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In this paper, we address the problem of the performance
analysis of image watermarking systems that do not require the
availability of the original image during ownership verification.
We focus on a statistical approach to obtain models that can
serve as a basis for the application of the decision theory to
the design of efficient detector structures. Special attention is
paid to the possible nonexistence of a statistical description of
the original image. Different modeling approaches are proposed
for the cases when such a statistical characterization is known
and when it is not. Watermarks may encode a message, and
the performance of the watermarking system is evaluated using
as a measure the probability of false alarm, the probability of
detection when the presence of the watermark is tested, and the
probability of error when the information that it carries is ex-
tracted. Finally, the modeling techniques studied are applied to the
analysis of two watermarking schemes, one of them defined in the
spatial domain, and the other in the direct cosine transform (DCT)
domain. The theoretical results are contrasted with empirical
data obtained through experimentation covering several cases of
interest. We show how choosing an appropriate statistical model
for the original image can lead to considerable improvements in
performance.

Keywords—Codes, copyright protection, cryptography, deci-
sion-making, image communication, image processing, informa-
tion theory.

I. INTRODUCTION

Recent years have witnessed a stunning proliferation of
techniques for representation, storage, and distribution of
digital multimedia information. Nowadays, network design
is oriented to digital data delivery, while content providers
are rapidly transforming their archives to a digital format.
Unfortunately, all these developments have also a serious
drawback: digital copies can be made identical to the
original; moreover, it is fairly simple to manipulate or reuse
the information in an unauthorized way. Final quality and
impracticality of massive copying were in the past key
factors that put limits to any widespread distribution of
illegal copies; on the contrary, emerging networks allow
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a fast and bulky dissemination with no loss of quality. This
creates new threats to copyright protection and puts the
whole creative process in danger.

Cryptography is an effective solution to the digital dis-
tribution problem, but it has to be coupled with costly
and specialized hardware in order to preclude direct access
to data in digital format. However, most cryptographic
protocols are concerned with secure communications in-
stead of ulterior copyright infringements. A good example
are the cryptographic devices (set-top boxes) used for
access control in digital television broadcasting [1]. There,
the major goal lies in avoiding unauthorized customers
to access programs that are being broadcast in scram-
bled form [2], but once data have been (even legally)
unscrambled it is quite simple to save them for further
manipulation or dissemination. In other scenarios, such as
the Internet, the “network value” heavily depends on the
existence of relatively cheap and general-purpose hardware
that eliminates a significant capital cost both to the user
and the service provider, as explained by Metcalfe’s Law
[3]. Consequently, there is an increasing need for software
that allows for protection of ownership rights. It is in this
context where watermarking techniques come to our help.

A digital watermark is a distinguishing piece of infor-
mation that is adhered to the data that it is intended to
protect. There are two kinds of watermarks: perceptible
and imperceptible. For obvious reasons, the latter are more
suitable to become part of a digital copyright system. Im-
perceptible watermarks obstruct illegal copying by ensuring
that ownership information is unnoticeably embedded into
the digital data. Considering that watermarking can be ap-
plied to data of a very different nature, the imperceptibility
constraint must be achieved by carefully taking into account
the properties of the human senses. For instance, early work
in the image watermarking field did not tackle adequately
the perceptibility issue and embedded the watermark in
the least significant (the most “insignificant”) bits of the
original image [4]–[7], thus making it easy to remove or
alter this additional information. On the other hand, more
recent methods consider the characteristics of the human
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visual systems (e.g., low sensitivity to edge changes) to
enhance the robustness of the watermark.

The previous example leads us to the robustness issue
[8]. In addition to imperceptibility, there are some desirable
features that a watermark should have. First, it should
be resilient to standard manipulations (e.g., MUSICAM
compression in the case of audio signals [9]) as well
as intentional manipulations (e.g., watermark-removal pro-
grams discussed below). Second, it should be statistically
unremovable (or better yet, undetectable), which means that
a statistical analysis of different pieces of data watermarked
by the same provider should not lead to any gain from
the attacker point of view. Finally, the watermark should
withstand multiple watermarking to facilitate the tracking
of the subsequent transactions to which an image is sub-
ject. Note that for different applications, the watermark
should resist quite different types of manipulations. An
example is photocopying, which is a possible attack for
document images, but almost useless when thinking of color
images. Furthermore, the computational power required
by an attacker will strongly depend on the application;
watermark removal in a digital video sequence would
be much more expensive than for a still image. Ideally,
watermark destruction attacks should also affect the original
data in a similar way; however, to what extent ownership
should be preserved after data is severely distorted is a
difficult question.

Watermarking, like cryptography, needs secret keys that
map rights to owners. However, in most applications,
embedment of additional information is required. This
hidden information may consist, among others, in owner,
distributor, or recipient identifiers, transaction dates, serial
numbers, etc., that may become vital when tracking some
illegal distribution. In some cases, a trusted authority that
issues certificates is needed [10]. For instance, signed time
stamps could be imperceptibly hidden in the original data
to prevent counterfeiting based on successive watermarks
[11], [12]. In fact, the issue of data hiding (also called
steganography) leads to the problem of correctly extracting
(decoding) this information once in possession of the secret
key. In most cases, there will be a certain probability
of error for the extracted information. This probability
of error can be used as a measure of the performance
of a watermarking system. Note that this probability will
increase with the number of bits in the hidden message,
thus imposing a limit on the length of the secret message
one wants to convey.

In addition to the data-hiding problem there is the de-
tection problem, in which it is tested whether data were
watermarked with a certain key, therefore serving for
ownership determination purposes. The detection problem
produces a binary answer: data were (or were not) water-
marked with a given key. Consequently, the problem can
be formulated as a statistical hypothesis test, for which a
probability of false alarm (i.e., of deciding that a given key
was used while it was not) and a probability of detection
(i.e., of correctly deciding that a given key was used) can be
defined as quality measures. More precisely, one would fix

a certain value of the probability of false alarm and then
evaluate if the system gives an acceptable probability of
detection. Note that the probability of false alarm should be
kept to an extremely low value if the watermarking system
is to be used for commercial purposes, since the existence
of “false positives” would undermine its credibility.

In this paper we will concentrate on watermarking of
still images, which is the case that has generated the
largest amount of research in the field. However, it is
interesting to point out that watermarking has been also
applied to other types of data, such as document images
[13]–[20], audio signals [21], [22], video signals [23]–[31],
three-dimensional (3-D) objects [32], and even software or
hardware [33], [34]. Many image watermarking methods
have mushroomed over the past years, even with com-
mercial products available or in preparation (e.g., NEC,
Sony, Hitachi, or Kodak). Although some of them need
knowledge of the original image [35], [36], we will assume
throughout this paper that this is not available during
the watermark extraction and detection processes. While
such knowledge would greatly simplify the former tasks,
especially if the watermarked image has suffered common
geometric distortions, any Internet-oriented long-term prod-
uct should take it as unacceptable, provided that resorting to
the originals would be unmanageable when huge quantities
of images need be compared by intelligent agents searching
the net for unauthorized copies. Then, the detection and
extraction tasks will have to be performed without access
to the source image.

