginzburg–Landau equation we discuss a fre-
quently cited example in the area of inpainting: how should the noisy area in the
first image of figure 6 be filled? There are many reasonable inpaintings since it is a
synthetic image allowing no intuitive interpretation. Level line based algorithms
are usually designed to establish short and smooth connections. Depending on
the concrete numerical implementation the level set method automatically se-
lects either the third or the fourth picture — the level set formulation itself does
not have the information which inpainting to choose. From a mathematical point
of view the Ginzburg–Landau inpainting (second picture) is most appropriate
to retain the symmetry of the initial image.
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Fig. 6. Ambiguous example: (first picture) the noisy area should be inpainted, (sec-
ond picture) inpainting via the Ginzburg–Landau algorithm, (third and fourth picture)
inpainting via level set algorithm

Acknowledgement

This work is supported by the Austrian Science Fund (FWF), grant Y–123 INF.

References

1. Lückenfüller und Farbmischer, Bildkorrekturverfahren: beim Menschen gelernt, c’t–
Magazin für Computer Technik, 24/2002, Heise Zeitschriften Verlag, Hannover,
p.190

2. L. Joyeux, O. Buisson, B. Besserer, S. Boukir, Detection and removal of line
scratches in motion picture films, Proceedings of CVPR’99, IEEE Int. Conf. on
Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, June
1999

3. M. Ramasubramanian, S. Pattanaik, D. Greenberg, A Perceptually Based Phys-
ical Error Metric for Realistic Image Synthesis, Proceedings of SIGGRAPH 99.
In Computer Graphics Proceedings, Annual Conference Series, 1999, ACM SIG-
GRAPH, p.73–82

4. V. Caselles, B. Coll, J. Morel, A Kanizsa programme, Progress in Nonlinear Dif-
ferential Equations and their Applications, Vol. 25, p.35–55, 1996

5. A.A. Efros and T.K. Leung, Texture synthesis by non–parametric sampling, Pro-
ceedings of the Seventh International Conference on Computer Vision, Corfu,
Greece, 1999

6. H. Igehy, L. Pereira, Image Replacement through Texture Synthesis, Proceedings of
the 1997 IEEE International Conference on Image Processing

7. M. Unser, Sampling–50 years after Shannon, Proceedings of the IEEE, vol. 88, no.
4, p.569–587, April 2000

8. P. Thenaz, T. Blu, M. Unser, Handbook of Medical Imaging, Processing and Anal-
ysis, I.N. Bankman, Ed., Academic Press, San Diego CA, USA, p.393–420, 2000

9. S. Masnou, Disocclusion: A Variational Approach Using Level Lines, IEEE Trans-
actions on Signal Processing, 11(2), February 2002, p.68–76

10. S. Masnou, J.-M. Morel, Level Lines based Disocclusion, Proceedings of the 1998
IEEE International Conference on Image Processing, p.259–263

11. C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, J. Verdera, Filling–In by Joint
Interpolation of Vector Fields and Gray Levels, IEEE Transactions on Signal Pro-
cessing, 10(8), August 2001, p.1200–1211



236 Harald Grossauer and Otmar Scherzer

12. M. Bertalmio, G. Sapiro, C. Ballester, V. Caselles, Image inpainting, Computer
Graphics, SIGGRAPH 2000, July 2000

13. M. Bertalmio, A. Bertozzi, G. Sapiro, Navier–Stokes, Fluid Dynamics, and Image
and Video Inpainting, IEEE CVPR 2001, Hawaii, USA, December 2001

14. T. Chan, J. Shen, Mathematical Models for Local Nontexture Inpaintings, SIAM
Journal of Applied Mathematics, 62(3), 2002, p.1019–1043

15. T. Chan, J. Shen, Non–Texture Inpainting by Curvature–Driven Diffusions (CDD),
Journal of Visual Communication and Image Representation , 12(4), 2001, p.436–
449

16. T. Chan, S. Kang, J. Shen, Euler’s Elastica and Curvature Based Inpainting, SIAM
Journal of Applied Mathematics, 63(2), pp. 564–592, 2002

17. S. Esedoglu, J. Shen, Digital Inpainting Based on the Mumford–Shah–Euler Image
Model, European Journal of Applied Mathematics, 13, pp. 353-370, 2002

18. M. Oliveira, B. Bowen, R. McKenna, Y. Chang, Fast Digital Inpainting, Proceed-
ings of the International Conference on Visualization, Imaging and Image Process-
ing (VIIP 2001), Marbella, Spain, pp. 261–266

19. L. Landau, V. Ginzburg, On the Theory of Superconductivity, Journal of Experi-
mental and Theoretical Physics (USSR), 20 (1950), p.1064

20. M. Ipsen, P. Sorensen, Finite Wavelength Instabilities in a Slow Mode Coupled
Complex Ginzburg–Landau Equation, Physical Review Letters, Vol. 84/11, p.2389,
2000

21. M. van Hecke, E. de Wit, W. van Saarloos, Coherent and Incoherent Drifting Pulse
Dynamics in a Complex Ginzburg–Landau Equation, Physical Review Letters, Vol.
75/21, p.3830, 1995

22. T. Bohr, G. Huber, E. Ott, The structure of spiral–domain patterns and shocks in
the 2D complex Ginzburg–Landau equation, Physica D, Vol. 106, p.95–112, 1997

23. L. Ambrosio, N. Dancer, Calculus of Variations and Partial Differential Equations,
Springer Verlag
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