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In this paper, we address the problem of the performance a fast and bulky dissemination with no loss of quality. This

analysis of image watermarking systems that do not require the creates new threats to copyright protection and puts the
availability of the original image during ownership verification. whole creative process in danger.

We focus on a statistical approach to obtain models that can . . . .. .
serve as a basis for the application of the decision theory to ~ CTYPtography is an effective solution to the digital dis-

the design of efficient detector structures. Special attention is tribution problem, but it has to be coupled with costly
paid to the possible nonexistence of a statistical description of and specialized hardware in order to preclude direct access

the original image. Different modeling approaches are proposed 4 gata in digital format. However, most cryptographic
for the cases when such a statistical characterization is known . L .
and when it is not. Watermarks may encode a message ar]dprotocols are concerned with secure communications in-

the performance of the watermarking system is evaluated usingStead of ulterior copyright infringements. A good example
as a measure the probability of false alarm, the probability of are the cryptographic devices (set-top boxes) used for
detection when the presence of the watermark is tested, and thegccess control in digital television broadcasting [1]. There,

probability of error when the information that it carries is ex- . . . - .
tracted. Finally, the modeling techniques studied are applied to the the major goal lies in avoiding unauthorized customers

analysis of two watermarking schemes, one of them defined in thet0 access programs that are being broadcast in scram-
spatial domain, and the other in the direct cosine transform (DCT) bled form [2], but once data have been (even legally)

domain. The theoretical results are contrasted with empirical ynscrambled it is quite simple to save them for further

data obtained through experimentation covering several cases of ., qinlation or dissemination. In other scenarios, such as
interest. We show how choosing an appropriate statistical model

for the original image can lead to considerable improvements in € Internet, the “network value” heavily depends on the
performance. existence of relatively cheap and general-purpose hardware

Keywords—Codes, copyright protection, cryptography, deci- that eliminatgs a sigpificant capita} cost both to the user
sion-making, image communication, image processing, informa- and the service provider, as explained by Metcalfe’'s Law

tion theory. [3]. Consequently, there is an increasing need for software
that allows for protection of ownership rights. It is in this
. INTRODUCTION context where watermarking techniques come to our help.

Recent years have witnessed a stunning proliferation of A_d'g'tsl vx{atercrjr;]ark (;S a dr:stlggwshr:ng piece of 'gf%r'
techniques for representation, storage, and distribution of mation that is adhered to the data that it is Intended to

digital multimedia information. Nowadays, network design protgct. There. are two k"?ds of watermarks: perceptible
is oriented to digital data delivery, while content providers and imperceptible. For obvious reasons, the latter are more
are rapidly transforming their archives to a digital format. Suitable to become part of a digital copyright system. Im-
Unfortunately, all these developments have also a seriousPerceptible watermarks obstruct illegal copying by ensuring
drawback: digital copies can be made identical to the that ownership information is unnoticeably embedded into
original; moreover, it is fairly simple to manipulate or reuse the digital data. Considering that watermarking can be ap-
the information in an unauthorized way. Final quality and Plied to data of a very different nature, the imperceptibility
impractica"ty of massive Copying were in the past key constraint must be achieved by Carefu”y taklng into account
factors that put limits to any widespread distribution of the properties of the human senses. For instance, early work
illegal copies; on the contrary, emerging networks allow in the image watermarking field did not tackle adequately
the perceptibility issue and embedded the watermark in
the least significant (the most “insignificant”) bits of the
Manuscript received September 15, 1998; revised January 3, 1999. original image [4]-[7], thus making it easy to remove or
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visual systems (e.g., low sensitivity to edge changes) to a certain value of the probability of false alarm and then
enhance the robustness of the watermark. evaluate if the system gives an acceptable probability of
The previous example leads us to the robustness issuedetection. Note that the probability of false alarm should be
[8]. In addition to imperceptibility, there are some desirable kept to an extremely low value if the watermarking system
features that a watermark should have. First, it should is to be used for commercial purposes, since the existence
be resilient to standard manipulations (e.g., MUSICAM of “false positives” would undermine its credibility.
compression in the case of audio signals [9]) as well In this paper we will concentrate on watermarking of
as intentional manipulations (e.g., watermark-removal pro- still images, which is the case that has generated the
grams discussed below). Second, it should be statisticallylargest amount of research in the field. However, it is
unremovable (or better yet, undetectable), which means thatinteresting to point out that watermarking has been also
a statistical analysis of different pieces of data watermarked applied to other types of data, such as document images
by the same provider should not lead to any gain from [13]-[20], audio signals [21], [22], video signals [23]-[31],
the attacker point of view. Finally, the watermark should three-dimensional (3-D) objects [32], and even software or
withstand multiple watermarking to facilitate the tracking hardware [33], [34]. Many image watermarking methods
of the subsequent transactions to which an image is sub-have mushroomed over the past years, even with com-
ject. Note that for different applications, the watermark mercial products available or in preparation (e.g., NEC,
should resist quite different types of manipulations. An Sony, Hitachi, or Kodak). Although some of them need
example is photocopying, which is a possible attack for knowledge of the original image [35], [36], we will assume
document images, but almost useless when thinking of colorthroughout this paper that this is not available during
images. Furthermore, the computational power required the watermark extraction and detection processes. While
by an attacker will strongly depend on the application; such knowledge would greatly simplify the former tasks,
watermark removal in a digital video sequence would especially if the watermarked image has suffered common
be much more expensive than for a still image. Ideally, geometric distortions, any Internet-oriented long-term prod-
watermark destruction attacks should also affect the original uct should take it as unacceptable, provided that resorting to
data in a similar way; however, to what extent ownership the originals would be unmanageable when huge quantities
should be preserved after data is severely distorted is aof images need be compared by intelligent agents searching
difficult question. the net for unauthorized copies. Then, the detection and
Watermarking, like cryptography, needs secret keys that extraction tasks will have to be performed without access
map rights to owners. However, in most applications, to the source image.
embedment of additional information is required. This  While cryptographic protocols have achieved the desired
hidden information may consist, among others, in owner, security level that expedites their use in electronic com-
distributor, or recipient identifiers, transaction dates, serial merce applications [37], this cannot be said yet for water-
numbers, etc., that may become vital when tracking some marking systems. Recent advances in watermark-removal
illegal distribution. In some cases, a trusted authority that programs, such as unZign and StirMark [38] and others
issues certificates is needed [10]. For instance, signed time[39], [40] that have succeeded in washing the watermark
stamps could be imperceptibly hidden in the original data away with little impact on the perceptibility constraint, even
to prevent counterfeiting based on successive watermarksfor commercial systems, are quite discouraging but will
[11], [12]. In fact, the issue of data hiding (also called foster new research in the field. Actually, most methods
steganography) leads to the problem of correctly extracting that do not require knowledge of the original image are
(decoding) this information once in possession of the secretnot robust to simple geometric transformations or cropping.
key. In most cases, there will be a certain probability This problem, also known as the synchronization problem,
of error for the extracted information. This probability is one of the current salient points in image watermarking
of error can be used as a measure of the performancethat will deserve much attention in the near future.
of a watermarking system. Note that this probability will First stages in the development of watermarking tech-
increase with the number of bits in the hidden message, niques have produced an impressive amount of algorithms,
thus imposing a limit on the length of the secret message even though in most cases no theoretical limits to their
one wants to convey. performance were given. We believe that such a theoretical
In addition to the data-hiding problem there is the de- approach is the only way to turn digital copyright protection
tection problem, in which it is tested whether data were into a mature discipline, at a level comparable to other
watermarked with a certain key, therefore serving for branches of communications and cryptography. In this
ownership determination purposes. The detection problempaper we will show how a careful modeling of the problem
produces a binary answer:; data were (or were not) water-can help not only to assess the performance of the various
marked with a given key. Consequently, the problem can methods but also to considerably improve them. We will
be formulated as a statistical hypothesis test, for which a focus on the study of watermarking systems through the ap-
probability of false alarm (i.e., of deciding that a given key plication of statistical analysis techniques, and we will use
was used while it was not) and a probability of detection statistical decision theory to derive the detection structures
(i.e., of correctly deciding that a given key was used) can be involved when ownership of an image must be verified.
defined as quality measures. More precisely, one would fix The reasons why a statistical approach is convenient are
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K Watermark | without any knowledge abouk or %, since they are not
l Extraction publicly available. The alterations suffered fpgan be thus

modeled as a noisy channel whose ing@nd outputz are
x | linked by the conditional distributiop..,,,.