While cryptographic protocols have achieved the desired
security level that expedites their use in electronic com-
merce applications [37], this cannot be said yet for water-
marking systems. Recent advances in watermark-removal
programs, such as unZign and StirMark [38] and others
[39], [40] that have succeeded in washing the watermark
away with little impact on the perceptibility constraint, even
for commercial systems, are quite discouraging but will
foster new research in the field. Actually, most methods
that do not require knowledge of the original image are
not robust to simple geometric transformations or cropping.
This problem, also known as the synchronization problem,
is one of the current salient points in image watermarking
that will deserve much attention in the near future.

First stages in the development of watermarking tech-
niques have produced an impressive amount of algorithms,
even though in most cases no theoretical limits to their
performance were given. We believe that such a theoretical
approach is the only way to turn digital copyright protection
into a mature discipline, at a level comparable to other
branches of communications and cryptography. In this
paper we will show how a careful modeling of the problem
can help not only to assess the performance of the various
methods but also to considerably improve them. We will
focus on the study of watermarking systems through the ap-
plication of statistical analysis techniques, and we will use
statistical decision theory to derive the detection structures
involved when ownership of an image must be verified.
The reasons why a statistical approach is convenient are

HERNÁNDEZ AND PÉREZ-GONZÁLEZ: STATISTICAL ANALYSIS OF WATERMARKING SCHEMES 1143



Fig. 1. General model of a watermarking system.

manyfold. First, through a statistical formulation of the
problem performance measures can be defined to study
rigorously to which extent a watermarking technique can be
applied as a copyright protection mechanism. Dependence
of the achievable level of protection on the characteristics
of images can also be analyzed with such an approach.
Furthermore, with this kind of analysis it is possible to
obtain efficient detectors that optimize the performance and
to assign appropriate values to system parameters so that a
certain level of performance is guaranteed.

In Section II, we present a general model of a wa-
termarking system and some definitions of concepts that
will be revisited throughout the paper. In Section III, we
particularize the general model to watermarking techniques
based on the addition of a spread spectrum signal carrying
some information. The rest of the paper refers to this kind
of watermarks. In Section IV, we formulate statistically
the problems of watermark detection and extraction of the
information carried by the watermark, when a statistical
description of the original image is possible. In Section V,
we formulate the same problems when such a statistical
characterization of the original image is unknown. Finally,
in Sections VIII and IX, we apply the analytical techniques
developed in Sections IV and V to the study of two water-
marking techniques, one performed in the spatial domain
and the other performed in the direct cosine transform
(DCT) domain. The theoretical results derived in both
sections are contrasted with empirical data obtained through
experiments performed with several test images.

II. GENERAL MODEL OF A WATERMARKING SYSTEM

In Fig. 1 we have represented in block diagram form
the general model of a watermarking system. A similar
model was proposed in [41] in an information theoretical
context. From now on, variables in bold letters will repre-
sent vectors whose elements will be referenced using the
notation . An image is transformed into
a watermarked version applying a watermarking function

that also takes as inputs a secret keyonly known to
the copyright owner and a messagetaken from a finite
discrete alphabet with elements. If the source output
is not watermarked, then it is left unaltered.

The watermarked version is delivered in place of
to the intended recipient. Then it can suffer unintentional
distortions or attacks aimed at destroying the watermark in-
formation. Note that even intentional attacks are performed

without any knowledge about or , since they are not
publicly available. The alterations suffered bycan be thus
modeled as a noisy channel whose inputand output are
linked by the conditional distribution .

Two tests are involved in the ownership verification
process. First, a watermark detectordecides whether the
image under test contains a watermark generated with
a certain key . Hence, this detector takes as inputs the
image and the secret key and yields a Boolean output
which indicates the decision. If the watermark detector
decides that a watermark is present, then authorship by
the person who possesses the secret keyis proved
and extraction of the hidden message can be performed
afterwards. This task is accomplished by a watermark
decoder , whose inputs are and . As a result, it
outputs an estimate of the hidden message. Note that
we have assumed that both the watermark detector and the
watermark decoder have no access to the original image.

The watermark detector is characterized by two perfor-
mance measures: the probability of false alarm and
the probability of detection . The former indicates the
probability of yielding a positive result in the watermark
detection test when does not actually contain a watermark
generated from . The latter is the probability of getting
a positive result when the image does contain such a
watermark. These two probabilities have been proposed for
quality assessment in [42]. To express these probabilities in
mathematical notation, let us denote the event “the image
is watermarked” by and the event “the image is not
watermarked” by . Then

(1)

(2)

The performance of the watermark decoder is given by the
probability of error , defined as the probability of getting
a wrong estimate

(3)

This is a measure of the overall performance of the wa-
termarking system that is almost useless. Two conditional
error probabilities are specially interesting for their applica-
bility to the design of detectors and decoders. One of them
is the probability of error conditioned to a given original
image . The other is the probability of error conditioned
to a certain key

(4)

(5)

The former indicates how appropriate an image is for data
hiding and the latter expresses the average performance
seen by a copyright holder.

In the following sections we study a special kind of
watermarking function based on the addition of a spread
spectrum signal. No explicit assumption will be made about
the domain where is defined. It could be just a spatial
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Fig. 2. Generation of a spread spectrum watermark.

domain representation of the image luminance or any kind
of representations obtained after applying transforms such
as the fast Fourier transform (FFT), DCT, Karhunen–Loeve
transform (KLT), wavelet transform, etc.

III. A DDITIVE SPREAD SPECTRUM WATERMARKS

Additive spread spectrum watermarking systems, on
which most of the proposed watermarking techniques
are based, constitute a special case of the general model
depicted in Section II. They are inspired by the spread
spectrum modulation techniques employed for digital
communications in jamming environments [43], [44], since
data hiding can be seen as a communication problem in
which the original image plays the role of channel noise
and attackers may try to disrupt the transfer of information.
In this kind of scheme a spread spectrum two-dimensional
signal (the watermark) carrying some hidden information
is added to the original image.

The procedure followed to generate a watermark can
be summarized as follows (Fig. 2). Suppose that we want
to hide bits of information and has elements.
First, a pseudorandom sequenceis generated using a
pseudonoise generator initialized to a state which depends
on the value of . To guarantee invisibility, this sequence
is multiplied element by element by a perceptual mask

obtained after analyzing the original image employing
a psychovisual model. This mask takes care of the fact
that alterations performed to different elements ofhave
different influences on the overall perceptual distortion.
Next, the set of indexes is partitioned into
subsets that we will denote by , satisfying
, . Each of these sets represents the elements of

in which a certain information bit is going to be hidden.
The partition can in general be key dependent to provide
an additional level of resilience to attacks directed against
specific hidden information bits. Then, the final expression
of the watermark is

(6)

where is any index in , and is a coefficient
used to encode theth bit of the hidden message. Finally,
the watermarked image is obtained by adding the wa-
termark to the original image. Using vector notation, the
watermark can be expressed as

(7)

where encodes the hidden message and
is an matrix whose elements satisfy

if

otherwise.
(8)

The columns of this matrix, , will hereafter
be called modulation pulses, since the watermark can be
expressed as a linear combination of them and can thus
be compared to multipulse amplitude modulation schemes
used in communications [45], [46]. The resulting water-
marked image is . Equation (6) indicates that
in the watermark generation process the message vector

, defined in a space with dimensions, is
mapped in a pseudorandom fashion onto a space with many
more dimensions . This is what in communica-
tions theory is called “spreading the spectrum.” The high
degree of redundancy introduced in this transformation and
the dependence of the mapping on the value of a secret
key, only known to the copyright owner, are the facts that
provide the robustness necessary to resist both unintentional
alterations and malicious attacks.

