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Abstract—We define and study capacity regions for wireless ad
hoc networks with an arbitrary number of nodes and topology.
These regions describe the set of achievable rate combinations
between all source-destination pairs in the network under various
transmission strategies, such as variable-rate transmission,
single-hop or multihop routing, power control, and successive
interference cancellation (SIC). Multihop cellular networks and
networks with energy constraints are studied as special cases.
With slight modifications, the developed formulation can handle
node mobility and time-varying flat-fading channels. Numerical
results indicate that multihop routing, the ability for concurrent
transmissions, and SIC significantly increase the capacity of ad
hoc and multihop cellular networks. On the other hand, gains
from power control are significant only when variable-rate
transmission is not used. Also, time-varying flat-fading and node
mobility actually improve the capacity. Finally, multihop routing
greatly improves the performance of energy-constraint networks.

Index Terms—Ad hoc, capacity region, energy constraints, flat
fading, mobility, multihop cellular, multihop routing, wireless.

I. INTRODUCTION

W IRELESS networks consist of a number of nodes com-
municating over a wireless channel. Depending on their

architecture, they can be roughly divided in two categories. In
those following thecellular paradigm, all nodes communicate
directly with a base stations that are responsible for controlling
all transmissions and forwarding data to the intended users. In
those following thead hocparadigm, all nodes have the same
capabilities and responsibilities. Two nodes wishing to commu-
nicate can either do so directly, if possible, or route their data
through other nodes. Our work deals with this second type of
networks.

The nature of the wireless channel, the lack of synchroniza-
tion, and also the lack of any predetermined topology creates
many challenging research topics in the area of ad hoc net-
works [1], [2]. Traditionally, research has been concentrated
on random access [3]–[9], transmission scheduling [10], and
routing [11], [12]. Networks with energy constraints are also
being studied [13], [14].

Lately, there has also been work on determining the capacity
of ad hoc networks. In a recent landmark paper [15], the authors
derived lower and upper bounds on the performance of a class
of networks in the limit of a large number of nodes, in terms
of a single figure of merit, the maximum uniformly achievable
communication rate between all nodes and their selected desti-
nations. In this work, we define and investigate capacity regions
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for ad hoc networks with any number of nodes. These multidi-
mensional regions are more descriptive, since they contain all
achievable combinations of rates between the network nodes
under various transmission protocols.

The Shannon capacity region of ad hoc networks remains an
open problem, so our capacity regions only define the maximum
achievable rates under specific transmission protocols, which
may be suboptimal. However, our problem formulation allows
us to investigate the impact of different techniques on network
performance, including power control, multihop routing, spa-
tial reuse, successive interference cancellation (SIC) and vari-
able-rate transmission.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the system model. In Section III, we de-
fine rate matrices and capacity regions for ad hoc networks. In
Section IV, we define capacity regions for a sequence of five
transmission protocols of increasing sophistication, and study
them in the context of a random network topology. In Section V,
we discuss computational issues. In Section VI, we modify the
formulation to study multihop cellular networks and, in Sec-
tion VII, we extend the formulation to include the effects of
time-varying flat-fading and node mobility on the capacity of
the network. In Section VIII, we present another modification,
suitable for the study of energy-constrained networks. We con-
clude in Section IX. Throughout the paper, terms being defined
are set inboldface.

II. SYSTEM MODEL

Consider an ad hoc network withnodes .
Each node has a transmitter, a receiver, and an infinite buffer,
and wishes to communicate with some or all of the other nodes,
possibly by multihop routing. We assume that nodes cannot
transmit and receive at the same time. We also assume that nodes
do not wish to multicast information, so every transmission is
intended for a single node.

Node transmits at some fixed maximum powerand all
transmissions occupy the full bandwidth of the system. We
define as thepower vector. When
transmits, receives the signal with power , where
denotes the channel gain between nodesand . We define
thechannel gain matrix to be the matrix .
The elements along the diagonal are unimportant and are set
to . The receiver of each node is subject to thermal
noise, background interference from various noise sources such
as other networks, and interference from other users, where the
interference caused by to is also determined by the link
gain . We model thermal noise and background interfer-
ence jointly, as a single source of additive white Gaussian noise
(AWGN), with power spectral density for node . We define
thenoise vector .
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Let be the set of transmitting nodes at a given
time, each node transmitting with power . Let us assume
that node is receiving information from node

. Then thesignal-to-interference and noise ratio (SINR)at
node will be

(1)

We assume that varies the transmission rate based on
to meet a given performance metric. Specifically, nodesand

agree on a transmission rate where is a func-
tion that reflects the quality of the receiver and the performance
metric. For example, based on Shannon capacity, we can set

(2)

Under the Shannon assumption, bits transmitted over the link
are received with asymptotically small probability of error as
long as (2) holds. Alternatively, could be the maximum
data rate that satisfies a given BER requirement under a spe-
cific modulation scheme such as-array quadrature amplitude
modulation ( -QAM) [16]. Note that in (1), we treat all inter-
ference signals from other nodes as noise: this assumption will
be relaxed when we consider SIC.

We assume omniscient nodes with perfect knowledge of the
channel gain matrix ( ) and the noise ( ) and power ( ) vec-
tors. The transmission protocol for all nodes is agreed to in ad-
vance. Thus, no overhead is needed for nodes to determine,

, , or the transmission schedule.

III. RATE MATRICES AND CAPACITY REGIONS

In this section, we define the capacity region of a network
as a set of rate matrices. Rate matrices provide a mathematical
framework for describing the transmission schemes and time-
division schedules used by a network.

A. Transmission Schemes and Time-Division Schedules

A transmission scheme is a complete description of the
information flow between different nodes in the network at a
given time instant. Therefore, the transmission scheme at a given
time consists of all transmit–receive node pairs in operation at
that time and, for each of these pairs, the transmission rate and
the original source node of the transmitted information. Note
that we have assumed that nodes cannot transmit and receive
simultaneously, and that the rates used in a transmission scheme
are set to , so signals always meet their required
performance metric.