f Two tests are involved in the ownership verification

v , process. First, a watermark detectbdecides whether the
, Channel image z under test contains a watermark generated with
Watermark Watermark a certain keyX. Hence, this detector takes as inputs the

Insertion Detection K imagez and the secret ke and yields a Boolean output
Fig. 1. General model of a watermarking system. which indicates the decision. If the watermark detector

decides that a watermark is present, then authorship by
the person who possesses the secret kgyis proved

martl?/fold. Fiert’ through a statistical E)rn:jul?tiog of the q and extraction of the hidden message can be performed
problem performance measures can be defined 0 StUOy,panyargs, This task is accomplished by a watermark
rigorously to which extent a watermarking technique can be .. qere. whose inputs arez and K. As a result, it

applied as a copyright protection mechanism. DependenceOutputs an estimat&’ of the hidden message. Note that
of the achievable level of protection on the characteristics

fi IS0 b vzed with h h we have assumed that both the watermark detector and the
of images can also be analyzed with such an approach. . iermark decoder have no access to the original image.
Furthermore, with this kind of analysis it is possible to

btain efficient d h imize th ‘ q The watermark detector is characterized by two perfor-
obtain efficient detectors that optimize the performance and | ... -« measures: the probability of false alafn and

to as_3|g|n ap;pr;)prla]:[e values t_o system pa(rjameters so that the probability of detection”,. The former indicates the
certain level of performance Is guaranteed. probability of yielding a positive result in the watermark

n Slt(a_ctmn Il, we p:jesent adging_ral m?cdel of a Wf]' detection test when does not actually contain a watermark
termarking system and some definitions of concepts t atgenerated fromk. The latter is the probability of getting

will be revisited throughout the paper. In Section Ill, we a positive result when the image does contain such a

Eartu;ulanzs thedg.e'neralfmodel todwatermarkln.g tefhnlqu'es watermark. These two probabilities have been proposed for
ased on the addition of a spread spectrum signa Carrylngquality assessment in [42]. To express these probabilities in

s?me mformstmrll. TShe rest Rjthe p?per rlefers to _th|_s k|||nd mathematical notation, let us denote the event “the image
Oh watebrlmar S'f n eCt'OE q , We orm(le ate stapstm’;x % is watermarked” byH; and the event “the image is not
the problems of watermark detection and extraction of the |\ .o o g byH,. Then

information carried by the watermark, when a statistical
description of the original image is possible. In Section V, Pr 2 Pr {d(z, K) = Hy|Ho} (1)
we formulate the same problems when such a statistical A ' '
characterization of the original image is unknown. Finally, Pp = Prid(z, K) = Hi|H1}. ()
in Sections VIII and IX, we apply the analytical techniques
developed in Sections IV and V to the study of two water-
marking techniques, one performed in the spatial domain
and the other performed in the direct cosine transform
(DCT) domain. The theoretical results derived in both p 2 Pr{f/;«év}. 3)
sections are contrasted with empirical data obtained through
experiments performed with several test images. This is a measure of the overall performance of the wa-
termarking system that is almost useless. Two conditional

II. GENERAL MODEL OF A WATERMARKING SYSTEM error probabilities are specially interesting for their applica-
In Fig. 1 we have represented in block diagram form bility to the design of detectors and decoders. One of them

the general model of a watermarking system. A similar 'S the probability of error conditioned to a given original
model was proposed in [41] in an information theoretical imagez. The other is the probability of error conditioned

context. From now on, variables in bold letters will repre- 1© & certain keyk

The performance of the watermark decoder is given by the
probability of errorF., defined as the probability of getting
a wrong estimatd”

sent vectors whose elements will be referenced using the A -
notationz = (z1, ..., ). Animagez is transformed into Pe(w) = Pr {V # V|$} (4)
a watermarked versiog applying a watermarking function P.(K) a pr{f/ £V|K}. (5)

f that also takes as inputs a secret K€yonly known to

the copyright owner and a messagetaken from a finite The former indicates how appropriate an image is for data
discrete alphabet witli{ elements. If the source output hiding and the latter expresses the average performance
is not watermarked, then it is left unaltered. seen by a copyright holder.

The watermarked versiog is delivered in place ofe In the following sections we study a special kind of
to the intended recipient. Then it can suffer unintentional watermarking function based on the addition of a spread
distortions or attacks aimed at destroying the watermark in- spectrum signal. No explicit assumption will be made about
formation. Note that even intentional attacks are performed the domain wherer is defined. It could be just a spatial
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Fig. 2. Generation of a spread spectrum watermark.
domain representation of the image luminance or any kind whereb 2 (by, ..., bx)T encodes the hidden message and

of representations obtained after applying transforms suchP(K7 z) is anL x N matrix whose elementg;; satisfy
as the fast Fourier transform (FFT), DCT, Karhunen—Loeve

transform (KLT), wavelet transform, etc. pij = agsi, if i€ 51 @)
0, otherwise.
[ll.  ADDITIVE SPREAD SPECTRUM WATERMARKS The columns of this matrixd® = (p, ... py ), will hereafter

Additive spread spectrum watermarking systems, on be called modulation pulses, since the watermark can be
which most of the proposed watermarking techniques expressed as a linear combination of them and can thus
are based, constitute a special case of the general modePe compared to multipulse amplitude modulation schemes
depicted in Section Il. They are inspired by the spread used in communications [45], [46]. The resulting water-
spectrum modulation techniques employed for digital marked image igy = = + w. Equation (6) indicates that
communications in jamming environments [43], [44], since in the watermark generation process the message vector
data hiding can be seen as a communication problem in(b1; ..., by), defined in a space wittv dimensions, is
which the original image plays the role of channel noise mapped in a pseudorandom fashion onto a space with many
and attackers may try to disrupt the transfer of information. more dimensiongL > N). This is what in communica-

In this kind of scheme a spread spectrum two-dimensional tions theory is called “spreading the spectrum.” The high
sighalw (the watermark) carrying some hidden information degree of redundancy introduced in this transformation and
is added to the original image. the dependence of the mapping on the value of a secret

The procedure followed to generate a watermark can key, only known to the copyright owner, are the facts that
be summarized as follows (Fig. 2). Suppose that we want Provide the robustness necessary to resist both unintentional
to hide N bits of information andz has L elements.  alterations and malicious attacks.

First, a pseudorandom sequengeis generated using a
pseudonoise generator initialized to a state which dependslV. WATERMARK DETECTION AND DECODING
on the value ofK. To guarantee invisibility, this sequence WITH KNOWN IMAGE STATISTICS

is multiplied element by element by a perceptual mask  Given an image: under test and a kei(, and assuming
a obtained after analyzing the original image employing that the watermarked image has not suffered neither attacks

a psychovisual model. This mask takes care of the fact nor unintentional distortions, the watermark detection test
that alterations performed to different elementszofiave can be formulated as the binary hypothesis test

different influences on the overall perceptual distortion.
Next, the set of indexe$l, ..., L} is partitioned intoN Hy: z=xz + P(K, 21)b

subsets that we will denote Hy5; } Y ,, satisfyings; N S; = Hy: z=x 9)
0, Vi £ 5. Each of these sets represents the elemenis of
in which a certain information bit is going to be hidden.
The partition can in general be key dependent to provide
an additional level of resilience to attacks directed against
specific hidden information bits. Then, the final expression
of the watermarkw is

wherex; and zy are images. The goal of the watermark
detection test is to decide whether the imageontains a
watermark generated by the copyright holder who possesses
the keyK. It is not necessary to decode the hidden message.
Therefore,b must be regarded as a random vector with a
probability mass function (pmf) equal to the probability
w; = bjoys;, ViesS; (6) distribution of the messagds. Even thoughK is known