IV. WATERMARK DETECTION AND DECODING

WITH KNOWN IMAGE STATISTICS

Given an image under test and a key , and assuming
that the watermarked image has not suffered neither attacks
nor unintentional distortions, the watermark detection test
can be formulated as the binary hypothesis test

(9)

where and are images. The goal of the watermark
detection test is to decide whether the imagecontains a
watermark generated by the copyright holder who possesses
the key . It is not necessary to decode the hidden message.
Therefore, must be regarded as a random vector with a
probability mass function (pmf) equal to the probability
distribution of the messages. Even though is known
(it is the key under test), the matrix is a function of the
original image, which is supposed to be unknown. For each
possible value of the message vectorthere is a unique
value of satisfying the equation . The
functional relationship between and is usually quite
complex, so it is in practice very difficult to know the set of
possible original images that could have been mapped onto
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during the watermarking process. We can alternatively
assume that is approximately the same for all the
possible values of and substitute by .
This is a reasonable approximation since the distortions
introduced by the watermark are small, so they are expected
to produce negligible alterations in the perceptual mask.
Then, the test in (9) is approximately equivalent to the
binary hypothesis test

(10)

and the dependence of on has disappeared. Let
be the decision made in the watermark detection

test (function in Fig. 1). The probability of false alarm,
defined as , will be required to
lie below a certain maximum value to guarantee that the
watermarking system is reliable. The design of the detector
structure will be aimed at maximizing the probability of
detection which corresponds to the
maximum allowable .

In the watermark decoding test it is assumed thatdoes
contain a watermark belonging to the copyright holder who
possesses the secret key under test. For this reason, the
decoding process is performed only if is decided in
the watermark detection test. The goal of the decoder is to
obtain an estimate of the message vectorin such a way
that the probability of error is minimized. Following similar
arguments as in the discussion on the watermark detection
test, the matrix can be approximated by .

Assuming that is fixed, there are two random vectors
in the statistical decision tests we have just formulated:

and . If the distribution is known, the optimum
decision tests are given by the Neyman–Pearson rule [47].
In the watermark detection test, for example, the optimum
detector which maximizes the conditioned to a given

for any value of is given by the test

(11)

where is a threshold. If the messages are assumed to
be equiprobable, then , . Then, the optimum
watermark decoder which minimizes the probability of error
conditioned to is given by the maximum likelihood
structure. The output of the decoder is therefore

(12)

Expressions (11) and (12) define the detector and decoder
functions and , respectively, represented
in Fig. 1.

Once these functions have been designed, it is interesting
to study the influence of image characteristics in the per-
formance. A measure of the goodness of an imagefor
watermarking purposes can be obtained by conditioning
the probabilities , , and to and treating the
secret key and the message vectoras the only random
variables in the system. In other words, we can regard a
given original image as a fixed deterministic vector and

model and the partition statistically. This leads
to a statistical model of the matrix , which can be
used to compute the conditional probabilities of false alarm
and detection

(13)

(14)

and the conditional probability of error

(15)

Given , indicates the proportion of keys that, after
being applied in the detection test performed to the original
image , yield a positive result. The probability
gives the proportion of keys that, after being applied in
the watermarking and detection processes, yield a positive
result. The probability indicates the proportion of
keys for which a decoding error occurs when applied in the
watermarking and decoding processes.

Usually the log-likelihood functions involved in the wa-
termark detector and decoder can be expressed as a function
of a vector of sufficient statistics. In this
case, the conditional probabilities , , and
can be evaluated by studying the conditional distributions

and .

V. WATERMARK DETECTION AND DECODING

WITH UNKNOWN IMAGE STATISTICS

In some cases the distribution may be unknown
or difficult to approximate. For example, there are no
satisfactory statistical models for images in the spatial
domain. The approach discussed above for the design of
the watermark detector and decoder is not applicable in
such a situation.

In Section III, we saw how in the watermark generation
process the message vectorwas mapped onto a vector
with a much higher number of dimensions. Therefore, it is
reasonable to apply a transformation to reduce
the number of dimensions of the image under testand then
analyze the statistical decision problem in the transformed
space. One such a transformation is, for instance

(16)

which is nothing but the correlation receiver applied in
spread spectrum communications [43], [44]. Expressed in
vector notation

(17)

In practice we will make some assumptions about the
distribution of to design . In some situations it is
possible to exploit statistical properties such as ergodicity
and quasi-stationarity to obtain estimates of the first- and
second-order moments of. In those cases, even though the
exact shape of the distribution of the original image is not
known, at least means, variances, and cross covariances
can be approximated and this information can help to
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Fig. 3. Dimensionality reduction and watermark detection.

improve substantially the performance associated with the
dimensionality reduction transformation.

For instance, a key-independent linear minimum mean
square error (MMSE) estimate ofcan be computed before
entering the correlation receiver. This filtering operation
can considerably reduce the noise contribution due to the
original image. Let be the mean of and let

be the covariance matrix of, defined as
. If we assume that the watermarked image

does not suffer any alteration, then . As we said
before, is actually a function of since the perceptual
mask is computed from it. We can, however, assume that
the perceptual mask is approximately the same for all the
possible values of that can be mapped onto after
being watermarked with a certain pair, . Thus, we can
assume that and are statistically independent. Under
this approximation, the optimum linear MMSE estimator
of is

(18)

where is the mean value of . Then, the number of
dimensions can be reduced applying the correlator receiver
as we did before, obtaining as a result

(19)

Note that in practice will be estimated from since
is not available in the watermark verification process. In

fact, a reasonable approximation is . We can
also estimate from the image under test, since a good
approximation to the perceptual maskcan be obtained
from .

Once the dimensionality reduction function is
defined, it is possible to study the statistical properties of
its output for a fixed original image , assuming that is
taken at random. Then we can make use of this statistical
characterization to design optimum detector and decoder
structures. In Fig. 3 we represent graphically the scenario
corresponding to the watermark detection process. Suppose
we choose a certain original image. If it is watermarked
(hypothesis ) taking some pair , at random, the
resulting vector has a distribution that corresponds to
the transformation of the distribution of and when the
function is applied. After passing

Fig. 4. Dimensionality reduction and watermark decoding.

through the dimensionality reduction function , the
resulting observation vector will have some conditional
distribution .