As an example, consider the network of Fig. 1 where the node
pairs , , , and can all com-
municate directly but the node pairs and
cannot, perhaps because of an obstruction along their line of
sight. Therefore, if wants to communicate with , it must
do so by forwarding data via intermediate nodes, and similarly
for traffic between nodes and . Two example schemes for
this network are and , depicted in Fig. 1(i) and (ii), respec-
tively. In , node sends its own information to node and
node sends its own information to node . As discussed, for

Fig. 1. Two transmission schemes for a network of four nodes. (i)S . (ii) S .
Transmit–receive node pairs in operation are connected by arrows. The node
whose information is being transmitted and the link transmission rate are shown
next to the link arrows. The rates are dictated by the SINR of each link and
functionf(�).

Fig. 2. Information flows for two time-division schedules that use the
schemes of Fig. 1. (i)T = 0:5S + 0:5S . (ii) T = 0:75S + 0:25S .
Arrows signify the end-to-end information flows, and numbers denote the
overall communication rates.

each of these transmissions, the bit rate is set to where
is the SINR of the link. In the second scheme,is forwarding

’s data to , and is forwarding ’s data to (presum-
ably these data were received at a previous time interval.)

At different times, networks may operate under different
transmission schemes, for example, in order to provide multihop
routing. We assume that the network operation is organized in
identical consecutiveframes of some fixed duration. Within
each frame, the network operates using successively schemes

, with scheme operating during a fraction of
the frame equal to , where . We say that the
network is using thetime-division schedule ,
and we refer to the fractions as theweights
of the time-division schedule. For the network of Fig. 1, two
possible time-division schedules are and

. The resulting end-to-end information
flows when the network operates under these time-division
schedules appear in Fig. 2.

Depending on the ordering of schemes within a time-division
schedule,theschedulemayimplynoncausalrouting,sothatwithin
a frame a node may forward traffic from another node before that
trafficactuallyarrives.Thissituationdoesnotposeaproblemsince
we can place before the sequence of frames a time period of finite
duration during which some data are backlogged in the interme-
diate nodes before their final destination. Since the initialization
periodwillhavefiniteduration,theoverallperformanceofthenet-
work will not be affected, in the limit of a large number of frames.
Therefore,withoutcompromisingthegeneralityofourresults,we
neglect causality in our routing since it significantly complicates
the problem and obscures our main results.
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B. Rate Matrices

Although transmission schemes are useful for describing the
state of the network at a given time, they are not convenient
for mathematical manipulation. We will, therefore, use rate ma-
trices to represent transmission schemes. For a network with

nodes, we define therate matrix of a transmission
scheme as an square matrix with entries such that

if node receives information at rate
with node as the original information
source

if node transmits information at rate
with node as the original information
source

otherwise.

(3)

Each nonzero rate matrix entry denotes a transfer of data. The
row index of the entry corresponds to the original source of the
data. The column index specifies the receiver or transmitter of
the data. Specifically, a negative entry in row corre-
sponds to the rate at which node transmits information that
originated at node . This entry is negative to reflect the fact
that the data forwarded cannot be counted in the data thatre-
ceives from . A positive entry correspond to the rate
at which node receives information that originated at node

, directly or from another node , in which case .
For example, the rate matrices of schemesand are, respec-
tively

Rate matrices mathematically capture all the information
needed to describe the state of the network at a given time:
namely, which nodes transmit or receive, at what rate, and from
which nodes the data originate. We note that since information
must be preserved, i.e., each transmission originates at one
node and is received by one node, the elements along any row
of a rate matrix must sum to zero.

Up to now, we have associated rate matrices with transmis-
sion schemes, which describe the state of the network at a given
point in time. However, as time progresses, the network will
operate under a time-division schedule that alternates between
different schemes. By construction, a time-division schedule
of transmission schemes is described by the weighted sum of
the corresponding rate matrices with weights equal to the per-
centage of time that each scheme is in operation. Therefore, if

(with and ) is a time-division
schedule, then its rate matrix will be , where

are the rate matrices of the schemes .

More succinctly, the following linearity property holds:

(4)

For example, the rate matrices of schedules
and will be

and by comparing them with Fig. 2, we see that they correctly
reproduce the information flows of the respective schedules.

C. Ad Hoc Network Capacity Regions and Uniform Capacity

We use the termtransmission protocol to describe a col-
lection of rules that nodes must satisfy when transmitting. For
example, a transmission protocol could be that nodes are only
allowed to transmit their own information, must transmit with
their maximum power, can transmit simultaneously with other
nodes, and treat interfering transmissions as noise (SIC is not
allowed). Under a given transmission protocol, a collection of
schemes is available to the network. Each of these schemes has
a rate matrix. We refer to these as thebasic rate matrices.
Clearly, the less restrictive the transmission protocol, the more
schemes are available, and the larger the collection of basic rate
matrices.

Since weighted sums of rate matrices describe the net flow
of information in the network under a corresponding time-di-
vision schedule, we could define the capacity of the network
under time-division and a given transmission protocol as the
set of weighted sums of all basic rate matrices of this protocol
(with the coefficients being positive, and their sum being equal
to unity). However, some weighted sums of rata matrices have
off-diagonal elements that are negative. Such rate matrices cor-
respond to scenarios where some nodes forward more informa-
tion from a source than they receive from that source (possibly
indirectly, through routing). Clearly, this is not a stable condi-
tion, and we, therefore, exclude these sums from the capacity
region. All other weighted sums of basic rate matrices can be
included in the network capacity region.

Formally, based on the above discussion, we define the
capacity regionof the wireless ad hoc network, under time-di-
vision routing and a given transmission protocol, as the convex
hull of the basic rate matrices with the restriction that the
weighted sums must have nonnegative off diagonal elements.
Specifically, if denotes the set of basic rate
matrices, the capacity region is

(5)
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where is the subset of all matrices with all their off-
diagonal elements nonnegative and denotes the convex
hull of the set of basic matrices.