(it is the key under test), the matriR is a function of the
original image, which is supposed to be unknown. For each
possible value of the message vechkothere is a unique
value ofz satisfying the equation = = + P(K, z)b. The
functional relationship betwee® and z is usually quite
complex, so it is in practice very difficult to know the set of
w= P(K, z)b (7 possible original images that could have been mapped onto

wherej is any index in{1, ..., N}, andb; is a coefficient
used to encode thgh bit of the hidden message. Finally,
the watermarked imagg is obtained by adding the wa-
termark to the original image. Using vector notation, the
watermarkw can be expressed as
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z during the watermarking process. We can alternatively models and the partition{S;}¥ ; statistically. This leads
assume thaP(K, «) is approximately the same for all the to a statistical model of the matriR(x, K'), which can be
possible values ob and substituteP( K, xz) by P(K, z). used to compute the conditional probabilities of false alarm
This is a reasonable approximation since the distortions and detection

introduced by the watermark are small, so they are expected

to produce negligible alterations in the perceptual mask. Pp(z) = Pr{d(z, K) = H:} (13)
Then, the test in (9) is approximately equivalent to the Pp(x) =Pr{d(x+ P(z, K)b, K) = H;} (14)
binary hypothesis test

Hi: z=x,+P(K, 2)b
Hol zZ =X (10)

and the conditional probability of error
P.(z) =Pr{e(x + Pz, K)b, K) # b}. (15)

Givenz, Pr(x) indicates the proportion of keys that, after

and the dependence @ on z has disappeared. L&t € . S\ X S
{H., Ho) be the decision made in the watermark detection _bemg applied in the detection test performed to the original

test (functiond in Fig. 1). The probability of false alarm, Magez, yield a positive result. The probabilit’n(x)
defined asPr = Pr{S = H,|H,}, will be required to gives the proportion of keys that, after being applied in

lie below a certain maximum value to guarantee that the the watermarking and detection processes, yield a positive

watermarking system is reliable. The design of the detector result. The_probabilityf_’e(:c) indicates the propor;ion_ of
structure will be aimed at maximizing the probability of K&YS for which a decoding error occurs when applied in the

detectionP, = Pr{S = Hi|H,} which corresponds to the ~Watermarking and decoding processes. .
maximum allowablePy. Usually the log-likelihood functions involved in the wa-

In the watermark decoding test it is assumed thebes termark detector and decoder can be expressed as a function

contain a watermark belonging to the copyright holder who ©f & vectorr = (ry, ..., ) of sufficient statistics. In this

possesses the secret key under test. For this reason, th62Se: the conditional probabilitié$(x), Pr(x), andPp(z)

decoding process is performed only i, is decided in can be evaluated by studying the conditional distributions

the watermark detection test. The goal of the decoder is to Ji(

obtain an estimaté of the message vectérin such a way

that the probability of error is minimized. Following similar V. WATERMARK DETECTION AND DECODING

arguments as in the discussion on the watermark detectionVITH UNKNOWN IMAGE STATISTICS

test, the matrixP(K, «) can be approximated bi( K, z). In some cases the distributiof).(xz) may be unknown
Assuming thatK is fixed, there are two random vectors or difficult to approximate. For example, there are no

in the statistical decision tests we have just formulated: satisfactory statistical models for images in the spatial

z andb. If the distribution f,.(x) is known, the optimum  domain. The approach discussed above for the design of

decision tests are given by the Neyman—Pearson rule [47].the watermark detector and decoder is not applicable in

In the watermark detection test, for example, the optimum such a situation.

T|H07 '1") and fr(’r|H17 b7 '1")

detector which maximizes th&, conditioned to a given In Section Ill, we saw how in the watermark generation
K for any value of Pr is given by the test process the message vectowas mapped onto a vector
(2|H,. K b)f.(z — Pb) L with a much higher number of dimensions. Therefore, it is
In L;}) =lIn Z M z n (11) reasonable to apply a transformatioe: (K, z) to reduce
Ja(z|Ho) b fo(2) Ho the number of dimensions of the image under temtd then

where 5, is a threshold. If the messages are assumed to@nalyze the statistical decision problem in the transformed
be equiprobable, thep(b) = 1/M, ¥b. Then, the optimum ~ SPace. One such a transformation is, for instance
watermark decoder which minimizes the probability of error L o p

conditioned toK is given by the maximum likelihood "= Z CISIE tefL ., N} (16)
structure. The outpuli of the decoder is therefore

b=arg max In f.(z|b) = arg max In f.(z— Pb). (12)

JE€S;

which is nothing but the correlation receiver applied in
spread spectrum communications [43], [44]. Expressed in

Expressions (11) and (12) define the detector and decodeector notation

functions d(z, K) and e(z, K), respectively, represented r=PU(K, 2)z 17)
in Fig. 1.

Once these functions have been designed, it is interesting In practice we will make some assumptions about the
to study the influence of image characteristics in the per- distribution ofz to designh (K, z). In some situations it is
formance. A measure of the goodness of an imader possible to exploit statistical properties such as ergodicity
watermarking purposes can be obtained by conditioning and quasi-stationarity to obtain estimates of the first- and
the probabilitiesP., Pr, and P, to x and treating the second-order moments of In those cases, even though the
secret keyK and the message vectbias the only random  exact shape of the distribution of the original image is not
variables in the system. In other words, we can regard aknown, at least means, variances, and cross covariances
given original imager as a fixed deterministic vector and can be approximated and this information can help to
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Fig. 3. Dimensionality reduction and watermark detection.

improve substantially the performance associated with the
dimensionality reduction transformation.

For instance, a key-independent linear minimum mean
square error (MMSE) estimate af can be computed before
entering the correlation receiver. This filtering operation
can considerably reduce the noise contribution due to the

original image. Letmn, 2 E[z] be the mean of and let

R, be the covariance matrix af, defined as,, 2 El(z—
m,)(x —m,)7]. If we assume that the watermarked image
does not suffer any alteration, then= z + w. As we said
before,w is actually a function ofr since the perceptual
mask is computed from it. We can, however, assume that
the perceptual mask is approximately the same for all the
possible values ofc that can be mapped onte after
being watermarked with a certain pdif, b. Thus, we can
assume thatw and z are statistically independent. Under
this approximation, the optimum linear MMSE estimator
of w is

A~

W= R,(R, +R,) (z—m.) (18)

wherem_ is the mean value of. Then, the number of
dimensions can be reduced applying the correlator receiver
as we did before, obtaining as a result

r=P'w=P'R,(R,+R,) Yz—-m.). (19)

Note that in practiceR, will be estimated fromz since

z is not available in the watermark verification process. In
fact, a reasonable approximationRs + R, ~ RZ. We can
also estimateR,, from the image under test, since a good
approximation to the perceptual maekcan be obtained
from z.

Once the dimensionality reduction functig{k, z) is
defined, it is possible to study the statistical properties of
its outputr for a fixed original imager, assuming thak is
taken at random. Then we can make use of this statistical
characterization to design optimum detector and decoder
structures. In Fig. 3 we represent graphically the scenario

corresponding to the watermark detection process. Suppose

we choose a certain original image If it is watermarked
(hypothesisH;) taking some pairk, b at random, the
resulting vectory has a distribution that corresponds to
the transformation of the distribution & andb when the
functiony = z + P(K, z)b is applied. After passing

HERNANDEZ AND PEREZ-GONZLEZ: STATISTICAL ANALYSIS OF WATERMARKING SCHEMES

Dimensionality

Watermarking Reduction

x +P(K,x)b,

x +P(K,x)b,

Observation

Watermarked Space

Images

Original
Images

Fig. 4. Dimensionality reduction and watermark decoding.

through the dimensionality reduction functiéfX’, y), the
resulting observation vectar will have some conditional
distribution f,.(r|H1, x).

