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Abstract 
Most previous word sense 
disambiguation approaches based on 
neural networks were impractical due 
to their huge feature set size. We 
propose a method for resolving word 
sense ambiguity using neural networks 
with refined concept co-occurrence 
information (CCI) as features. Using 
CCI refinement processing, we reduce 
the number of features of the network 
to a practical size. We also show that 
word sense disambiguation can be 
improved by combining several clues 
rather than using them independently. 
Our method is fully automated and 
does not require any hand coding of 
large-scale resources. 

1 Introduction 

In Korean-to-Japanese machine translation (MT), 
employing a direct MT strategy, a Korean 
homograph may be translated into a different 
Japanese equivalent depending on which sense is 
used in a given context. Thus, word sense 
disambiguation (WSD) is essential to the 
selection of an appropriate Japanese target word 
and has been a major interest and concern in MT. 

Much research has been done on word sense 
disambiguation. Researchers have found that 
several different kinds of information can 
contribute to the resolution of lexical ambiguity. 
These include surrounding words (unordered set 
of words surrounding a target word), local 
collocations (short sequence of words near a 
target word, taking word order into account), 
syntactic relations (selectional restrictions), parts 
of speech, morphological forms, etc (McRoy, 
1992, Ng and Zelle, 1997). 

Li et al. (2000) suggested a corpus-based 
method that uses concept co-occurrence 
information (CCI), such as local syntactic 
patterns and unordered co-occurrence words. He 
automatically extracted CCI from a sense-tagged 
corpus, and constructed a four-step algorithm. 
Their method considers only one clue at each 
decision step rather than several clues together. It 
happens that the method fails to disambiguate by 
the first clue, although the second clue can make 
the right decision. Thus, if the combined clues 
are used, the method achieves a better 
performance. 

Some approaches to word sense 
disambiguation use neural networks. Waltz et al. 
(1985) and Gallant (1991) proposed a neural 
network classifier using semantic microfeatures. 
Since their method requires large amounts of 
hand-written data, it is not clear that the same 
neural net models will scale up for realistic 
application. 

Leacock et al. (1993) and Mooney (1996) 
used a few thousand words as a feature set of 
neural networks. The input patterns are 
composed of a few thousand binary features, 
each representing the presence or absence of a 
particular word stem in the context of an input 
sentence. Due to their huge feature set size, 
however, it is impractical to apply their models to 
real world applications. 

We propose a method for word sense 
disambiguation that combines both the neural 
net-based approach and the work of Li et al. We 
focus especially on the construction of the 
refined feature set of a practical size. This is 
achieved by a CCI refinement processing, such 
as concept discrimination and concept code 
generalization. Unlike previous neural network 
approaches, our method is fully automated and 
does not require any hand coding of large-scale 
resources. To improve the applicability of the 
method, we adopt a concept similarity 



calculation scheme rather than an exact matching 
scheme. 

This paper is organized as follows. Section 2 
describes the automatic construction of a 
sense-tagged Korean corpus and the extraction of 
refined features from them. Section 3 explains 
the network architecture and our sense 
disambiguation method. In Section 4, the 
experimental results are given, showing that the 
proposed method may be useful for WSD in a 
real text. The concluding remarks are given in 
Section 5. In this paper, Yale Romanization is 
used to represent Korean expressions. 

2 Construction of the Refined 
Feature Set 

For practical reasons, a resonably small number 
of features is very important in the design of 
neural network. To make a feature set of 
reasonable size, we adopt Li’s method (2000), 
based on concept co-occurrence information. 

The architecture of the feature extraction 
system is shown in Figure 1. A feature set for the 
neural network is composed of two kinds of 
concept co-occurrence information (CCI) : local 
syntactic patterns (LSPs) and unordered 
co-occurrence words (UCWs). CCI are concept 
codes in a thesaurus. 