The shape of the capacity region depends on the pool of basic
rate matrices. This pool depends on the network topology and
parameters, and also on the transmission protocol. The meaning
of the capacity region is the following: Let be a ma-
trix in the capacity region. Then there is a time-division schedule
of transmission schemes that are acceptable by the transmission
protocol, such that when the network operates under this time
division and , is the rate with which node sends its
own information to node , possibly through multiple hops,
and is the total rate with which node is passing infor-
mation to all other nodes. Since the elements in each row of all
matrices in the capacity region must sum to zero, the capacity
region is contained in an subspace. This dimen-
sionality is expected, since there arenodes, each with
other nodes with which it may want to communicate. Indeed,
each of the possible communication pairs corresponds
to exactly one of the off-diagonal elements.

To capture the capacity of an ad hoc network with a simple
figure of merit, we define theuniform capacity of a network
under time-division routing and a given transmission protocol as
the maximum aggregate communication rate, if all nodes wish
to communicate with all other nodes, at a common rate. The
uniform capacity is equal to , where is the
largest for which the matrix with all its off-diagonal elements
equal to belongs to the capacity region, and is the total
number of source-destination pairs for a network ofnodes.

IV. CAPACITY REGIONS FORVARIOUS TRANSMISSION

PROTOCOLS

In this section, we define a sequence of capacity regions, each
corresponding to a progressively more sophisticated transmis-
sion protocol (and consequently a richer pool of basic rate ma-
trices), and then study them in the context of an example ad
hoc network. This will illustrate the capacity gains that can be
obtained by using these protocols. The example network con-
sists of five nodes, and has a random topology obtained by
uniformly and independently distributing five nodes in the box

m m m m . The power gains
between nodes and are given by

(6)

where is the distance between the nodes,and are nor-
malization constants set to and m, respec-
tively, the path loss exponent is set to , and the shad-
owing factors are random, independent, and identi-
cally generated from a lognormal distribution with a mean of
0 dB and variance dB (so and is
Gaussian with expectation and standard deviation

). The power gains are assumed to remain constant for
all time; this assumption will be dropped in Section VIII. The
transmitter powers are W, all receivers are subject to
AWGN with the same power spectral density W/Hz,

Fig. 3. Capacity region slices of the example ad hoc network along the plane
r = 0, (i; j) 6= (1; 2); (3; 4), i 6= j. (a) Single-hop routing, no spatial
reuse. (b) Multihop routing, no spatial reuse. (c) Multihop routing with spatial
reuse. (d) Two-level power control added to (c). (e) SIC added to (c).

and the bandwidth is Hz. The link data rates are set
according to the receiver SINR and the Shannon capacity limit
of (2). Note that (2) also reflects the rate that can be achieved
using uncoded or coded -QAM when the transmit power is
reduced by an appropriate factor [17].

A. Single-Hop Routing, No Spatial Reuse

We first determine the capacity region when only single-hop
routing is allowed (no forwarding) and only one node is trans-
mitting at any time. By only allowing one active node at a time,
link data rates are higher since there is no interference, but the
network does not take advantage of spatial reuse. Since there
are nodes in the system and each of them has possible
receivers, the network has transmission
schemes (including the one in which all nodes remain silent),
and associated basic rate matrices . One
of these, thezero rate matrix, will correspond to the scheme
where all nodes remain silent. Determining the rest of the basic
matrices is straightforward using (2),, , and . The capacity
region will, therefore, be

In Fig. 3(a), we have drawn a two-dimensional slice of
along the plane , , . This
line captures a background rate of zero for node pairs other than

and . Therefore, only nodes and
send data. The other nodes never transmit since they do not have
data of their own to send and, in single-hop routing, they cannot
help in forwarding. Note that the slice is a straight line, as ex-
pected, since without spatial reuse at any one time the network
supports information transfer between only one source-destina-
tion pair. By changing the time percentages that are devoted to
each of the two node pairs, different points on the straight line
(a) will be achieved. The uniform capacity of the network is

Mb/s.
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B. Multihop Routing, No Spatial Reuse

Next we consider the case where multihop routing is allowed,
but spatial reuse is not, so only one node is transmitting at a
given time. Since there are nodes in the systems, and each
has different possible receivers andpossible nodes to
forward data for (including itself and the receiver), there are now

possible transmission schemes (including
the one in which all nodes remain silent) and associated rate
matrices . Determining these matrices is
straightforward using (2), , , and . The capacity region
under these assumptions will be

In Fig. 3(b), we have drawn a slice of along the plane
, . We note that this slice

is again a straight line, as expected, since without spatial reuse
at any one time the network supports information transfer be-
tween only one source-destination pair. We also note a signif-
icant increase in the size of the capacity region as compared
with the previous case. This is due to the fact that under mul-
tihop routing, the nodes can avoid transmitting directly to their
destination over paths with small gains, and instead use multiple
hops over channels with much more favorable gains and corre-
spondingly higher rates. Uniform capacity is also increased by
242% to Mb/s.

C. Multihop Routing With Spatial Reuse

We now allow both multihop routing and spatial reuse. In this
case, a network of nodes will have

(7)

distinct transmission schemes. Indeed, theth term in the above
sum is the total number of schemes havingtransmit–receive
pairs. There are distinct choices for
the nodes that are involved; however, this number must be di-
vided by to account for the fact that pair orderings are unim-
portant. The total number of pair combinations is multiplied by

to account for the different possibilities in the choice of in-
formation sources, for each of the pairs. Denoting the basic rate
matrices by , we can define the capacity re-
gion as

In Fig. 3(c), we have drawn a slice of along the plane
. We note that the slice

is no longer a straight line, as the network can now use spatial
reuse to maintain multiple active transmissions, and at any time
instant more than one stream may be serviced (directly or along
a multihop route). The introduction of spatial reuse increases
uniform capacity by 26% to Mb/s, even for this
small network of five nodes.