If z is not watermarked (hypothesk,), the application
of the dimensionality reduction function will result in
an observation vector = h(XK, z) with a conditional
distribution f,.(r|Hy, ), which ideally can be evaluated
applying the transformatioh( X, ) to the distribution of
K [note that the functiom.(K, z) is independent ob].
Given an observed vectet the detector which maximizes
the conditional probability of detectiof’,(x) for every
value of the conditional probability of false alarfy(x)
is given by

folr|Hy, ) 2

In n
f,,('r|H0, .’L') Ifo

(20)

wheren is a threshold. Even though the detector depends on
x, which is not available during the watermark verification
process, in practice only some “macroscopic” properties of
z will be required, and it will be possible to estimate them
from z. Furthermore, certain families of function$x’, y)

as, for example, those of the form = >, h; (K, v;),
allow the application of the central limit theorem to ap-
proximater by a Gaussian distribution, since the elements
w; of the watermark are statistically independentsifs
modeled as an independently identically distributed (i.i.d.)
sequence. This kind of function appears, for instance, when
the modulation pulses are sparsely spread and the image
samples are assumed to be statistically independent if they
are not too close.

A similar approach can be undertaken for the design of
the watermark decoder. In this case the scenario is repre-
sented in Fig. 4. After watermarking with a given vector
messageb and a random secret kel(, the observation
vectorr has a distributiory,.(r|b, ) that can be evaluated
by applying the transformatioh(K, £ + P(K, x)b) to
the distribution of K. Therefore, given an observed vector
r = h(K, z), the optimum decoder which minimizes the
conditional probability of errorP.(x) assuming that all
codewordsb have the samea priori probability is given
by the maximum likelihood (ML) decoder

b= arg max fr(r|b, z). (21)
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In general, different decoders are associated with differenttest and the ones actually present in the image produces
imagesz, since the probability density functions (pdf's) drastic degradations in the distribution sfonditioned to

are conditioned tar. Even though the original image is Hy, so that it can even become indistinguishable from the
assumed to be unknown during the decoding process, thedistribution ofr conditioned toH,. A promising approach
decoder will actually depend on a few image-dependent to achieve robustness against geometrical distortions is the
parameters that can be estimated from the imagmder use of transforms invariant to rotations and scalings [50].
test. The same kind of approximations resulting from the

application of the central limit theorem can be made for \,; ErrorRPROTECTION CODES

certain functionsh(z, K) as when we talked about the
watermark detector. It is even possible that exploiting this
kind of approximations a decoder independentaksults
(see Section VIII).

The performance of the watermark decoder can be im-
proved if channel codes are used to encode the hidden
messages carried by the watermark. Ldie the number of
elements ofc and{by, ..., by} the message vectors asso-
ciated with theA/ possible messages that can be encoded
by the watermark employing the generation mechanism
explained in Section Ill. The watermarks that result after
multiplying each of these vectors by the mat#kcan be
seen as points in thé-dimensional spac&”. A channel
encoder basically transforms these points into a different set
of points in such a way that the distances between any two
of them is increased [51]. Placing the watermarks farther
from each other in the space helps to reduce the probability

VI. THE IMPACT OF DISTORTIONS AND ATTACKS

In Sections IV and V, we have assumed that the wa-
termarked imagey did not suffer any alteration during
distribution. However, in practice the watermarked image
may be altered either on purpose or accidentally by linear
filtering distortions, cropping, scaling, rotations, etc., and
the watermarking system should still be able to detect and
extract the watermark. The distortions are limited to those of error in the watermark decoding stage. In fact, the

not producing excessive degradations, since otherwise th‘E'Watermark generation procedure exposed in Section Ill can

image would bg_come unusable. pistortions and attacks.in-be seen as an encoding scheme that places the codewords
troduce an additional transformation between watermarking in the subspace spanned by the vecirs. .., py.

and verification that changes the statistical distributions of One of the problems that image watermarking has to

r involved in the watermark detection and decoding tests. ., it is the extremely low signal-to-noise ratio (SNR)
As a consequence, the performance of thes_e tests can bﬁ1 each dimension of thd.-dimensional space. In other
degraded. Given a watermarklng system W.'th a certain words, the power of the original image, which is unknown
structure, the goal of an attacker is to alter the image in suchto the decoder, is much stronger than the power of the
a way that it is not severely distorted and the distribution watermark. As ’a consequence, an acceptable probability

of r is transformed so that the probability of detection is of error in watermark decoding can be achieved only by

glecreased. The main obstacle the attacker must deal W'thadding a large amount of redundancy during the encoding
is the uncertainty about the value of the secret key used by

th iaht process. For this reason, the number of hidden message bits
€ copyright owner. . . - that can be embedded into an image is limited, depending
The ideal solution against attacks is the application of

e 2 on the size of the imagel] and its power.
robust statistical decision theory [48], [49]. Instead of geL] P

deriving th i ‘ K detect d decoder Ideally, channel codes should be designed with as many
eriving the oplimum watermark detector and decoder for degrees of freedom as dimensions are available. Unfortu-
certain distributions of the observation vecter robust

detecti d decoding devi desianed t .. _nately, this is a difficult task considering the low SNR per
the ec |oni an ecof INg devices are (tes(;gne_th ?hmax'm'ztedimension that usually appears. A practical approach that
€ worst-case periormance, associated wi € WOrSt.an be undertaken is to use a block code or a convolutional

case attack. Robustness criteria can also be applied to th%ode and increase the number of pulses so that the message
watermarking system as a whole, searching simultaneouslyIength is left the same

the Watermarking functiorf and the watermark decoder Channel codes have been successfully used in image
gnd dgte_ctod (Fig. 1) SUCh. th_at the_worst-case performance watermarking systems [50]. The use of Bose Chaudhuri
is opumlzed. However, it is dlfflcult to mode] aII' the Hocquenghem (BCH) and Golay codes [51], [52] in the
pO.SSIbIe attacks that_ can appear in a prqct!cal situation. Forcontext of spatial-domain image watermarking and the
thls_reason, the appll_catlon of robust statlstlcgl_theory to the influence of parameters such as the redundancy and the
design of watermarking schemes is an ambitious task thatminimum distance in the performance of the watermark

can hardly provide useful resullts. . . decoder as well as the watermark detection test are studied
The most harmful attack against an image watermarking in [53]. Promising results, not published, have also been

system bgs_ed on additivg spread spectr'um watermarks isobtained for convolutional codes.
that consisting in geometrical transformations such as scal-

ings and rotations in the spatial domain. The sensitivity of

the watermark detector to this kind of manipulation is due to VHIl.  SPATIAL DOMAIN WATERMARKING

the white nature of the pseudorandom sequence. The reason Let us now apply the ideas exposed in Sections IV and V