If is not watermarked (hypothesis ), the application
of the dimensionality reduction function will result in
an observation vector with a conditional
distribution , which ideally can be evaluated
applying the transformation to the distribution of

[note that the function is independent of ].
Given an observed vector, the detector which maximizes
the conditional probability of detection for every
value of the conditional probability of false alarm
is given by

(20)

where is a threshold. Even though the detector depends on
, which is not available during the watermark verification

process, in practice only some “macroscopic” properties of
will be required, and it will be possible to estimate them

from . Furthermore, certain families of functions
as, for example, those of the form ,
allow the application of the central limit theorem to ap-
proximate by a Gaussian distribution, since the elements

of the watermark are statistically independent ifis
modeled as an independently identically distributed (i.i.d.)
sequence. This kind of function appears, for instance, when
the modulation pulses are sparsely spread and the image
samples are assumed to be statistically independent if they
are not too close.

A similar approach can be undertaken for the design of
the watermark decoder. In this case the scenario is repre-
sented in Fig. 4. After watermarkingwith a given vector
message and a random secret key , the observation
vector has a distribution that can be evaluated
by applying the transformation to
the distribution of . Therefore, given an observed vector

, the optimum decoder which minimizes the
conditional probability of error assuming that all
codewords have the samea priori probability is given
by the maximum likelihood (ML) decoder

(21)

HERNÁNDEZ AND PÉREZ-GONZÁLEZ: STATISTICAL ANALYSIS OF WATERMARKING SCHEMES 1147



In general, different decoders are associated with different
images , since the probability density functions (pdf’s)
are conditioned to . Even though the original image is
assumed to be unknown during the decoding process, the
decoder will actually depend on a few image-dependent
parameters that can be estimated from the imageunder
test. The same kind of approximations resulting from the
application of the central limit theorem can be made for
certain functions as when we talked about the
watermark detector. It is even possible that exploiting this
kind of approximations a decoder independent ofresults
(see Section VIII).

VI. THE IMPACT OF DISTORTIONS AND ATTACKS

In Sections IV and V, we have assumed that the wa-
termarked image did not suffer any alteration during
distribution. However, in practice the watermarked image
may be altered either on purpose or accidentally by linear
filtering distortions, cropping, scaling, rotations, etc., and
the watermarking system should still be able to detect and
extract the watermark. The distortions are limited to those
not producing excessive degradations, since otherwise the
image would become unusable. Distortions and attacks in-
troduce an additional transformation between watermarking
and verification that changes the statistical distributions of

involved in the watermark detection and decoding tests.
As a consequence, the performance of these tests can be
degraded. Given a watermarking system with a certain
structure, the goal of an attacker is to alter the image in such
a way that it is not severely distorted and the distribution
of is transformed so that the probability of detection is
decreased. The main obstacle the attacker must deal with
is the uncertainty about the value of the secret key used by
the copyright owner.

The ideal solution against attacks is the application of
robust statistical decision theory [48], [49]. Instead of
deriving the optimum watermark detector and decoder for
certain distributions of the observation vector, robust
detection, and decoding devices are designed to maximize
the worst-case performance, associated with the worst-
case attack. Robustness criteria can also be applied to the
watermarking system as a whole, searching simultaneously
the watermarking function and the watermark decoder
and detector (Fig. 1) such that the worst-case performance
is optimized. However, it is difficult to model all the
possible attacks that can appear in a practical situation. For
this reason, the application of robust statistical theory to the
design of watermarking schemes is an ambitious task that
can hardly provide useful results.

The most harmful attack against an image watermarking
system based on additive spread spectrum watermarks is
that consisting in geometrical transformations such as scal-
ings and rotations in the spatial domain. The sensitivity of
the watermark detector to this kind of manipulation is due to
the white nature of the pseudorandom sequence. The reason
is that with such a sequence, a slight mismatch between
the modulation pulses generated during the verification

test and the ones actually present in the image produces
drastic degradations in the distribution ofconditioned to

, so that it can even become indistinguishable from the
distribution of conditioned to . A promising approach
to achieve robustness against geometrical distortions is the
use of transforms invariant to rotations and scalings [50].

VII. ERROR-PROTECTION CODES

The performance of the watermark decoder can be im-
proved if channel codes are used to encode the hidden
messages carried by the watermark. Letbe the number of
elements of and the message vectors asso-
ciated with the possible messages that can be encoded
by the watermark employing the generation mechanism
explained in Section III. The watermarks that result after
multiplying each of these vectors by the matrixcan be
seen as points in the-dimensional space . A channel
encoder basically transforms these points into a different set
of points in such a way that the distances between any two
of them is increased [51]. Placing the watermarks farther
from each other in the space helps to reduce the probability
of error in the watermark decoding stage. In fact, the
watermark generation procedure exposed in Section III can
be seen as an encoding scheme that places the codewords
in the subspace spanned by the vectors .

One of the problems that image watermarking has to
deal with is the extremely low signal-to-noise ratio (SNR)
in each dimension of the -dimensional space. In other
words, the power of the original image, which is unknown
to the decoder, is much stronger than the power of the
watermark. As a consequence, an acceptable probability
of error in watermark decoding can be achieved only by
adding a large amount of redundancy during the encoding
process. For this reason, the number of hidden message bits
that can be embedded into an image is limited, depending
on the size of the image () and its power.

Ideally, channel codes should be designed with as many
degrees of freedom as dimensions are available. Unfortu-
nately, this is a difficult task considering the low SNR per
dimension that usually appears. A practical approach that
can be undertaken is to use a block code or a convolutional
code and increase the number of pulses so that the message
length is left the same.

Channel codes have been successfully used in image
watermarking systems [50]. The use of Bose Chaudhuri
Hocquenghem (BCH) and Golay codes [51], [52] in the
context of spatial-domain image watermarking and the
influence of parameters such as the redundancy and the
minimum distance in the performance of the watermark
decoder as well as the watermark detection test are studied
in [53]. Promising results, not published, have also been
obtained for convolutional codes.

VIII. SPATIAL DOMAIN WATERMARKING

Let us now apply the ideas exposed in Sections IV and V
to the analysis of spread spectrum watermarking of images
defined in the spatial domain. We will thus assume in this
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section that represents the luminance component of a
digitized image. Although we will concentrate our attention
on grey-level images for simplicity, our derivations can
be easily extended to color images by including in the
image mathematical model three vectors, each associated
with one of the three components in a luminance and color
differences representation.

Unfortunately, there are no statistical distributions suit-
able for modeling the luminance component of common im-
ages in the spatial domain [54]. Without a satisfactory statis-
tical model for the original image, we cannot apply the de-
cision theory as described in Section IV to the design of the
optimal watermark detector and decoder structures that op-
timize the performance conditioned to each value of the se-
cret key (the performance that each copyright owner sees).

However, we can project the imageunder test onto
a subspace and apply the design techniques presented
in Section V. An interesting candidate among the trans-
formations that can be used to reduce the number of
dimensions is the correlation receiver already
discussed in Section V. The correlation receiver provides
sufficient statistics for both the watermark detection and
the watermark decoding problems when the watermark
is immersed in zero-mean white Gaussian noise. For this
reason, this is a reasonably good choice.