D. Power Control

We have so far assumed that nodes either transmit at their
maximum power or remain silent. If we relax this condition and
allow each node to transmit at different power levels below the
maximum power, then we increase the set of basic rate matrices
and thereby, possibly, augment the capacity region. Since there
are infinitely many possible power levels, we restrict our atten-
tion to power control strategies where nodetransmits at one of

possible power levels: . The net-
work will then have a set of

(8)

basic rate matrices. Equation (8) is derived as (7), with the factor
being added to account for the different possible power con-

trol scenarios, whenpairs are active. Denoting the set of basic
rate matrices by , the capacity region now
becomes

In Fig. 3(d), we have drawn a slice of along the plane
, for power control with

two levels ( ). We observe that this simple power control
strategy does not significantly change this slice of the capacity
region. Moreover, the uniform capacity changes less than 1%,
to Mb/s. As expected, additional power levels lead
to negligible gains. This result is consistent with other results
on variable-rate transmission with power control, which indi-
cate that if the transmission rate is adjusted to the link SINR,
additional power control does not significantly improve perfor-
mance [16]. On the other hand, as we will see later on, power
control leads to significant gains when variable-rate transmis-
sion is not possible.

E. SIC

Until now, we have assumed that under transmission schemes
with many simultaneous transmissions each node decodes only
its intended signal and treats all other signals as noise. How-
ever, under a SIC strategy, nodes may decode some signals in-
tended for other nodes first, subtract out this interference, and
then decode their own signals. This strategy may cause a node
to restrict the transmission rate of an interfering node, since the
receiving node must be able to decode the interfering signal.
(For example, under Shannon analysis, the interfering signal is
assumed to be decoded perfectly as long as the rate at which
the interfering signal is set to is less than the capacity of the in-
terfering link.) However, this restriction is balanced by the fact
that the receiving node’s rate will increase due to the removal of
interference. For example, consider the setup of Fig. 1(i). Node

’s signal will interfere with node ’s reception. could
decode ’s signal and treat ’s signal as noise, or could first
decode and remove the signal from nodeand then decode the
desired signal from node . This second decoding strategy will
impose an additional constraint on the transmission rate of node

, since its signal will also need to be decoded at. A sim-
ilar choice of strategies exists for . Assuming a network of
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nodes, power control with levels, and SIC, the total number of
transmission schemes, and associated basic rate matrices, will
be

(9)

where
. Equation (9) is derived as (8), with the factor

being added to account for all the possible combinations
of successive interference strategies. represents the total
number of SIC strategies available to a specific receiver in the
presence of transmissions; the user may decode its own signal
first (1 scenario) or second ( scenarios, depending on what
signal is decoded first), or third [ scenarios], etc.
Denoting the set of basic rate matrices by ,
the capacity region is

Fig. 3(e) shows a slice of for the example ad hoc
network, with no power control ( ) along the plane

. This slice indicates that
SIC significantly augments the capacity region even without
power control. Moreover, the uniform capacity becomes

Mb/s, 19% greater than , that corresponds to
spatial reuse and multiple hops, but no SIC.

F. Discrete-Rate Transmission

Until now, we have assumed that the transceivers used are ca-
pable of variable-rate adaptation as defined by (2), meaning that
transmitters automatically adjust the transmission rate to match
the SINR at the receiver and achieve the Shannon bound. Such
an assumption implies that the available rates are not restricted
to a given set of values. We now consider a discrete-rate restric-
tion in our capacity calculations, by use of a step function for

that is bounded above by (2), where each of the steps cor-
responds to a different possible rate.

In Fig. 4, we plot the uniform capacity of the example ad hoc
network of five nodes, for the protocols introduced in the pre-
vious subsections, and for four different rate restrictions. Specif-
ically, each of the restrictions consists ofdifferent transmis-
sion rates, with . Each of the available rates has
a minimum SINR requirement based on the Shannon capacity
formula (2). The transmitter chooses the highest rate within the
set of possible rates for which the SINR requirement is met. We
compare the performance of these different rate restrictions with
the performance achieved when there is no rate restriction, as in
the previous subsections. As expected, increasing the number of
available rates improves capacity. More importantly, power con-
trol now leads to significant gains. For example, when only one
rate is available, if added to spatial reuse and multihop routing,
power control with two power levels raises the uniform capacity
by 26%, and outperforms SIC. Power control with three levels
raises the uniform capacity by 31%, but using more than three
levels leads to negligible gains. This result is consistent with
other findings in the literature [16] and shows that power con-
trol can be interchanged to some extent with rate adaptation.
The performance enhancements achieved by using power con-

Fig. 4. Uniform capacity versus the number of available rate levels for the
example ad hoc network. Each curve corresponds to a different transmission
protocol. (a) Single-hop routing, no spatial reuse. (b) Multihop routing, no
spatial reuse. (c) Multihop routing with spatial reuse. (d, d′, d″) Power control
with two, three, and four levels added to (c). (e) SIC added to (c).

trol when time division is not allowed have been studied exten-
sively [18]; this result also shows that power control leads to
improved network capacity, even when time division is factored
in, provided that variable-rate transmission is not being used.

G. Uniform Capacity of Canonical Topologies

In the previous subsections, we studied the capacity regions
of a network with a random topology for a sequence of trans-
mission protocols, and determined that multihop routing, spa-
tial reuse, and SIC all improve the performance significantly.
Adding power control yields significant gains only when very
limited or no rate adaptation is used. We have determined that
these results are general, and hold with little variation for a wide
range of random or canonical topologies and modeling param-
eters.

For example, in Fig. 5 we plot the uniform capacity versus the
number of nodes for the five transmission protocols introduced
in the previous subsections, and for two canonical topologies:
The first, which we define as thelinear topology, consists of
nodes arranged on a linear array, with a spacing of 10 m between
them. The second, which we call thering topology, consists of
nodes arranged on a circle with a radius of 10 m. The nodes are
separated by arches of equal length. In both cases, the bandwidth
available to the system is MHz, all nodes have the
same maximum power of W, and the thermal noise
power spectral density is the same for all receivers and equal to

W/Hz. We calculate channel gains using the model
of (6), with the parameters set to , m,
and dB (so that the topology, not random shadowing,
dominates the performance).