is that with such a sequence, a slight mismatch betweento the analysis of spread spectrum watermarking of images
the modulation pulses generated during the verification defined in the spatial domain. We will thus assume in this
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section thatz represents the luminance component of a we obtain the vector
digitized image. Although we W|II_ c_oncentrate _ourlattent|on r= Py — PTHe + PTHPD, 22)
on grey-level images for simplicity, our derivations can
be easily extended to color images by including in the Recall thatK is the only random element in our model.
image mathematical model three vectors, each associatedHence, z is deterministic and the matriy is random.
with one of the three components in a luminance and color The coefficients of the Wiener filter are computed from
differences representation. the image under test and depend, therefore, on the value of
Unfortunately, there are no statistical distributions suit- K. This fact implies that the filte is actually random
able for modeling the luminance component of common im- and statistically dependent dd However, considering the
ages in the spatial domain [54]. Without a satisfactory statis- small alterations that watermarks produce, the variability
tical model for the original image, we cannot apply the de-  experienced by the filter coefficients can be expected to be
cision theory as described in Section IV to the design of the small. Thus, it is legitimate to assume ttdtis determin-
optimal watermark detector and decoder structures that op-istic and independent aP. After this approximation, only
timize the performance conditioned to each value of the se- matrix P is random in (22).
cret key (the performance that each copyright owner sees). To obtain a statistical characterization fwe need to
However, we can project the imageunder test onto  define a model for the matriR. As indicated in Section I,
a subspace and apply the design techniques presentethe columns of this matrix are the pulsgs ..., py that
in Section V. An interesting candidate among the trans- compose the watermark. Since these pulses are nonover-
formations that can be used to reduce the number of lapping, each row of” has only one nonzero element for
dimensions is the correlation receiver= P?z already every value ofK. Furthermore, if we take thé&h row, the
discussed in Section V. The correlation receiver provides value of the nonzero element igs;. The pseudorandom
sufficient statistics for both the watermark detection and sequence is key dependent and thus must be treated as a
the watermark decoding problems when the watermark random vector. In order to simplify the discussion, we will
is immersed in zero-mean white Gaussian noise. For thismodel it asL outcomes of an i.i.d. random process with a
reason, this is a reasonably good choice. discrete marginal distribution with two equiprobable levels
Images found in practical situations are nonstationary {—1, 1}. The results given below can be straightforwardly
in the spatial domain since the broad range of objects extended to any kind of marginal distribution.
that can be represented in the same image may result in We will assume that the pulsefp,}, are sparsely
considerable variations in statistical properties of luminance scattered over the whole image in a key-dependent pseu-
samples along the image. Nevertheless, in most cases thelorandom fashion to provide diversity that strengthens the
aforementioned statistical properties do not substantially robustness to attacks directed against particular bits. We
differ in adjacent pixels. In other words, the imagean be also assume that the watermark covers all the pixels of the
approximated as a quasi-stationary random process. If weimage. Then, the setsS;}¥ ;| constitute a partition of the
also assume that it is ergodic, then we can estimate the firstset{1, ..., L}, so each image pixel is assigned to only one
and second moments of the original image at each pixel by of those sets. This pixel assignment mechanism must be
computing averages in block neighborhoods. As we said modeled as a random procedure since it is key dependent.
before, the original image is not available in the copyright We will assume that every index € {1, ..., L} is in-
verification process, so these statistics must be calculatedcluded in any of the set§S; }.Y, with the same probability
from the image intended to be tested. 1/N and that the assignment is performed independently
As discussed in Section V, knowledge about the first- and for each index. As a consequence, for every valuesof
second-order moments of the original image can be used toany row of P has one and only one nonzero element, which
improve the performance of detection and decoding when belongs to any of the columris ..., N with probability
done in the projection subspace, even if this knowledge is 1/N. Under these assumptions, and after some algebraic
an approximation to the actual values. A Wiener filter, for manipulations, the first- and second-order moments of the
instance, can be used to obtain a linear MMSE estimate elements ofr conditioned to an original image and a
of the watermark. This estimate eliminates part of the message vectds can be shown to be [45], [55]

original image component before the projection process, 1 L
thus improving the achievable performance in detection and E[rj|Hy, b, x] =b; N Z hk,kai (23)
decoding. k=1

We will also assume that the watermarked image  var(r,|H;, b, z)
may have been distorted by a linear filter, either as a

L 5 L
consequence of alterations occurring during distribution or  _ 1 22, b7 4 _ 2 4

as a result of attacks aimed at destroying or corrupting the N kz_:_l T N (E[S ] 1) ;::1 K
watermark. This filter can be combined with the Wiener sz

filter discussed above to form an equivalent linear system — /L No1 &
represented by ah. x L matrix that will be calledH. + JNQ SN R adal + 8 7 > by
Therefore, we will find the signad = Hy = Hx+ HPb at k=1 Ik k=1

the input of the correlation receiver. After being projected, (24)
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Cov(r;, 7j|Hy, b, x) message vectors, the minimum Euclidean distance decoder
is equivalent to a bit-by-bit hard decisor with the decision
= —bib; N2 Z hE %, t#£ 7 (25) threshold located at the origin. Then, the output of the
decoder is

where h; ; are the elements o and z; 2 Hz. In b, = sign(r;), tef{l,...,N} (28)
practical situations the cross-covariance terms are negligible
compared to the terms in the diagonal of the covariance and the probability of making an error when decoding a bit

matrix. Hence, we can assume that the elements afe  [also known as bit error rate (BER)]'is
approximately uncorrelated. a
Since every modulation pulse is sparsely spread out over Py = Q(;) (29)

the whole image, if the kernel of the filtel for every

elementz; is small compared to the image size, i.e., if which can be easily computed from the channel parameters.
every row ofH has only a few nonzero elements, then the
elements ofr can be expressed as a sum of statistically
independent terms. The number of terms summed.yp

on average, is in practice large since a high level of The optimum watermark detector, whose structure has
redundancy is necessary if an acceptable performance ioeen already derived in Section V, is given by (20). An
desired. Hence, we can apply the central limit theorem and equivalent expression for this Neyman—Pearson test is
assume that is approximately Gaussian.

B. Watermark Detector

Hy
Thus we have come up with a Gaussian model for the In Z (b) fo(r|Hy, 2, b) S n (30)
observed vector that can be exploited to obtain detector i fr(r|Ho, =) ;0

and decoder structures.
wheref.(r|H1, z, b) is the Gaussian pdf that has just been

derived in the analysis of the ML watermark decoder. In
order to obtain the pdf of under hypothesi#, i.e., when

x is not watermarked, let us suppose thanstead ofy is
tested. Then, the observation vector is

A. Watermark Decoder

The optimum ML watermark decoder, derived in
Section V, is given by (21), wherg.(r|z, b) is the distri-
bution at which we have just arrived. If we observe (23)
and (24), assuming thd{ ¢ {—1, 1}, Vi € {1, ..., N} r— PTHe. (31)
and that the covariance matrix is approximately diagonal,
we can infer that the observation vectocan be modeled In this case, it can be easily shown thais zero mean,
as the output of an additive white Gaussian noise (AWGN) white, and the variance of its elements is
channelr; = ab; +n;, ¢ € {1, ..., N}, where

Mh

L
1 kxf (32)
=+ 2 hexai (26) = "
k=1
N Every element ofr can still be expressed as a sum of
andny, ..., ny are samples of an i.i.d. zero-mean Gauss- jndependent random variables. Therefore, under hypothesis
ian random process with variance H,, the observation vector can be accurately approximated
L by a zero-mean white Gaussian vector with variance given
33 o -0 3 e by (2) |
=1 In Fig. 5 we have represented graphically an example
1L of the Gaussian distributions conditioned to the hypothesis
+ % SN hicgal + Z h3. ki Ho and H, when N = 2 and there are four equiprobable
k=1 Ik messages. Given an observatigrthe watermark detector
(27) must decide to which of these distributiondelongs. Sup-
pose thatN, pulses, e.g.pi, ..., py,, are modulated by

We know from communication theory that the optimum message-independent known coefficients. These reserved
ML decoder for an AWGN channel seeks the message pylses can be used to improve the performance of the
vectorb closest to the observation vectom the Euclidean  atermark detection process since the uncertainty about the
distance sense. Therefore, this decoder structure minimizegyossible message vectors that the watermark may carry is
the probability of error conditioned to the original image  thus reduced. Assume also that the remaining pulses are
In other words, given some original image this detector  modulated by coefficients in a binary antipodal constellation
minimizes the chances that the key under test yields anijth & — ~, dimensions (hencey/ = 2¥="-). Then, the
error while extracting the hidden message. logarithmic function in (30), which will be denoted Bgr),
When a binary antipodal constellation is used to encode
M = 2V possible messages, i.e., when all possible com-
binations of N elements taken from {1, 1} are valid 1Q(x) 2 (1/v27) [ et 12t
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will be a mismatch between the modulation pulses gener-
ated during the projection process and the pulses that are
actually in the image under test. Given the white nature
of the pseudorandom sequence from which these pulses
are generated, we can expect a rapid degradation of the
equivalent channel parameters in terms of the signal to noise
ratio (defined ag0 log a/c) as we increment or decrement
the rotation angle or the scaling factor.