Images found in practical situations are nonstationary
in the spatial domain since the broad range of objects
that can be represented in the same image may result in
considerable variations in statistical properties of luminance
samples along the image. Nevertheless, in most cases the
aforementioned statistical properties do not substantially
differ in adjacent pixels. In other words, the imagecan be
approximated as a quasi-stationary random process. If we
also assume that it is ergodic, then we can estimate the first
and second moments of the original image at each pixel by
computing averages in block neighborhoods. As we said
before, the original image is not available in the copyright
verification process, so these statistics must be calculated
from the image intended to be tested.

As discussed in Section V, knowledge about the first- and
second-order moments of the original image can be used to
improve the performance of detection and decoding when
done in the projection subspace, even if this knowledge is
an approximation to the actual values. A Wiener filter, for
instance, can be used to obtain a linear MMSE estimate
of the watermark. This estimate eliminates part of the
original image component before the projection process,
thus improving the achievable performance in detection and
decoding.

We will also assume that the watermarked image
may have been distorted by a linear filter, either as a
consequence of alterations occurring during distribution or
as a result of attacks aimed at destroying or corrupting the
watermark. This filter can be combined with the Wiener
filter discussed above to form an equivalent linear system
represented by an matrix that will be called .
Therefore, we will find the signal at
the input of the correlation receiver. After being projected,

we obtain the vector

(22)

Recall that is the only random element in our model.
Hence, is deterministic and the matrix is random.
The coefficients of the Wiener filter are computed from
the image under test and depend, therefore, on the value of

. This fact implies that the filter is actually random
and statistically dependent on. However, considering the
small alterations that watermarks produce, the variability
experienced by the filter coefficients can be expected to be
small. Thus, it is legitimate to assume thatis determin-
istic and independent of . After this approximation, only
matrix is random in (22).

To obtain a statistical characterization of, we need to
define a model for the matrix . As indicated in Section III,
the columns of this matrix are the pulses that
compose the watermark. Since these pulses are nonover-
lapping, each row of has only one nonzero element for
every value of . Furthermore, if we take theth row, the
value of the nonzero element is . The pseudorandom
sequence is key dependent and thus must be treated as a
random vector. In order to simplify the discussion, we will
model it as outcomes of an i.i.d. random process with a
discrete marginal distribution with two equiprobable levels
{ 1, 1}. The results given below can be straightforwardly
extended to any kind of marginal distribution.

We will assume that the pulses are sparsely
scattered over the whole image in a key-dependent pseu-
dorandom fashion to provide diversity that strengthens the
robustness to attacks directed against particular bits. We
also assume that the watermark covers all the pixels of the
image. Then, the sets constitute a partition of the
set , so each image pixel is assigned to only one
of those sets. This pixel assignment mechanism must be
modeled as a random procedure since it is key dependent.
We will assume that every index is in-
cluded in any of the sets with the same probability
1/ and that the assignment is performed independently
for each index. As a consequence, for every value of,
any row of has one and only one nonzero element, which
belongs to any of the columns with probability
1/ . Under these assumptions, and after some algebraic
manipulations, the first- and second-order moments of the
elements of conditioned to an original image and a
message vector can be shown to be [45], [55]

(23)

Var

(24)
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Cov

(25)

where are the elements of and . In
practical situations the cross-covariance terms are negligible
compared to the terms in the diagonal of the covariance
matrix. Hence, we can assume that the elements ofare
approximately uncorrelated.

Since every modulation pulse is sparsely spread out over
the whole image, if the kernel of the filter for every
element is small compared to the image size, i.e., if
every row of has only a few nonzero elements, then the
elements of can be expressed as a sum of statistically
independent terms. The number of terms summed up,
on average, is in practice large since a high level of
redundancy is necessary if an acceptable performance is
desired. Hence, we can apply the central limit theorem and
assume that is approximately Gaussian.

Thus we have come up with a Gaussian model for the
observed vector that can be exploited to obtain detector
and decoder structures.

A. Watermark Decoder

The optimum ML watermark decoder, derived in
Section V, is given by (21), where is the distri-
bution at which we have just arrived. If we observe (23)
and (24), assuming that ,
and that the covariance matrix is approximately diagonal,
we can infer that the observation vectorcan be modeled
as the output of an additive white Gaussian noise (AWGN)
channel, , , where

(26)

and are samples of an i.i.d. zero-mean Gauss-
ian random process with variance

(27)

We know from communication theory that the optimum
ML decoder for an AWGN channel seeks the message
vector closest to the observation vectorin the Euclidean
distance sense. Therefore, this decoder structure minimizes
the probability of error conditioned to the original image.
In other words, given some original image, this detector
minimizes the chances that the key under test yields an
error while extracting the hidden message.

When a binary antipodal constellation is used to encode
possible messages, i.e., when all possible com-

binations of elements taken from {1, 1} are valid

message vectors, the minimum Euclidean distance decoder
is equivalent to a bit-by-bit hard decisor with the decision
threshold located at the origin. Then, the output of the
decoder is

sign (28)

and the probability of making an error when decoding a bit
[also known as bit error rate (BER)] is1

(29)

which can be easily computed from the channel parameters.

B. Watermark Detector

The optimum watermark detector, whose structure has
been already derived in Section V, is given by (20). An
equivalent expression for this Neyman–Pearson test is

(30)

where is the Gaussian pdf that has just been
derived in the analysis of the ML watermark decoder. In
order to obtain the pdf of under hypothesis , i.e., when

is not watermarked, let us suppose thatinstead of is
tested. Then, the observation vector is

(31)

In this case, it can be easily shown thatis zero mean,
white, and the variance of its elements is

(32)

Every element of can still be expressed as a sum of
independent random variables. Therefore, under hypothesis

, the observation vector can be accurately approximated
by a zero-mean white Gaussian vector with variance given
by (32).

In Fig. 5 we have represented graphically an example
of the Gaussian distributions conditioned to the hypothesis

and when and there are four equiprobable
messages. Given an observation, the watermark detector
must decide to which of these distributionsbelongs. Sup-
pose that pulses, e.g., , are modulated by
message-independent known coefficients. These reserved
pulses can be used to improve the performance of the
watermark detection process since the uncertainty about the
possible message vectors that the watermark may carry is
thus reduced. Assume also that the remaining pulses are
modulated by coefficients in a binary antipodal constellation
with dimensions (hence, ). Then, the
logarithmic function in (30), which will be denoted by ,

1Q(x)
�
= (1=

p
2�) 1

x e�t =2 dt.
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(a)

(b)

Fig. 5. PDF’s involved in the watermark detection problem.

can be expressed as [45]

(33)

The probability of false alarm indicates the chance
that, given a certain nonwatermarked image, the key
under test yields a positive result in the watermark detection
test when applied to . On the other hand, the probability
of detection indicates the chance that, given a
certain original image , the secret key under test yields
a positive result in the watermark detection test when
applied to watermark and to detect the presence of the
watermark. Although there is no close form expression for
the probabilities of false alarm and detection conditioned to
the original image as a function of the threshold, it is
possible, however, to obtain Chernoff bounds [47]. These
bounds, as well as approximations, were derived in [45].