To extract LSPs and UCWs from a corpus 

Figure 1. Extraction of the refined features 
Figure 2. Concept hierarchy of the Kadokawa
thesaurus 
automatically, following the Li’s method, we 
constructed a sense-tagged corpus using a 
Japanese-to-Korean MT system at first, and then 
extracted LSPs and UCWs from them through 
partial parsing and scanning. To reduce the 
number of concept codes in LSPs and UCWs, 
they are then filtered and later code generalized 
through statistical processing. After the 
refinement processing is completed, the 
remained LSPs and UCWs are used as features 
for the neural network in Section 3. 

2.1 Automatic Construction of the 
Sense-tagged Corpus 

For automatic construction of the sense-tagged 
corpus, we used a Japanese-to-Korean MT 
system called COBALT-J/K1 (Park et al., 1997). 
In the transfer dictionary of COBALT-J/K, 
nominal and verbal words are annotated with 
concept codes of the Kadokawa thesaurus (Ohno 
and Hamanishi, 1981), which has a 4-level 
hierarchy of about 1,100 semantic classes, as 
shown in Figure 2. Concept nodes in level L1, L10 
and L100 are further divided into 10 subclasses. 

We made slight modification of 
COBALT-J/K so that it can produce Korean 
translations from a Japanese text with all nominal 
words tagged with specific concept codes at level 
L1000 of the Kadokawa thesaurus. As a result, a 
Korean sense-tagged corpus can be obtained 
from Japanese texts. 

                                                      
1 COBALT-J/K is a high-quality practical MT system 
developed by POSTECH (Pohang University of 
Science and Technology) in 1996. 



In the automatic construction of a 
sense-tagged corpus, quality of the corpus is a 
critical issue. To examine the quality of the 
sense-tagged corpus, we collected 878 sample 
sentences (16,527 eojeols2) from the corpus and 
then checked their accuracy. The total number of 
errors was 382, including morphological analysis 
errors, sense ambiguity resolution errors and 
unknown words errors. It corresponds to the 
accuracy of 97.7% (16145 / 16527 eojeols). 

Because almost all Japanese common nouns 
represented by Chinese characters have only one 
sense, there is little ambiguity in 
Japanese-to-Korean translation. In our test, the 
number of ambiguity resolution errors was 81 
and it took only 0.49% of the overall corpus (81 / 
16527 eojeols). Considering the fact that the 
overall accuracy of the constructed corpus is over 
97% and only a few sense ambiguity resolution 
errors were found in the Japanese-to-Korean 
translation of nouns, we regard the generated 
sense-tagged corpus as highly reliable. 

2.2 Extraction of LSPs and UCWs 
Unlike English, Korean has almost no syntactic 
constraints on word order as long as the verb 
appears in the final position. The variable word 
order often results in discontinuous constituents. 
Instead of using local collocations by word order, 
Li et al. (2000) defined 12 local syntactic patterns 
(LSPs) for homographs using syntactically 
related words in a sentence. We adopt only 10 
patterns among them, as shown in Table 1. 

For a homograph W, concept frequency 
patterns (CFPs), i.e., ({<C1,f1>,<C2,f2>, ... , 
<Ck,fk>}, typei, W(Si)), are extracted for each type 

                                                      
2 Eojeol is a spacing unit of Korean. 

i of LSP by partial parsing and scanning, where k 
is the number of concept codes in typei, fi is the 
frequency of concept Ci appearing in the corpus, 
typei is an LSP type i, and W(Si) is a homograph 
W with a sense Si. 

Frequently co-occurring words in a sentence 
are retrieved as unordered co-occurring words 
(UCWs). They are not included in LSPs for the 
homographs. CFPs extracted for UCWs referring 
to co-occurred frequency are ({<C1,f1>, 
<C2,f2>, ... , <Ck,fk>}, UCW, W(Si)). 