We note that the trend of the curves strongly depends on the
topology. In the case of linear networks, the performance of the
transmission protocols that do not allow spatial reuse deterio-
rates fast as the number of nodes increase. The rest of the pro-
tocols perform significantly better, but the overall performance
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Fig. 5. Uniform capacity of canonical topologies as a function of the number of nodes. (i) Linear networks. (ii) Ring networks. (a) Single-hop routing, no spatial
reuse. (b) Multihop routing, no spatial reuse. (c) Multihop routing with spatial reuse. (d) Two-level power control added to (c). (e) SIC added to (c).

decreases with the number of nodes. This means that the loss
from the need for multiple hops is greater than the gain from
improved spatial separation. In the case of ring networks, com-
paring Fig. 5(a) and (b) reveals that gains from allowing multiple
hops are limited. This is due to the fact that nodes are clustered
together in a ring formation. Still, the performance of the pro-
tocols that allow concurrent transmissions actually improves as
we add more nodes, which implies that networks can take ad-
vantage of spatial separation even when more nodes are placed
in the same area. This finding is reminiscent of the results ap-
pearing in [15].

We have also established that the relative performance shown
in the previous figures does not change under a wide range of the
transmitter powers, thermal noise powers, and the exponential
decay parameter. SIC was found to be particularly effective
in the case of channels with comparable link gains, for example
when is small ( ).

V. COMPUTATIONAL ISSUES

We have defined the capacity region of a network as the inter-
section of the set with the convex hull of the network’s basic
rate matrices . Therefore, checking if a point
is in the network’s capacity region is equivalent to checking if
the point belongs to , which is trivial, and checking if it be-
longs to the convex hull of the network’s basic rate matrices.
Since rate matrices are isomorphic to vectors of length ,
this is a standard problem in computational geometry and can
be solved by a variety of different techniques. We chose to cast
it as the following linear program in the -dimensional
Euclidean space:

minimize:

subject to: (10)

where is the set of all basic rate matrices for
the network, and , specifically, is the zero rate matrix (that
corresponds to all nodes being silent). If the problem is feasible
(i.e., the set of points satisfying the constraints is not empty)
with , then belongs to the capacity region, and
can be obtained via a time-division schedule of the basic rate
matrices with the zero rate matrix being active

percent of the time. If the problem is infeasible (i.e., the
constraints cannot be satisfied for any point) or it is feasible
with , does not belong to the capacity region.

By iteratively solving the linear problem (10), we can deter-
mine boundary points of the capacity regions. These boundary
points correspond to optimal modes of operation for the net-
work. For example, if we wish to maximize rates and
with and allow spatial separation, multiple hops, and
SIC, but no power control, the “best” time-division schedule is
that of Fig. 6 that achieves Mb/s. This
figure shows that the developed method may be viewed as a
solution to the optimal routing problem when links interfere
with each other and the communication needs of the network
(in terms of the streams that must be serviced and the rates that
are required) are arbitrary.

Note that in order to determine the capacity region, the set of
all basic rate matrices must first be calculated. As the number
of nodes increases, the number of basic rate matrices increases
very fast (for example, factorially for the protocol that allows
multihop routing and spatial reuse). Since not all matrices will
contribute to the capacity region, significant speed gains can be
realized by carefully constructing a minimal set of rate matrices
that sufficiently describes it. When the transmitters follow the
Shannon capacity limit of (2), the MATLAB/C routines we
have developed become impractical for networks with more
than seven to eight nodes, when SIC is not used, or five to six
nodes, when SIC is used. When variable-rate transmission is
not used, and the transmitters can only operate with a single
fixed rate (provided the SINR is larger than some threshold),
the developed routines become impractical for networks with
more than around 15 nodes. We are currently developing more
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Fig. 6. Time-division schedule that maximizesr = r , if the rest of the node pairs have no communication requirements, for the example ad hoc network.
Arrows signify actual transmissions. Numbers denote link rates (in megabits per second).

sophisticated software that, together with faster hardware, will
increase these bounds by three to four nodes in all cases.

VI. M ULTIHOP CELLULAR NETWORKS

The developed formulation can be readily applied to the case
of multihop cellular networks, in which one node (we assume

) acts as a base station, and the rest of the nodes (to )
can transmit to each other, but are only interested in sending
to or receiving from the base station. However, because of the
special structure of the network, a simplified formulation can be
used to solve for the capacity region. For the case of the uplink
communication, instead of defining the rate matrix of a scheme

, we define therate vector in the
following manner:

if node transmits information to a node
(ultimately intended for the base station )
at rate

if node receives information from a node
(ultimately intended for the base station )
at rate

otherwise.
(11)

A similar formulation exists for the downlink case. We note
that, contrary to the rate matrix formulation, a positive entry sig-
nifies transmission of information rather than reception. As in
the rate matrix formulation, rate vectors contain all information
that is essential for describing the state of the network at a given
time.

The rest of the theory can be developed in a manner entirely
analogous to the general case. Because of the construction of
rate vectors, a weighted time-division schedule of transmission
schemes is described by a rate vector equal to the weighted sum
of the corresponding rate vectors, with the same weights. There-
fore, if a multihop cellular network with nodes operates under
a transmission protocol associated with a set of basic rate vec-
tors , the capacity region is

(12)

with being the set of all vectors of length with
nonnegative elements. Rate vectors with negative elements are

excluded because they correspond to schedules in which some
nodes consistently receive more information than what they
transmit, so data ultimately intended for the base station are
accumulated to intermediate nodes. The feasibility problem
can be solved with a linear program identical to (10). As in
the general case, the capacity region depends on the repertoire
of basic rate vectors. The set of basic vectors depends on the
network topology and parameters, and also on the transmission
protocol. The meaning of the capacity region is the following:
Let be a vector in the capacity region. Then there is a
time division of schemes, allowed by the transmission protocol,
such that when the network operates under this time division,
is the rate with which node sends its own information to the
base station, possibly through multiple hops and time division.