C. Attacks

Attacks suffered by the watermarked imageaffect the
channel parameters and , thus altering the achievable
performance in both the watermark detection and decoding
tests. Linear filtering attacks are already included in the
model we have assumed when we began the analysis. Their
impact in performance can be studied by assigning values
to the coefficients of the matrix . The effect of attacks in
which the image is cropped, so that some watermark energy
is lost, can be studied by taking out from summations in
(26) and (27) those terms whose indexcorresponds to
pixels that do not survive the attack. Undoubtedly, the most
harmful kind of attack is that consisting in geometrical
transformations of the image in the spatial domain [56].
If the watermarked image is either scaled or rotated, there

will be a mismatch between the modulation pulses gener-
ated during the projection process and the pulses that are
actually in the image under test. Given the white nature
of the pseudorandom sequence from which these pulses
are generated, we can expect a rapid degradation of the
equivalent channel parameters in terms of the signal to noise
ratio (defined as ) as we increment or decrement
the rotation angle or the scaling factor.

A countermeasure to weaken the effect of attacks based
on geometrical transformations is the design of a spatial
synchronization algorithm that estimates the transformation
suffered by the image. Since the original image is not
available, only knowledge about the watermark can be
exploited to recover the size and orientation that it had
before the attack. Let be a vector of parameters defining
the geometrical transformation that was performed by the
attacker. An estimate of can be obtained if we search the
vector of parameters that, after being applied to transform
the modulation pulses locally generated in the projection
process, maximizes the log-likelihood function in (30). In
mathematical notation [45]

(34)

However, this exhaustive search technique is impractical
due to the narrowness of the peak of the log-likelihood
function, which is a consequence of the white nature of the
watermark. Resilience to scaling and rotation distortions is
still in fact a challenging problem in image watermarking.

D. Experimental Results

To verify the validity of the model described in previ-
ous sections, analytical results have been contrasted with
empirical data obtained through experimentation. We have
used five test images, shown in Fig. 6. These images were
chosen for their different characteristics in terms of flat
areas, noisy textures, etc. In Fig. 7 we show an example of
a watermark and a watermarked version for “Lena.”

The perceptual model we have chosen for the experimen-
tal work in spatial domain watermarking is described in
[54], [57], and [58] and exploits the spatial masking prop-
erties of the human visual system (HVS). The perceptual
mask , obtained after the analysis of the original image,
indicates the maximum allowable standard deviation of
noisy alterations at each pixel. The pseudorandom sequence

is assumed to have a discrete marginal distribution with
two levels, { 1, 1}. This means that has unit variance at
every pixel, so if it is multiplied element by element by
the invisibility constraint will be satisfied.

In our experiments, a spatially variant Wiener filter is
used before the correlation receiver to eliminate part of
the noise contribution due to the original image. The
coefficients of this filter are computed using (18) under the
assumption that the original image is white, i.e., that
is a diagonal matrix. Let denote the matrix associated
with the Wiener filtering operation. If we assume that the
watermarked image has not suffered any alteration, then
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(a) (b)

(c) (d)

(e)
Fig. 6. Original images used in the experiments.

since and are uncorrelated. Hence,
the Wiener filter can be expressed as , whose
coefficients are

if

otherwise
(35)

where is the variance of , which can be estimated
from the pixels in a block neighborhood around. The
mean vector in (18) can be similarly estimated from.

In Figs. 8–10 we show plots of the BER associated to the
watermark decoder derived in Section VIII-A as a function
of the average size of the modulation pulses. In all cases
the empirical measures have been obtained by taking 100

keys at random. The first figure represents the BER when
the watermarked image is not altered during distribution.
In Fig. 9 we have plotted the BER when an attacker adds
to the watermarked image Gaussian noise whose variance
at each pixel is shaped by the perceptual maskso that
the perceptual distortion is minimized. Fig. 10 shows the
BER that results when the image is distorted by a Wiener
filter aimed at obtaining an estimate of the original image
so that the watermark is partially destroyed. We can see
that the analytical approximations are reasonably close to
the empirical results. The dependence of the performance
on the image characteristics is also evident from the plots.
The shift of theoretical curves with respect to the empirical
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(a) (b)

Fig. 7. Example of (a) a watermark and (b) a watermarked version for “Lena” (256� 256).

Fig. 8. BER without attacks.

data is due to the watermark-dependent nature of the Wiener
filter coefficients, which has not been statistically modeled.

We have also measured through experimentation
the performance of the watermark detector derived in
Section VIII-B and contrasted the empirical data with the
analytical results. Measures have been obtained by taking
400 keys at random. In all cases the watermark carries
240 bits of hidden information. In Figs. 11–15 plots of the
receiver operating characteristic (ROC) are shown for all
the test images. The empirical curves actually represent the
experimentally measured versus the Chernoff bound
for the because the values of in the range of
thresholds in which begins to fall down are so small
that they cannot be estimated through simulations. For a
fair comparison of the performance results, all the images

have been cropped down to a size of 128128 pixels.
The curves show that the Chernoff bound provides a fairly
good approximation of the ROC. Comparing the figures
we can see that performance of the watermark detection
test clearly depends on the characteristics of the image
contents. Note for instance the difference between the
ROC of “Lena,” an image with many flat regions, and
“Brick” or “b32,” both with more noisy textures.

IX. DCT DOMAIN WATERMARKING

In this section we will assume that the vectoris the
DCT of the luminance component of the original image,
applied in blocks of 8 8 pixels, as in the JPEG algorithm.
Then, can be splitted into 64 vectors, each gathering
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Fig. 9. BER with additive Gaussian noise attack.

Fig. 10. BER with Wiener filtering attack.

the elements that correspond to one of the 88 DCT
coefficients.

A. Statistical Model for the DCT Coefficients

The DCT coefficients of common images have inter-
esting properties that can be exploited to obtain good
watermark detectors and decoders. One of the most inter-
esting characteristics of the DCT is energy compaction. In

fact, it has been proved that the DCT converges to the
Karhunen–Lo´eve transform (KLT) for images that can be
statistically modeled as first-order Markov processes with a
correlation factor close to one [59]. As a consequence, we
can assume that the DCT coefficients are uncorrelated.

Another interesting property is that the histograms of the
ac coefficients can be better approximated than luminance
samples in the spatial domain by analytical expressions of
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Fig. 11. ROC for “Lena” (256� 256), cropped down to 128� 128 pixels, withN = 240;

Ns = 0.

Fig. 12. ROC for “Tiger” (128� 128), withN = 240; Ns = 0.

known pdf’s. An early proposal as a statistical description
of the ac coefficients is the Gaussian model. However,
more recent studies have shown that a more accurate
approximation is the generalized Gaussian pdf, given by
the expression [60]

(36)

where both and can be expressed as a function of
and the standard deviation

(37)

(38)
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Fig. 13. ROC for “Brick” (160 � 200), cropped down to 128� 128 pixels, withN = 240;

Ns = 0.

Fig. 14. ROC for “b32” (160� 200), cropped down to 128� 128 pixels, withN = 240; Ns = 0.