2.3 Concept Discrimination of CCI 

In the extracted LSPs and UCWs, however, the 
same concept may appear for determining the 
different meanings of a homograph. To select the 
most probable concept codes, which frequently 
co-occur with the target sense of a homograph, 
from the extracted CCI, Li used Shannon’s 
entropy (Shannon, 1951) to define the noise of a 
certain concept codes for discrimination of 
ambiguous word senses. 

Let Si represent the ith word sense of 
homograph W, Ck, the concept code of the 
co-occurring word, p(Ck|Si), the probability that 
represents the possibility that the concept Ck will 
co-occur with the word sense Si in a sentence, and 
n be the number of word senses of W. The noise 
generated by concept code Ck is defined as 
Equation 1 and the discrimination value DSk of 
concept code Ck for W is defined as Equation 2. 

If the discrimination value DSk of the concept 
code Ck is larger than the threshold DSth, the 
concept code is selected as useful information for 
deciding word sense Si. Otherwise, the concept 
code is discarded. 

2.4 Concept Code Generalization 
After the concept discrimination, co-occurring 
concept codes in each LSP, as well as UCWs, are 
needed to be further selected and the code 
generalized. For the purpose of code selection 
and generalization of concepts in LSPs and 

Table 1. Local collocation patterns (LSPs) 

LSP type Structure of collocation 
type1  noun + noun 
type2 noun + uy + noun 
type3 noun + other particles + noun 
type4 noun + lo/ulo + verb 
type5 noun + ey + verb 
type6 noun + eygey + noun 
type7 noun + eyse + verb 
type8 noun + ul/lul + verb 
type9 noun + i/ka + verb 
type10 verb + relativizer + noun 
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UCWs, the Kadokawa thesaurus is used. All 
concepts in LSPs and UCWs are three-digit 
concept codes at level L1000 in the Kadokawa 
thesaurus. Table 2 shows the concept codes that 
can co-occur with the homograph ‘nwun(eye)’ in 
the form of LSP type2 and their frequencies. 

To perform code generalization, Li et al. 
refered to Smadja’s work (Smadja, 1990, 1993), 
and defined the standard deviation σ� of the code 
frequency at the thesaurus level � (denoted as L�) 
and kf,� as in Equation 3 and 4. kf,� is the strength 
of code frequency f at L�, which represents the 
amount of standard deviation above the average 
frequency fave,� . In the equations, fk,� denotes the 
frequency of concept code Ck of the Kadokawa 
thesaurus at L�, and n� the number of concept 
codes at L� . 
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value to the frequencies of codes that are selected 
at L1000, and sums up the frequencies of the 
remaining concept codes to form CFPs with 
codes of a higher level of the concept hierarchy. 
After processing, the system selects the most 
promising codes and stores the conceptual 
patterns ({C1, C2, C3, ...}, typei, W(Si)) as a 
knowledge source for WSD of real texts. The 
code generalized LSP for type2 of noun 
nwun(eye)  in Table 2 is ({028, 419, 501, 504, 
507, 508, 538, 50}, type2, nwun(eye)). For UCWs, 
the same processing is applied. The generalized 
LSPs and UCWs are used as features for the 
neural network. The more specific description of 
the extraction of LSPs and UCWs are explained 
in Li (2000). 

3 Network Architecture and Sense 
Disambiguation 

3.1 Neural Network Architecture 
Due to its strong capability for classification, the 
multilayer feedforward neural network with a 
backpropagation learning algorithm is used in 
our sense classification system. As shown in 
Figure 3, each node in the input layer represents a 
concept code in CCI (LSPs & UCWs) of a target 
word and each node in the output layer represents 
a sense of a target word. The number of hidden 
layers and the number of nodes in a hidden layer 
are a critical issue. To determine a good topology 
for the network, we implemented 2 layered (no 
hidden layer) and 3 layered (with a single hidden 
layer of 5 nodes) network. Each layer in the 
network is fully connected to the next layer. 