A countermeasure to weaken the effect of attacks based
on geometrical transformations is the design of a spatial
synchronization algorithm that estimates the transformation
suffered by the image. Since the original image is not
available, only knowledge about the watermark can be
exploited to recover the size and orientation that it had
before the attack. Le§ be a vector of parameters defining
the geometrical transformation that was performed by the
attacker. An estimate df can be obtained if we search the
(b) vector of parameters that, after being applied to transform
the modulation pulses locally generated in the projection
process, maximizes the log-likelihood function in (30). In

Fig. 5. PDF’s involved in the watermark detection problem.

can be expressed as [45] mathematical notation [45]
N N (r|Hy, z, b 5/)
oo @®N 1/1 1 ) U fr(r|Hy, =, b,
Uy =Nln2_2°2 - _ ~ . £ =arg max In p(b) . (34)
) s 202 2 <02 aé) — Ti ¢ zb: Ir ("'|H07 x, fl)
N, N H . . . L .
a ] ari\\ > However, this exhaustive search technique is impractical
+ = Z Ti+ Z In (COSh (?)) < - due to the narrowness of the peak of the log-likelihood
=t =Nt ° 33) function, which is a consequence of the white nature of the

watermark. Resilience to scaling and rotation distortions is

The probability of false alarnPy(z) indicates the chance Still in fact a challenging problem in image watermarking.
that, given a certain nonwatermarked imagethe key
under test yields a positive result in the watermark detection D. Experimental Results
test when applied ta. On the other hand, the probability To verify the validity of the model described in previ-
of detection Pp(z) indicates the chance that, given a oys sections, analytical results have been contrasted with
certain original imager, the secret key under test yields empjrical data obtained through experimentation. We have
a positive result in the watermark detection test when ;se( five test images, shown in Fig. 6. These images were
applied to watermark: and to detect the presence of the chosen for their different characteristics in terms of flat
watermark. Although there is no close form expression for greas. noisy textures, etc. In Fig. 7 we show an example of
the probabilities of false alarm and detection conditioned to 5 \watermark and a watermarked version for “Lena.”
the original imager as a function of the thresholgl it is The perceptual model we have chosen for the experimen-
possible, however, to obtain Chernoff bounds [47]. These (5] work in spatial domain watermarking is described in
bounds, as well as approximations, were derived in [45]. [54], [57], and [58] and exploits the spatial masking prop-
erties of the human visual system (HVS). The perceptual
C. Attacks maska, obtained after the analysis of the original image,
Attacks suffered by the watermarked imageaffect the indicates the maximum allowable standard deviation of
channel parameters and &, thus altering the achievable noisy alterations at each pixel. The pseudorandom sequence
performance in both the watermark detection and decoding s is assumed to have a discrete marginal distribution with
tests. Linear filtering attacks are already included in the two levels, {~1, 1}. This means tha¢ has unit variance at
model we have assumed when we began the analysis. Theievery pixel, so if it is multiplied element by element by
impact in performance can be studied by assigning valuesthe invisibility constraint will be satisfied.
to the coefficients of the matrikl. The effect of attacks in In our experiments, a spatially variant Wiener filter is
which the image is cropped, so that some watermark energyused before the correlation receiver to eliminate part of
is lost, can be studied by taking out from summations in the noise contribution due to the original image. The
(26) and (27) those terms whose indexcorresponds to  coefficients of this filter are computed using (18) under the
pixels that do not survive the attack. Undoubtedly, the most assumption that the original image is white, i.e., tfit
harmful kind of attack is that consisting in geometrical is a diagonal matrix. LeC denote the matrix associated
transformations of the image in the spatial domain [56]. with the Wiener filtering operation. If we assume that the
If the watermarked image is either scaled or rotated, therewatermarked image has not suffered any alteration, then
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Fig. 6. Original images used in the experiments.

R. = R, + R, sincex andw are uncorrelated. Hence,
the Wiener filter can be expressed@s= R, R, whose
coefficients are

B

, ifi=y

VN

(35)

Ci,j = 2}
0, otherwise
where o—i is the variance ofz;, which can be estimated

from the pixels in a block neighborhood around The
mean vectorn . in (18) can be similarly estimated from

keys at random. The first figure represents the BER when
the watermarked image is not altered during distribution.
In Fig. 9 we have plotted the BER when an attacker adds
to the watermarked image Gaussian noise whose variance
at each pixel is shaped by the perceptual masko that

the perceptual distortion is minimized. Fig. 10 shows the
BER that results when the image is distorted by a Wiener
filter aimed at obtaining an estimate of the original image
so that the watermark is partially destroyed. We can see

In Figs. 8-10 we show plots of the BER associated to the that the analytical approximations are reasonably close to
watermark decoder derived in Section VIII-A as a function the empirical results. The dependence of the performance
of the average size of the modulation pulses. In all caseson the image characteristics is also evident from the plots.
the empirical measures have been obtained by taking 100The shift of theoretical curves with respect to the empirical
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Fig. 7. Example of (a) a watermark and (b) a watermarked version for “Lena” (25456).
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Fig. 8. BER without attacks.

data is due to the watermark-dependent nature of the Wienerhave been cropped down to a size of 128128 pixels.

filter coefficients, which has not been statistically modeled. The curves show that the Chernoff bound provides a fairly
We have also measured through experimentation good approximation of the ROC. Comparing the figures

the performance of the watermark detector derived in we can see that performance of the watermark detection

Section VIII-B and contrasted the empirical data with the test clearly depends on the characteristics of the image

analytical results. Measures have been obtained by takingcontents. Note for instance the difference between the

400 keys at random. In all cases the watermark carriesROC of “Lena,” an image with many flat regions, and

240 bits of hidden information. In Figs. 11-15 plots of the “Brick” or “b32,” both with more noisy textures.

receiver operating characteristic (ROC) are shown for all

the test images. The empirical curves actually represent the

experimentally measured, versus the Chernoff bound X. DCT DOMAIN WATERMARKING

for the Pr because the values aPr in the range of In this section we will assume that the vectoris the

thresholds in whichP, begins to fall down are so small DCT of the luminance component of the original image,

that they cannot be estimated through simulations. For aapplied in blocks of 8x 8 pixels, as in the JPEG algorithm.

fair comparison of the performance results, all the images Then, z can be splitted into 64 vectors, each gathering
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BER with Gaussian noise aftack
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Fig. 9. BER with additive Gaussian noise attack.
BER with Wiener filtering attack
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Fig. 10. BER with Wiener filtering attack.

the elements that correspond to one of thex8 DCT
coefficients.

A. Statistical Model for the DCT Coefficients

The DCT coefficients of common images have inter-
esting properties that can be exploited to obtain good

watermark detectors and decoders. One of the most inter-

esting characteristics of the DCT is energy compaction. In

1154

fact, it has been proved that the DCT converges to the
Karhunen-Leve transform (KLT) for images that can be
statistically modeled as first-order Markov processes with a
correlation factor close to one [59]. As a consequence, we
can assume that the DCT coefficients are uncorrelated.
Another interesting property is that the histograms of the
ac coefficients can be better approximated than luminance
samples in the spatial domain by analytical expressions of
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ROC with Lena (256x256), Wiener preprocessing, cropped to 128x128
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Fig. 11. ROC for “Lena” (256 x 256), cropped down to 12& 128 pixels, with N = 240,
Ns = 0.
ROC with Tiger (128x128), Wiener preprocessing
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Fig. 12. ROC for “Tiger” (128 x 128), with N = 240, N, = 0.

known pdf's. An early proposal as a statistical description where bothA and 3 can be expressed as a function cof
of the ac coefficients is the Gaussian model. However, and the standard deviation

more recent studies have shown that a more accurate
approximation is the generalized Gaussian pdf, given by
the expression [60]

fa(z) = Ae1Pel° (36)
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ROC with Brick (160x200), Wiener preprocessing, cropped to 128x128
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Fig. 13. ROC for “Brick” (160 x 200), cropped down to 12& 128 pixels, withN' = 240,
Ns = 0.
ROC with b32 (160x200j), Wiener preprocessing, cropped to 128x128
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Fig. 14. ROC for “b32" (160x 200), cropped down to 128 128 pixels, withV = 240, N, = 0.