Note that the Gaussian as well as the Laplace distribu-
tions are just special cases of this pdf, given by
and , respectively. It turns out that coefficients in
the low-frequency range are reasonably well modeled by
a generalized Gaussian distribution with and
sometimes by a Laplace distribution ( ). Coefficients

at high frequencies, however, are in many cases better
modeled by a Laplace distribution and sometimes even by
a Gaussian distribution [60]. What seems to be clear is
that the Gaussian model is not a good model for DCT
coefficients in most cases, especially at low and medium
frequencies.
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Fig. 15. ROC for “Fabric” (160� 200), cropped down to 128� 128 pixels, withN = 240;

Ns = 0.

We will assume that the DCT coefficients are statistically
independent, even though this property is not necessarily
implied from the fact that the DCT coefficients are approxi-
mately uncorrelated, considering that a non-Gaussian model
is more accurate as an approximation to their distribution.
It will also be assumed that samples of DCT coefficients
at the same frequency, in different blocks, are statistically
independent. Thus, we will model the elements ofasso-
ciated with the same DCT coefficient as outcomes from an
i.i.d. random process with a generalized Gaussian marginal
pdf. The parametersand , which completely specify the
distribution, can be different for each DCT coefficient. We
will denote by and the values of such parameters for
the DCT coefficient to which the element belongs.

The statistical characterization of the DCT coefficients
of the original image is an invaluable help for the design
of satisfactory watermark detectors and decoders in terms
of performance. Since the original image is unknown, the
parameters defining the distribution of its DCT coefficients
must be estimated from the image under test. Given the
small alterations produced during the watermarking process
due to the limitations imposed by the invisibility constraint,
and considering that the watermark can also be modeled
statistically, fairly good estimates of the distribution pa-
rameters can be obtained in practice.

B. Watermark Decoder

Let be the message vectors that
correspond to the possible hidden messages. Let us also
define the watermark obtained from each of these vectors
as , , whose elements will be

denoted by . The decoder that minimizes
the probability of error conditioned to a given value of the
secret key, assuming that all the codewords
have the samea priori probability (i.e., the ML decoder),
is the one that seeks the message vectorsatisfying

(39)

Using (36) and (37), and given that the elements ofare
assumed to be independent, this is equivalent to

(40)
It can be shown that, assuming that the message vectors
verify , , ,
the expressions

(41)

are sufficient statistics for the hidden information decoding
problem, and the ML decoder is

(42)

where . When message vectors form a
binary antipodal constellation, in which all possible com-
binations of elements in { 1, 1} are valid codewords
representing different messages, the ML detector
is a bit-by-bit hard decisor

sign (43)
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So finally we have found a transformation that, after
being applied to , drastically reduces the number of
dimensions without loosing any useful information that can
help in the decoding problem. Now we can analyze the
performance of the proposed watermark decoder in terms
of the probability of error conditioned to a given original
image. For doing so, we have to switch back to a statistical
model in which the original image is fixed and deterministic
and only the secret key is random.

Assuming that the watermarked image has not suffered
any alteration, then , . After
plugging this expression into (41), and treating the terms
and the sets as the only random elements in the system,
we can compute first- and second-order moments and draw
some conclusions. Let us assume, without loss of generality,
that . Then

(44)

Let us define the vector , where
. If the pseudorandom sequence

is modeled as outcomes of an i.i.d. random process, as
we did in Section VIII, then the mean and variance of
conditioned to a certain partition are

(45)

Var
Var

(46)

If the sets are sparsely scattered over the whole
image, and the same statistical model as that used in
Section VIII is applicable here, then it can be proved after
some algebra that

(47)

Var
Var

(48)

where we have used the relations and
Var Var Var . If we assume
that the pseudorandom sequence has a uniform discrete
marginal distribution with two levels, {1, 1}, as we did
in Section VIII, then, by observing the definition ofwe
can infer that

(49)

Var (50)

and we can substitute these expressions in (47) and (48) to
obtain the mean and variance of the elements of the vector

conditioned to a given original image. It can also be
proved that when , the expected value of is
negative, with amplitude given by (47). The variance of
in this case is exactly the same as that given by (48).

In the definition of the sufficient statistics we can see
that they can each be expressed as a sum of statistically
independent terms. Therefore, if is not too large, we
can apply the central limit theorem and approximate the
distribution of by a vector Gaussian pdf.

Let us define the SNR

SNR
Var

(51)

Then, under the Gaussian approximation and assuming that
message vectors form a binary antipodal constellation with

points, so a bit-by-bit hard decisor is used, the
probability of bit error is

SNR (52)

C. Watermark Detector

Given a certain key , the detector that maximizes the
probability of detection for any desired probability of false
alarm is given by (11), repeated here

(53)

Assuming equiprobable messages and using the expression
of the generalized Gaussian pdf given in (36), this is
equivalent to

(54)

where is the th message vector. For
simplicity, we will concentrate on the case in which a
“pure” watermark not carrying any hidden information is
employed. Then, under this assumption the log-likelihood
function is considerably simpler

(55)

Once we have derived the optimum structure based on
a statistical characterization of the original image, we
can study the probabilities of false alarm and detection
conditioned to a given fixed original image, assuming
that the secret key is taken at random. The goal is to
obtain estimates of the proportion of keys that produce a
false positive when the detection test is applied directly
to the original image and the proportion of keys that
yield a positive result when they are applied both in the
watermarking stage and the detection test. Let us first
study the distribution of the log-likelihood function when
hypothesis is true. In this case, and assuming that the
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image does not suffer any alteration, we have that ,
. Hence has the form

(56)

which is a sum of statistically independent terms (is
i.i.d.) and, applying the central limit theorem, can thus be
approximated by a Gaussian random variable. Assuming
that all the elements of the pseudorandom sequence have
two equiprobable levels, {1, 1}, it can be easily shown
that the mean and variance of are

(57)

Var

(58)

When hypothesis is true, i.e., when ,
the log-likelihood function has the form

(59)

which is also a sum of statistically independent terms.
Hence is also approximately Gaussian under hypothesis

. If we compare this expression to (56), considering
the fact that equiprobably, for any

, then we can infer that each term in the summa-
tion may take the same two values as in (56), with opposite
sign. Thus, the distribution of under is symmetrical
to the distribution under with respect to the origin. Let

us define and Var . Then,
under the Gaussian approximation, the probabilities of false
alarm and detection are

(60)

(61)

If we define the signal-to-noise ratio

SNR (62)

and we call the value such that
, then the ROC is given by the expression

SNR (63)

which depends exclusively on the value of SNR. There-
fore, this SNR can be used to compare the performance of
the ML watermark detector for different images.

Fig. 16. DCT coefficients where the watermark is embedded.

D. Experimental Results

To contrast the analytical expressions with empirical
results, we have performed experiments with two of the
images shown in Section VII-D, “Lena” and “Brick.” The
former is a good representative of images with flat areas
and sharp edges, while the latter is an example of images
containing noisy textures. In all the experiments the DCT
coefficients in middle frequencies shown in Fig. 16 have
been altered, following the ideas presented in [61]–[63].