To capture the capacity of a multihop network with a simple
figure of merit, we define theuniform capacity of a network
as the maximum aggregate communication rate, if all nodes
wish to communicate with the base station with a common rate.
The uniform capacity is equal to , where is
the largest for which the vector with all its elements equal to

belongs to the capacity region.
As an example, we created a multihop cellular network by

placing six nodes randomly, independently, and uniformly in
the box m m m m and
the base station at the origin. The rest of the parameters were
chosen as in the network of Section IV. Slices of the capacity
regions for the transmission protocols introduced in Section IV
for the general case appear in Fig. 7. The uniform capacities for
the same transmission protocols were , ,

, , and Mb/s. We have arrived
at similar results for various random and canonical topologies
and for a wide range of the modeling parameters. So multihop
cellular networks behave similarly to ad hoc networks: Multihop
routing, spatial reuse, and SIC greatly increase the capacity of
the network; improvements from power control are significant
only if variable-rate transmission is not used.

VII. FADING AND MOBILITY INCREASECAPACITY

A. Time-Varying Flat-Fading Channels

With minor modifications, our formulation can handle the
case of time-varying flat-fading channels. We return to the
general case of ad hoc networks and start by considering a
network with a channel that alternates betweendifferent
fading states, each being completely described by a gain
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Fig. 7. Capacity region slices of the example multihop cellular network
along the planer = 0; i 6= 3; 5. (a) Single-hop routing, no spatial reuse.
(b) Multihop routing, no spatial reuse. (c) Multihop routing with spatial reuse.
(d) Two-level power control added to (c). (e) SIC added to (c).

matrix . Let be
the collection of basic rate matrices for theth fading state
(or a subcollection of them with the same capacity region, as
discussed in Section V). Assuming that, over a long period of
time, each state will be present for a fraction of time equal to

, the capacity region of the network can be defined as

(13)

The additional constraint simply means that
no time-division schedule should use the basic matrices of a
given state for longer than that state is available. The capacity
region is no longer defined as the convex hull of a collection of
matrices, however, we can easily see that it is still convex.

Assuming that with being
the zero rate matrix, the feasibility problem can be solved by a
linear program similar to (10)

minimize:

subject to: (14)

If the linear program is feasible (i.e., the set of points satisfying
the constraints is not empty) with , then can be

Fig. 8. Slice of the capacity regionC for the example ad hoc network of
Section IV along the planer = 0; (i; j) 6= (1; 2); (3; 4); i 6= j for
different combinations of fading states. (a) Fading stateF1. (b) Fading stateF2.
(c) Fading statesF1; F2. (d) Fading statesF1; . . . ; F10. (e) Fading states
F1; . . . ; F15.

obtained via a time-division strategy of the basic rate matrices
and the silent rate matrix that will be “active”

percent of the time. Otherwise, does not belong to
the capacity region.

Until now, we assumed that the network operates under a fi-
nite number of fading states. This assumption is restrictive, since
in most realistic fading models the fading gains can have arbi-
trary values, so that the total number of fading states is infi-
nite, and the developed formulation becomes inadequate. Fur-
thermore, even if we use a model with a finite number of fading
states , because the gain matrix has nontrivial entries,
the resulting number of possible states is , which is in-
tractable for nontrivial values of and .

However, the capacity region may be estimated by using a
large, but tractable, number of fading states. In this vein, we first
create a sequence of independent fading states, according to the
statistics of the fading. Then, we use a Monte Carlo approach,
and calculate the capacity region as the number of fading states
increases, until convergence. Since capacity regions are multi-
dimensional, we use convergence of the uniform capacity to in-
dicate capacity region convergence.1

In the definition of the capacity region, we have intrinsically
assumed that nodes schedule their transmissions to take advan-
tage of the different fading states and so are willing to tolerate
the random delays associated with waiting for all the required
states to come up. Depending on the fading statistics, these de-
lays can be large.

In Fig. 8, we display the convergence of a slice of the ca-
pacity region for the network of Section IV as the number
of fading states increases. The gain matrices for each of these
fading states were created independently, by using the model of
(6), with dB. The uniform capacity converges at the value

1Since the load of calculations required for the determination of the uniform
capacity increases as more states are added, we are practically limited to around
40 states for protocols that allow concurrent transmissions. In all cases, we were
able to determine the limit with a tolerance of 5% or better.
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Fig. 9. Estimates of the uniform capacity of various protocols, for a ring ad
hoc network with five nodes, as a function of the standard deviation� of the
shadowing component. Estimates are accurate within 0.2 Mb/s. (a) Single-hop
routing, no spatial reuse. (b) Multihop routing, no spatial reuse. (c) Multihop
routing with spatial reuse. (d) Two-level power control added to (c). (e) SIC
added to (c).

Mb/s which is 120% larger than the uniform capacity
with no time-varying flat-fading and dB, Mb/s.
This value is also 90% larger than the value of the uniform ca-
pacity Mb/s, achieved when there is time-varying
flat-fading with dB, but the nodes do not schedule their
transmissions across different fading states, and pick an optimal
schedule within each fading state (i.e., as if the current fading
state is the only fading state available). The 90% increase is pos-
sible because nodes are willing to tolerate large delays.

In Fig. 9, we plot the uniform capacity as a function of the
shadowing standard deviation, in the case of a ring ad hoc
network with five nodes and in the presence of time-varying
flat-fading. We note that the uniform capacity increases with
the standard deviation, which is a measure of the severity of
the fading. This result should actually be expected, since in the
presence of fading the network has more degrees of freedom
when deciding on the optimal transmission schedule. From an-
other perspective, each fading state will be more favorable for
certain combinations of transmissions, and the network will use
this state for these combinations.

We note that allowing SIC in addition to spatial reuse yields
limited gains when fading is severe ( dB). This is because
under severe fading for most of the time, the network has the
opportunity to operate using simultaneous transmissions with
very little cross interference. In these cases, SIC is ineffective
because it imposes very stringent upper bounds on the rates of
the interferers.

B. Node Mobility

We can study node mobility using the framework developed
for the case of time-varying flat-fading channels. Indeed, the
critical element of both settings is that the system alternates be-
tween a large number of different channel gain matrices.

Consider an ad hoc network of nodes
where the channel gains are deterministic and depend only on

Fig. 10. Convergence of the estimate for the uniform capacityC with node
mobility, for the example ad hoc network of Section IV, with� = 0 dB.

distances (for example, path gains are given by (6) with
dB) but the spatial configuration alternates betweendif-

ferent states. Assuming that, after long periods of time, each
state is active for a fraction of time equal to , the capacity
region of the network is again given by (13), where each of the

sets of rate matrices does not de-
scribe a different fading state, but a different spatial configura-
tion.