Table 2. Concept codes and frequencies in CFP 
({<Ci,fi>}, type2, nwun(eye)) 

Code Freq. Code Freq. Code Freq. Code Freq.
103 4 107 8 121 7 126 4 
143 8 160 5 179 7 277 4 
320 8 331 6 416 7 419 12
433 4 501 13 503 10 504 11
505 6 507 12 508 27 513 5 
530 6 538 16 552 4 557 7 
573 5 709 5 718 5 719 4 
733 5 819 4 834 4 966 4 
987 9 other* 210     
� ‘other’ in the table means the set of concept codes 
with the frequencies less than 4. 

 

2n
The generalization filter of the system selects 
he concept codes with a variation σ� larger than 
hreshold σth,�, and pulls out the concept codes 
ith a strength of frequency kf, � larger than 

hreshold kth,� . If the value of σ�  is small, then it 
an be assumed that no peak frequency of the 
ode for the pattern exists. 
After generalization at L1000, the system 

erforms the same work at L100. It assigns a zero 

Each homograph has a network of its own. 

�

��

�
� σ

,,
,,

avek
f

ff
k

k

−
=                                   (4)

1
)( ,,1

−
−

= ∑ =

�

��

�

�

n
ff avekkσ                      (3)

Figure 3. Topology of the network 
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Figure 4. Construction of the input layer for
‘nwun’ 
igure 43 shows a construction example of the 
nput layer for the homograph ‘nwun’ with the 
ense ‘snow’ and ‘eye’. The sense ‘snow’ has 
oncept code 26, 022, 080, 696, 38 and 239 as its 
CI and the sense ‘eye’ has 74, 078, 50, 028, 419, 
3 and 323. We make the input layer for ‘nwun’ 
y integrating the concept codes in both senses 
nd the resulted input layer is partitioned into 
everal subgroups depending on their CCI types, 
.e., UCW, LSP type 1, LSP type 2 and LSP type 
. 

.2 Network Training 
o generate a sense tagged corpus and to extract 
SPs and UCWs for each homograph, we used 

he COBALT-J/K system described in Section 
.1. and a corpus which composed of 240,000 
entences from corpus of EDR electronic 
ictionary, Asahi Newspaper, and Japanese 
ewspaper of Economics. Using the extracted 
SPs and UCWs, we constructed neural 
etworks and trained network parameters for 
ach homograph. The average number of input 
odes was about 35. If we assume that the 
verage number of senses of homographs is 2, the 
otal number of network parameters (synaptic 
eights) for each homograph is 70 (35×2) in the 

ase of a 2-layered network, which is a very 
easonable size to be used for real world 
pplications. In the case of a 3-layered network 
ith 5 hidden nodes, the total number of 
arameters is 185 (35×5 + 5×2). 

.3 Sense Disambiguation 
                                                     
 The concept codes in Figure 4 are simplified ones for 
he ease of illustration. In reality there are 87 concept 
odes for ‘nwun’. 

For a given homograph W, the sense 
disambiguation is performed by the following 
three steps. 
 

Step 1. Extract LSPs and UCWs from the 
context of W. The window size of the UCW 
extraction is a single sentence. Consider, for 
example, the sentence in Figure 5 which has the 
meaning of  “Seeing her eyes filled with tears, 
…”. The target word is the homograph ‘nwun’. 
We extract its LSPs and UCWs from the sentence 
by partial parsing and scanning. In Figure 5, for 
example, the words ‘nwun’ and ‘kunye’ with the 
concept code 503 have the relation of <noun + uy 
+ noun> and it corresponds to LSP type 2. There 
is no syntactic relation between the words ‘nwun’ 
and ‘nwunmul’ with the concept code 078, so we 
assign ‘UCW’ as the CCI-type of the concept 
code 078. 

In a similar manner, we can obtain all pairs of 
the CCI type and their concept codes appearing 
in the context. All the extracted <CCI-type: 
concept codes> pairs are as follows: {<UCW: 
078,274>, <LSP type 2: 503>, <LSP type 8: 
331>}. 