We assume that the perceptual mask determines the
maximum amplitude distortion that each coefficient of the
original image may suffer while satisfying the invisibility
constraint. A good psychovisual model in the DCT domain
(with 8 8 blocks) is capital to render the sequence. For
the work presented in this section we have followed the
model proposed in [64] and [65], similar to those proposed
in [66] and [67], that has been also applied to derive
adaptive quantization matrices for the JPEG algorithm [68].
This model has been here simplified by disregarding the
so-called contrast-masking effect, for which the perceptual
mask at a certain coefficient depends on the amplitude
of the coefficient itself. This effect has been taken into
account by other authors [69], [70]. On the other hand, the
background intensity effect, for which the mask depends on
the magnitude of the dc coefficient (i.e., the background),
has been taken into account. The watermark power obtained
from the application of this model has been further reduced
by 12 dB to introduce a certain degree of conservativeness
in the watermark due to those effects that have been
overlooked (e.g., spatial masking in the frequency domain
[54]). In Fig. 17 we show an example of a watermark and
a watermarked version for “Lena.”

In the experiments, we have used the same value of
the distribution parameter for all the DCT coefficients,
leaving it as a system parameter. The variance of each
original image coefficient is estimated from the water-
marked image. In Figs. 18 and 19 we show plots of the
BER for the two test images. Both empirical curves and
analytical approximations corresponding to four values of

are included in each plot. In all cases, empirical measures
have been performed by taking 100 different keys at
random. We can see that the values computed using the
analytical expressions derived in Section IX-B are good

HERNÁNDEZ AND PÉREZ-GONZÁLEZ: STATISTICAL ANALYSIS OF WATERMARKING SCHEMES 1159



(a) (b)

Fig. 17. Example of (a) a watermark and (b) a watermarked version for “Lena” (256� 256).

Fig. 18. BER versus pulse size for “Lena” (256� 256).

approximations of the empirical values. Note that in both
cases the best performance is achieved with . It
is clear from the figures that by choosing an appropriate
value of , performance can be substantially improved. For
example, it is clear that in both images the decoder based on
the Gaussian model for the DCT coefficients of the original
image considerably degrades the BER. This suggests that
the correlation receiver used in [69] and [71], which is
optimum in the Gaussian case, is not a good candidate for
watermark detection purposes.

In Figs. 20 and 21 we show in more detail how the
parameter influences the value of the SNR defined in
(51). The curves have been computed using the theoretical
expressions derived in Section IX-B and the points of the

curve corresponding to , (Laplace), and
(Gaussian) have been circled. Note that the value

of achieving the optimal performance is different in
each image. While the maximum SNR lies somewhere
between and for “Lena,” it falls down
to approximately for “Brick.” Again, there is a
patent difference between the performance achieved with
the correlation receiver (Gaussian case, ) and the
maximum of the curve.

We have also performed experiments with the two afore-
mentioned images to measure the performance of the wa-
termark detector test derived in Section IX-C. In all cases,
empirical measures have been obtained by taking 1000 keys
at random. The DCT coefficients in which the watermark
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Fig. 19. BER versus pulse size for “Brick” (160� 200).

Fig. 20. SNR as a function ofc for “Lena” (256 � 256).

has been embedded are also the ones shown in Fig. 16.

In Table 1 we have gathered both theoretical values and

empirical measures of the signal to noise ratio SNR

defined in (62). As we know, this parameter completely
determines the shape of the ROC, so it can be used as

a performance measure for comparison purposes. We also

show in Figs. 22–25 curves of the theoretical and empirical

and as a function of the threshold. We can see that

the analytical approximations derived in Section IX-C are
quite accurate. The different levels of performance achieved
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Fig. 21. SNR as a function ofc for “Brick” (160 � 200).

Table 1
Empirical and Theoretical Signal-to-Noise Ratio SNR1 (in dB)

Fig. 22. Probability of false alarm with “Lena” (256� 256).
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Fig. 23. Probability of detection with “Lena” (256� 256).

Fig. 24. Probability of false alarm with “Brick” (160� 200).

with different values of are also evident. We can see that
for both images the Gaussian assumption leads to the worst
performance results.

X. CONCLUDING REMARKS

In this paper we have discussed the statistical analysis
of image watermarking algorithms in which the original

image is not needed during the watermark detection and
extraction processes. In this context, watermarking can be
seen as a communication problem in which a signal carrying
some information is transmitted through a noisy channel
where the noise is the original image itself, unknown to
the receiver. Watermark verification can be seen, hence,
as a statistical decision problem involving two tests: first,
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Fig. 25. Probability of detection with “Brick” (160� 200).

detect the very presence of the watermark, then estimate
the information it can optionally carry.

Special attention has been paid to the possible nonavail-
ability of adequate statistical models for the original image
(i.e., the channel noise). When such a characterization
is impossible, a design approach based on a statistical
analysis conditioned to a given original image has been
proposed that allows us to derive efficient structures for
watermark detection and extraction. If a reasonably accurate
model exists, we have shown that it can be exploited to
derive detection structures that can considerably improve
the performance of the watermarking system. In both cases,
a careful theoretical analysis of watermarking techniques
using a statistical approach constitutes a rigorous basis
for the development of adequate embedding and detection
algorithms.

In addition, a theoretical analysis is, in our opinion,
vital in order to get a better understanding of the dif-
ferent problems that arise in watermarking and to assess
rigorously the suitability of different algorithms, consider-
ing the performance requirements of copyright protection
applications. With these ideas in mind, we have focused
on spread spectrum techniques, and we have analyzed how
image characteristics, different kinds of attacks, and system
parameters such as the length of the bit string carried by the
watermark influence the overall performance of the system.

There are still many open research problems in the field
of watermarking for copyright protection. A theoretical
approach to the study of watermarking techniques will
produce immediate benefits, as we have shown in this paper.
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on image watermarks,” inInformation Hiding: Second In-
ternational Workshop,D. Aucsmith, Ed. Berlin, Germany:
Springer-Verlag, 1998, pp. 192–208.

[42] N. Nikolaidis and I. Pitas, “Robust image watermarking in the
spatial domain,”Signal Processing,vol. 66, pp. 385–404, May
1998.

[43] S. Glisic and B. Vucetic,Spread Spectrum CDMA for Wireless
Communications. Norwood, MA: Artech House, 1997.

[44] A. Viterbi, CDMA. Principles of Spread Spectrum Communica-
tion. Reading, MA: Addison-Wesley, 1995.
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Fernando Ṕerez-Gonźalez (Member, IEEE)
received the Ingeniero de Telecomunicaci´on
degree from the University of Santiago, Spain,
in 1990 and the Ph.D. degree from the
University of Vigo, Spain, in 1993, both in
telecommunications engineering.

He joined the faculty of the School of
Telecommunications Engineering, University
of Vigo, as an Assistant Professor in 1990 and
is currently an Associate Professor in the same
institution. He has visited the University of New

Mexico, Albuquerque, NM, for different periods spanning ten months.
His research interests lie in the areas of digital communications, adaptive
algorithms, robust control, and copyright protection. He has been the
Project Manager of different projects concerned with digital television,
both for satellite and terrestrial broadcasting. He is coeditor of the book
Intelligent Methods in Signal Processing and Communications(Birkhauser,
1997) and has been Guest Editor of a special section ofSignal Processing
magazine devoted to signal processing for communications.

1166 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 7, JULY 1999