Note that the Gaussian as well as the Laplace distribu-at high frequencies, however, are in many cases better
tions are just special cases of this pdf, given by= 2 modeled by a Laplace distribution and sometimes even by
and ¢ = 1, respectively. It turns out that coefficients in a Gaussian distribution [60]. What seems to be clear is
the low-frequency range are reasonably well modeled by that the Gaussian model is not a good model for DCT
a generalized Gaussian distribution with= 1/2 and coefficients in most cases, especially at low and medium
sometimes by a Laplace distribution € 1). Coefficients frequencies.
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ROC with Fabric (160x200), Wiener preprocessing, cropped to 128x128
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Fig. 15. ROC for “Fabric” (160 x 200), cropped down to 12& 128 pixels, with’N = 240,
Ne = 0.
We will assume that the DCT coefficients are statistically denoted by(wy, ..., w;y). The decoder that minimizes
independent, even though this property is not necessarilythe probability of error conditioned to a given value of the
implied from the fact that the DCT coefficients are approxi- secret key, assuming that all the codewofdls, .. ., b/}

mately uncorrelated, considering that a non-Gaussian modelhave the sama priori probability (i.e., the ML decoder),
is more accurate as an approximation to their distribution. is the one that seeks the message velit@atisfying
It will also be assumed that samples of DCT coefficients b _
e o fo(zlb) L fa(z—w)
at the same frequency, in different blocks, are statistically In Flalbn) In oz —wp)
independent. Thus, we will model the elementseadisso- =i * m
ciated with the same DCT coefficient as outcomes from an Using (36) and (37), and given that the elements: afre
i.i.d. random process with a generalized Gaussian marginalassumed to be independent, this is equivalent to

>0, VYm#lL (39)

pdf. The parametersando, which completely specify the L . .

distribution, can be different for each DCT coefficient. W §~ % = Wi, i _ETT S0, Ym#£L
will denote by¢; ando; the values of such parameters for i1 7;

the DCT coefficient to which the element belongs. (40)

The statistical characterization of the DCT coefficients It can be shown that, assuming that the message vectors
of the original image is an invaluable help for the design verify b;; € {-1, 1}, Vie {1,..., M},i€ {1, ..., N},
of satisfactory watermark detectors and decoders in termsthe expressions
of performance. Since the original image is unknown, the
parameters defining the distribution of its DCT coefficients
must be estimated from the image under test. Given the kes;
small alterations produced during the watermarking processare sufficient statistics for the hidden information decoding
due to the limitations imposed by the invisibility constraint, problem, and the ML decoder is
and considering that the watermark can also be modeled

T = Z lon + aonf™ =~ Jon = owon|™ (41)

Ck
T

T _ N T
statistically, fairly good estimates of the distribution pa- b= arg X bor (42)
rameters can be obtained in practice.
wherer = (r1, ..., rx)T. When message vectors form a
B. Watermark Decoder binary antipodal constellation, in which all possible com-

binations of ¥ elements in {1, 1} are valid codewords
representingl/ = 2V different messages, the ML detector
is a bit-by-bit hard decisor

Let B = {by, ..., bys} be the message vectors that
correspond to thé/ possible hidden messages. Let us also
define the watermark obtained from each of these vectors R
asw; = Pb, 1l € {1, ..., M}, whose elements will be b, = sign(r;), vie{l, ..., N} (43)
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So finally we have found a transformation that, after In the definition of the sufficient statisties we can see
being applied toz, drastically reduces the number of that they can each be expressed as a sum of statistically
dimensions without loosing any useful information that can independent terms. Therefore, N is not too large, we
help in the decoding problem. Now we can analyze the can apply the central limit theorem and approximate the
performance of the proposed watermark decoder in termsdistribution ofr by a vector Gaussian pdf.
of the probability of error conditioned to a given original Let us define the SNR
image. For doing so, we have to switch back to a statistical )
model in which the original image is fixed and deterministic sNr2 Elnl
and only the secret key is random. Var(r;)

Assuming that the watermarked image has not suffered

(51)

Then, under the Gaussian approximation and assuming that

any alteration, then; = zp + b;arsg, Vi € S;. After . . X .
lugging this expression into (41), and treating the tesms message vectors form a binary antipodal constellation with
b ' = 2% points, so a bit-by-bit hard decisor is used, the

and the setsS; as the only random elements in the system, . . X
! V\Probablhty of bit error is
we can compute first- and second-order moments and dra

some conclusions. Let us assume, without loss of generality, _
thatb; = 1. Then (VSNR)- (52)
Tp + 20,8 T |
=3 | e ~ laxd . (44) C. Watermark Detector
k
hes: Given a certain key, the detector that maximizes the
Let us define the vectoy = (q1, ..., qr)¥, wheregq, = probability of detection for any desired probability of false

|7k + 20 sk|* — |zi|%. If the pseudorandom sequenge  alarm is given by (11), repeated here
is modeled ag. outcomes of an i.i.d. random process, as
we did in Section VIII, then the mean and variancerpf p(b Pb)
> Zn 63
conditioned to a certain partitioi = {S,}_, are

Hqy
E[r|T] = Z [gf] (45) Assuming equiprobable messages and using the expression
kes, “k of the generalized Gaussian pdf given in (36), this is
Var(a,. equivalent to
Var(r,|T) = 3 ar(g.) (46)
keS, Tk . L
€S;
l{z) = —In M + 3ok |2 | O
If the sets{S; } ~, are sparsely scattered over the whole =) " ; Atz
image, and the same statistical model as that used in N
Section VIII is applicable here, then it can be proved after +1In Z H exp Z B |2y, — by josy]*
some algebra that =1 =1 ks,
L (54)
Z q’“] (47) |
k=1 where (b 1, ..., b, ~)T is the ith message vector. For
L 2 simplicity, we will concentrate on the case in which a
-1 FE [(]k] « " . . . . .
Var(r =% Z 2ck N2 Z 5. (48) pure” watermark not carrying any hidden information is
k k=1 "k employed. Then, under this assumption the log-likelihood
where we have used the relatioB§-] = E-[E[r;|7]]and ~ function is considerably simpler
Var(r;) = Er[Var(r;|T)] + Varr(E[r;|T]). If we assume I
that the pseudorandom sequence has a uniform discrete I(z) = B (|2 — |21 — cvesi|*). (55)
marginal distribution with two levels,{1, 1}, as we did (2) ’; i (2] |2k kS| %)
in Section VIII, then, by observing the definition gfwe
can infer that Once we have derived the optimum structure based on
L . a statistical characterization of the original image, we
Elgr] = 3 [(Jow] + 20n) can study the probabilities of false alarm and detection
+ ok — 20 *] = |wr | (49) conditioned to a given fixed original image, assuming
Ch cr2 i . i
var(g,) Ii[(|$k| 4 200)% — ||zn| — 20u] k] (50) that the secret key is taken at random. The goal is to

obtain estimates of the proportion of keys that produce a
and we can substitute these expressions in (47) and (48) tdfalse positive when the detection test is applied directly
obtain the mean and variance of the elements of the vectorto the original image and the proportion of keys that
r conditioned to a given original image. It can also be yield a positive result when they are applied both in the

proved that when; = —1, the expected value of; is watermarking stage and the detection test. Let us first
negative, with amplitude given by (47). The variancerpof  study the distribution of the log-likelihood function when
in this case is exactly the same as that given by (48). hypothesisHj is true. In this case, and assuming that the
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image does not suffer any alteration, we have that xy,
VEk e {1,..., L}. Hencel(z) has the form

L

Uz) = B (|l = |z — ansi|*)  (56)

k=1

which is a sum ofL statistically independent terms {s

i.i.d.) and, applying the central limit theorem, can thus be
approximated by a Gaussian random variable. Assuming
that all the elements of the pseudorandom sequence have
two equiprobable levels,{1, 1}, it can be easily shown
that the mean and variance 4k) are

Fig. 16. DCT coefficients where the watermark is embedded.