The assumption that there is a finite numberof configu-
rations is rather artificial, and a more realistic model would be
that nodes move continuously. This would in turn imply that
the number of possible states (and, hence, the number of rate
matrices) is infinite, and as a consequence, the developed for-
mulation is insufficient. However, the capacity region can be
estimated by using a large, but finite, number of spatial config-
urations, in the same way as a finite number of fading states
was used in the case of time-varying flat-fading. Specifically,
let us assume that the vector stochastic process describing the
node movement is stationary and ergodic (for example, two-di-
mensional independent Brownian walks constrained to a box).
Then, instead of using all states, we can use a large number of
independent realizations of the node positions to estimate the
capacity region.

In Fig. 10, we plot the estimate for the uniform capacity
versus the number of spatial configurations used for an ad
hoc network of five nodes. All parameters are set as in the
example ad hoc network of Section IV with dB (and
no time-varying flat-fading). The transmission protocol allows
multiple hop routing and spatial reuse, but no power control
or SIC. The node movements are modeled as independent
two-dimensional standard Brownian motions constrained to the
box m m m m , so we can
create a realization of the process at a fixed time by distributing
the nodes randomly, uniformly, and independently in the box.
The uniform capacity converges to the value Mb/s,
after including around 40 spatial configurations. In the figure,
we also plot the uniform capacity that is achieved by the
network if scheduling across different spatial configurations is
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not used, so that at any time instant nodes are using only the
current configuration in the most efficient way to communicate,
and are not exploiting node mobility. In this case, the capacity
is Mb/s, and the 200% increase achieved by using
scheduling across spatial configurations is only possible if
nodes are willing to tolerate large delays. This exchange of
delay with throughput, under node mobility, is reminiscent of
the results in [19].

VIII. E NERGY-CONSTRAINED NETWORKS

We now apply the methodology of the previous sections to
develop a formulation suitable for the study of energy-con-
strained networks. In such networks, nodes have a finite amount
of energy that they can use for transmitting or receiving [13].
As a consequence, continuous communication with a constant
nonzero rate is not possible, but rather the goal is to maximize
the total number of bits communicated.

A. System Model

We consider a network of nodes , de-
scribed by the system model of Section II. For simplicity, we
assume that acts as a base station, and the rest of the nodes
wish to send information to it (modifying the formulation to
treat the downlink case or the more general ad hoc case is
straightforward). In addition, each node
has some finite amount of energy to use for its communica-
tion needs. Let be theenergy vector
of the network.

We make the assumption that, under a given transmission
scheme , when node transmits to node with power
for seconds (so that the dissipated energy is ), the
number of bits transmitted is , where

is the link SINR and the function defines the achievable
data rate (in bits per second) for the link SINR. We assume
that the relation holds true for any duration,
which implies that the achievable data rate is independent of
the number of bits transmitted. Our formulation is not consis-
tent with previous information theoretical approaches [20], [21];
however, it is well justified for any practical modulation and
coding strategy, as long as the number of bits transmitted is
much greater than the bits per symbol (for uncoded modulation),
the block length (for block-coded modulation), or the memory
of the convolutional coder (for convolutional coding).

Note that nodes expend energy not only for transmitting, but
also for receiving. We make the assumption that the energy spent
to decode a sequence of bits is proportional to its length.

Our transmission strategy aims to maximize the number of
bits communicated between the nodes and does not consider
delay. Thus, since any transmitting node will eventually expend
its energy and become silent, there is no gain by allowing
concurrent transmissions: If there are nonzero cross-channel
gains, some transmissions will experience interference and

fewer than the maximum possible bits will be transmitted. If
all cross-channel gains are zero, spatial reuse will not hurt, but
it will not produce any gains either. Therefore, for our capacity
analysis, we assume that no concurrent transmissions take place
in the network. On the other hand, using multiple hops still
makes sense and can augment the capacity region significantly.

B. Capacity Region Formulation

We still define transmission schemes as in Section III,
and describe them in terms of rate vectors, as defined
in Section VI. In addition, if is the power con-
sumed by node during scheme , then we define the
power dissipation vector of the scheme to be the vector

. Nodes will typically
need most of their power for transmission; however, the above
definition allows us to factor in the power required to receive
signals.

We assume that the network operates under a transmission
protocol that allows schemes , corresponding
to the rate vectors and power dissipation vec-
tors . Based on the discussion of the previous
subsection, we assume that the transmission protocol does not
permit concurrent transmissions. Depending on the particular
communication requirements of the nodes, the network will op-
erate under a succession of some of thedifferent schemes,
each being active for a specific amount of time. With no loss
of generality, we assume that each scheme will appear at most
once in this succession (separate occurrences can be lumped to-
gether). Any succession of schemes is acceptable, as long as the
energy dissipation associated with this succession satisfies the
requirements. This leads to the following definition of theca-
pacity region of the network:

(15)

Contrary to the previous cases, the capacity region is not a
convex hull, but it is trivial to check that it is still convex.
Also, the coefficients do not represent time percentages,
but actual times. The meaning of the capacity region is the
following: If , with , then there
is a strategy under which each of the nodeswill send bits
of data to the base station. The strategy consists of using the
schemes corresponding to thes, each for exactly seconds.
Since in each scheme only one node will be active, we are
guaranteed that the schemes can be temporally placed so that
nodes used for forwarding data will receive the data before they
are required to forward them.

As in the previous cases, the feasibility problem can be for-
mulated as a linear program in the-dimensional Euclidean
space. Moreover, the linear program has no objective function.
Point belongs to the capacity region if and only if the fol-
lowing system has a solution :

(16)
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Fig. 11. Example energy-constrained network with 15 nodes.