L L
Ell(z)|[Hol =Y Bt el — 5 >
k=1 k=1 D. Experimental Results
“(lzr + or™ + [zx — o) (57) To contrast the analytical expressions with empirical

L results, we have performed experiments with two of the
Var(l(z)|Ho) =3 > B (|l + awl™ — |z — x| ™). images shown in Section VII-D, “Lena” and “Brick.” The
k=1 former is a good representative of images with flat areas
(58) and sharp edges, while the latter is an example of images
containing noisy textures. In all the experiments the DCT
coefficients in middle frequencies shown in Fig. 16 have
been altered, following the ideas presented in [61]-[63].
I Wg assumellthzt tdhe pgrcepr;[ual mﬁsk dft?tgrminefs hthe
_ cx e cx maximum amplitude distortion that each coefficient of the
=) = ; At (fan + csi el ™) (59) original image may suffer while satisfying the invisibility
constraint. A good psychovisual model in the DCT domain
which is also a sum of statistically independent terms. (with 8 x 8 blocks) is capital to render the sequencd-or
Hencel(z) is also approximately Gaussian under hypothesis the work presented in this section we have followed the
H;. If we compare this expression to (56), considering model proposed in [64] and [65], similar to those proposed
the fact thats, € {-1, 1} equiprobably, for anyk € in [66] and [67], that has been also applied to derive
{1, ..., L}, then we can infer that each term in the summa- adaptive quantization matrices for the JPEG algorithm [68].
tion may take the same two values as in (56), with opposite This model has been here simplified by disregarding the
sign. Thus, the distribution dfz) underH; is symmetrical so-called contrast-masking effect, for which the perceptual
to the distribution undef, with respect to the origin. Let mask at a certain coefficient depends on the amplitude

When hypothesid?; is true, i.e., where, = x5 + aysg,
the log-likelihood function has the form

us definem; 2 E[l(z)|H;] ando? 2 Var(i(z)|Hy). Then,

of the coefficient itself. This effect has been taken into

under the Gaussian approximation, the probabilities of false account by other authors [69], [70]. On the other hand, the

alarm and detection are

Pr =Q<”+ml) (60)

g1

PD:Q<”_m1>. (61)

g1
If we define the signal-to-noise ratio

SNR 2 4 (62)

2
g1

[l ™)

and we callQ~!(Pr) the valuez € R such thatQ(x) =
Pr, then the ROC is given by the expression

Pp = Q(Q(Pr) - 2v/SNR, ) (63)

which depends exclusively on the value of SNRhere-

background intensity effect, for which the mask depends on
the magnitude of the dc coefficient (i.e., the background),
has been taken into account. The watermark power obtained
from the application of this model has been further reduced
by 12 dB to introduce a certain degree of conservativeness
in the watermark due to those effects that have been
overlooked (e.g., spatial masking in the frequency domain
[54]). In Fig. 17 we show an example of a watermark and
a watermarked version for “Lena.”

In the experiments, we have used the same value of
the distribution parameter for all the DCT coefficients,
leaving it as a system parameter. The variance of each
original image coefficient is estimated from the water-
marked image. In Figs. 18 and 19 we show plots of the
BER for the two test images. Both empirical curves and
analytical approximations corresponding to four values of
c are included in each plot. In all cases, empirical measures
have been performed by taking 100 different keys at

fore, this SNR can be used to compare the performance ofrandom. We can see that the values computed using the

the ML watermark detector for different images.

analytical expressions derived in Section IX-B are good
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(b)

Fig. 17. Example of (a) a watermark and (b) a watermarked version for “Lena” (25%6).

0 BER for diffemnt values of ¢ (Lena 256x256)
10 L] T T T L] L] T

—— Empirical
3 - - - Theoretical

Gaussian

BER

Laplace

0 50 100 150 200 250 300 350 400
Number of points per information bit

Fig. 18. BER versus pulse size for “Lena” (258 256).

approximations of the empirical values. Note that in both curve corresponding te = 1/2, ¢ = 1 (Laplace), and
cases the best performance is achieved wits 1/2. It ¢ = 2 (Gaussian) have been circled. Note that the value
is clear from the figures that by choosing an appropriate of ¢ achieving the optimal performance is different in
value of¢, performance can be substantially improved. For each image. While the maximum SNR lies somewhere
example, it is clear that in both images the decoder based onbetweenc = 1/2 and ¢ = 1 for “Lena,” it falls down
the Gaussian model for the DCT coefficients of the original to approximatelyc = 1/4 for “Brick.” Again, there is a
image considerably degrades the BER. This suggests thapatent difference between the performance achieved with
the correlation receiver used in [69] and [71], which is the correlation receiver (Gaussian case= 2) and the
optimum in the Gaussian case, is not a good candidate formaximum of the curve.
watermark detection purposes. We have also performed experiments with the two afore-
In Figs. 20 and 21 we show in more detail how the mentioned images to measure the performance of the wa-
parameterc influences the value of the SNR defined in termark detector test derived in Section IX-C. In all cases,
(51). The curves have been computed using the theoreticalempirical measures have been obtained by taking 1000 keys
expressions derived in Section IX-B and the points of the at random. The DCT coefficients in which the watermark
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0 BER for different values of ¢ (Brick 160x200)
10 T L} 1 L] L} L} L} ¥ L}

\

Gaussian

Laplace

— Empirical
- - Theoretical

150 200 250 300 350 400 450 500
Number of points per information bit

Fig. 19. BER versus pulse size for “Brick” (16& 200).

SNR as a function of ¢, Lena (256x256)
17 L] ) L} L} L] L} L} ) L}

16}

151
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12
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10F
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 20. SNR as a function of: for “Lena” (256 x 256).

has been embedded are also the ones shown in Fig. 16a performance measure for comparison purposes. We also
In Table 1 we have gathered both theoretical values andshow in Figs. 22—25 curves of the theoretical and empirical
empirical measures of the signal to noise ratio SNR Pr andPp as a function of the threshold. We can see that
defined in (62). As we know, this parameter completely the analytical approximations derived in Section IX-C are
determines the shape of the ROC, so it can be used agjuite accurate. The different levels of performance achieved

HERNANDEZ AND PEREZ-GONZLEZ: STATISTICAL ANALYSIS OF WATERMARKING SCHEMES 1161



SNR as a function of ¢, Brick (160x200)

20

15

10

SNR [0B]

0.2 04 0.6

Fig. 21. SNR as a function of: for “Brick” (160 x 200).

Table 1

Empirical and Theoretical Signal-to-Noise Ratio SN dB)

14 1.6

1.8 2

Image

c=1/2

Laplace

Gaussian

Empirical | Theoretical

Empirical

Theoretical

Empirical

Theoretical

Lena

29.38 29.34

29.07

28.71

21.39

20.78

Brick

42.97 43.23

30.89

30.81

6.00

6.26

PF as a function of the threshold, Lena (256x256)
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Fig. 22. Probability of false alarm with “Lena” (256« 256).
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PD as a function of the threshold, Lena (256x256)
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Fig. 23. Probability of detection with “Lena” (256« 256).

PF as a function of the threshold, Brick (160x200)
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Fig. 24. Probability of false alarm with “Brick” (160x 200).

with different values ok are also evident. We can see that image is not needed during the watermark detection and
for both images the Gaussian assumption leads to the worsextraction processes. In this context, watermarking can be

performance results. seen as a communication problem in which a signal carrying
some information is transmitted through a noisy channel
X. CONCLUDING REMARKS where the noise is the original image itself, unknown to

In this paper we have discussed the statistical analysisthe receiver. Watermark verification can be seen, hence,
of image watermarking algorithms in which the original as a statistical decision problem involving two tests: first,
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PD as a function of the threshold, Brick (160x200)
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Fig. 25. Probability of detection with “Brick” (160x 200).

detect the very presence of the watermark, then estimateREFERENCES
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