C. A Numerical Example

In Fig. 11, we display an energy-constrained network with 15
nodes and a random topology, created as the example multihop
cellular network of Section VI with the exception that now the
base station is placed on the point m m .
All system parameters are chosen as in the network of Sec-
tion VI. All nodes transmit with power W, but waste
no power when they receive. The energy available to each node
is J. We assume that transmitters use variable-rate

-QAM, with the requirement that the probability of symbol
error is always less than 10, and trellis coding with a coding
gain of 3.5 dB is used. Under these assumptions, the achievable
rate is well approximated [17] by

where the gap is equal to dB. is equal to the gap
between uncoded -QAM and capacity (6.5 dB), minus the
coding gain (3.5 dB).

In Fig. 12, we plot a slice of two capacity regions along the
plane , . The capacity regions correspond to
a single-hop and a multiple hop transmission protocol, with no
spatial reuse, SIC, or power control.

In the single-hop case, the capacity region is rectangular,
since in this case no forwarding is allowed, and the best (and
only) strategy is for the two nodes to transmit sequentially to the
base station. As expected, multihop routing greatly improves
performance. As an example, the point on the boundary of
the multihop capacity region for which is achieved
by a transmission strategy consisting of 23 transmissions that
actually depletes the energy reserves of all nodes. This result
is typical and shows that optimum strategies aggressively
take advantage of all available resources to service all data
streams. With this transmission strategy, both nodes send

Mb/s to the base station, which is only slightly
less than the number of bits either node would transmit if it
were the only one using the network (7.62 and 7.45 Mb/s,
respectively), although the two nodes are placed close to each
other. This result can be explained by noting that there are

Fig. 12. Capacity region slices of the network of Fig. 11 along the planeb =

0, i 6= 5; 10. (a) Single-hop routing. (b) Multihop routing.

enough nodes between , , and the base station, such that
two roughly independent paths to the base station can exist. We
have arrived at similar results for various transceiver models,
and for a wide range of modeling parameters.

IX. CONCLUSION

We have developed a mathematical framework for finding
the capacity region of an ad hoc or multihop cellular wireless
network under time-division routing and a given transmission
protocol, possibly in the presence of time-varying flat-fading
or node mobility. We use this framework to determine the net-
work performance that can be obtained using various transmis-
sion protocols for a number of different network topologies. We
show that multihop routing, spatial reuse, and SIC all lead to sig-
nificant gains, but gains from power control are significant only
if very limited or no rate adaptation is used. We also determine
that fading and node mobility can actually improve network ca-
pacity. Finally, we introduce a formulation suitable for the study
of energy-constrained networks.

A major limitation of our capacity formulation is the very fast
increase of basic rate matrices as the number of nodes increases.
As was discussed, the capacity region can be completely repro-
duced by a much smaller set of rate matrices. Based on this ob-
servation, a possible future research direction could be toward
developing methods for determining a “good enough” subset of
rate matrices, that will be manageable and also reproducemost
of the capacity region. These methods may be deterministic (for
example, requiring all such rate matrices to have a certain set of
characteristics) or stochastic (for example, genetic algorithms).
Such techniques will allow us to study capacity regions of larger
networks, and if simple enough could also be integrated to the
study of medium access control and routing protocols in ad hoc
networks.
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[17] M. V. Eyobǒglu and G. D. Forney, Jr., “Trellis precoding: Combined
coding, precoding and shaping for intersymbol interference channels,”
IEEE Trans. Inform. Theory, vol. 38, pp. 301–314, Mar. 1992.

[18] N. Bambos, “Toward power-sensitive network architectures in wireless
communications: Concepts, issues, and design aspects,”IEEE Pers.
Commun., vol. 5, pp. 50–59, June 1998.

[19] M. Grossglauser and D. Tse, “Mobility increases the capacity of wireless
ad hoc networks,” inProc. INFOCOM, vol. 3, Anchorage, AK, Apr.
2001, pp. 1360–1369.

[20] R. Gallager, “Energy limited channels: Coding, multiaccess and spread
spectrum,” inProc. Conf. Information Science Systems, Princeton, NJ,
Mar. 1988, p. 372.

[21] S. Verdú, “On channel capacity per unit cost,”IEEE Trans. Inform.
Theory, vol. 36, pp. 1019–1030, Sept. 1990.

Stavros Toumpis (S’98) received the Diploma
in electrical and computer engineering from the
National Technical University of Athens, Athens,
Greece, in 1997, and the M.S. degrees in electrical
engineering and in mathematics from Stanford
University, Stanford, CA, in 1999 and 2002, respec-
tively. He is currently working toward the Ph.D.
degree at Stanford University.

From 1998 to 1999, he worked as a Research As-
sistant for the Mars Global Surveyor Radio Science
Team, providing operational support. Since 2000, he

is a Member of the Wireless Systems Laboratory, Stanford University, Stanford,
CA. His research includes work in the capacity of wireless networks, medium
access control, and channel modeling.

Andrea J. Goldsmith (S’90–M’93–S’93–M’95 –
SM’99) received the B.S., M.S., and Ph.D. degrees
in electrical engineering from the University of
California, Berkeley, in 1986, 1991, and 1994,
respectively.

From 1986 to 1990, she was affiliated with Maxim
Technologies, where she worked on packet radio and
satellite communications systems, and from 1991 to
1992, she was affiliated with AT&T Bell Laborato-
ries, where she worked on microcell modeling and
channel estimation. She was an Assistant Professor of

Electrical Engineering at the California Institute of Technology, Pasadena, from
1994 to 1998, and is currently an Assistant Professor of Electrical Engineering
at Stanford University, Stanford, CA. Her research includes work in capacity
of wireless channels and networks, wireless communication theory, adaptive
modulation and coding, multiantenna systems, joint source and channel coding,
communications and control, and adaptive resource allocation for cellular sys-
tems and ad hoc wireless networks.

Dr. Goldsmith is a Terman Faculty Fellow at Stanford and a recipient of the
Alfred P. Sloan Fellowship, a National Science Foundation CAREER Develop-
ment Award, the Office of Naval Research Young Investigator Award, a National
Semiconductor Faculty Development Award, an Okawa Foundation Award, and
the David Griep Memorial Prize from the University of California, Berkeley.
She is an editor for the IEEE TRANSACTIONS ON COMMUNICATIONS and the
IEEE Personal Communications Magazine.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