 
Step 2. Obtain the input pattern by calculating 

concept similarities between the features of the 
input nodes and the concept code in the extracted 
<CCI-type: concept codes>. Similarity 
calculation is performed only between the 
concept codes with the same CCI-type. The 
calculated concept similarity is assigned to each 
input node as the activation value to the network. 

Figure 5. Construction of the input pattern by
using a concept similarity calculation 



Csim(Ci, Pj) in Equation 5 is used to calculate 
the concept similarity between Ci and Pj, where 
MSCA(Ci, Pj) is the most specific common 
ancestor of concept codes Ci and Pj, and weight is 
a weighting factor reflecting that Ci as a 
descendant of Pj is preferable to other cases. The 
similarity values between Ci and each Pj on the 
Kadokawa thesaurus hierarchy are shown in 
Figure 6.  

For example, in UCW part calculation, the 
relation between the concept codes 274 and 26 
corresponds to the relation between Ci and P4 in 
Figure 6. So we assign the similarity 0.285 to the 
input node labeled by 26. If there more than two 
concept codes exist in one CCI-type such as 
<UCW: 078, 274>, the maximum similarity 
value among them is assigned to the input node 
as Equation 6. 

Step 3. Feed the obtained input pattern to the 
network and compute activation strengths for 
each output sense node (Figure 7). Next, select 
the sense of the node that has a larger activation 
value than any other output node. If the output 
value is lower than the threshold, it will be 
discarded and the network will not make any 
decisions.  

4 Experimental Evaluation 

For an experimental evaluation, eight ambiguous 
Korean nouns were selected, along with a total of 
3514 test sentences in which one of the 
homographs appears. The test sentences were 
randomly selected from the Korean sense-tagged 
corpus generated by the method in Section 2.1, 
which were not used for the training of networks. 
Out of several senses for each homograph, we 
considered only two senses that are most 
frequently used in the corpus. For each sense of a 
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Figure 6. Concept similarity on the Kadokawa
thesaurus hierarchy 
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)),((max)( jii PCCsimCFeatureVal =           (6
In Equation 6, Ci is the concept code of the 
input node, and Pj is the concept codes in the 
<CCI-type: concept codes> pair which has the 
same CCI-type with Ci. 

By adopting this concept similarity calculation, 
we can achieve a broad applicability of the 
method. If we use the exact matching scheme 
instead of the concept similarity scheme, there 
would be only a few concept codes matched with 
the features. Consequently, sense disambiguation 
would fail because of the absence of clues. 

 

homograph, the number of its appearances in the 
test sentences is shown in Table 3. 

We performed three experiments. The first 
experiment, LSP_UCW, is the case where LSPs 
and UCWs are used independently, following 
Li’s method. In this method, LSPs are used 
initially as clues, and if the maximum score of 
LSPs is smaller than a threshold, UCWs are used 
next. We set the threshold at 0.3. 

Acc and App in the table indicate accuracy and 
applicability respectively and they are defined as  
in Equation 7 and 8, where Ncorrect is the number 
of correctly disambiguated instances, Napplied is 
the number of instances which the method 

Pj



applied to, and Ntotal is the total number of 
instances. 

The second and the third experiment in Table 3 
show the results of our WSD methods using 
2-layered (with no hidden layer) and 3-layered 
neural networks (with 5 hidden nodes) 
independently. The threshold for the output 
activation function was fixed at 0.6 in both 
models.  

The 2-layered and 3-layered neural network 
models have achieved a 12.6% and 11.3% 
improvement in accuracy and a 9.0% and 11.9% 
improvement in applicability over the 
LSP_UCW method, respectively. This result 
shows that word sense disambiguation can be 
improved by combining several clues together 
rather than using them independently.  

Comparing the 2-layered and the 3-layered 
neural networks, similar performance was 
obtained. However, the 2-layered model has less 
parameters to adjust, 70 to 185, so that it is more 
efficient to generalize for limited training 
corpora. 

5 Conclusion 

To resolve sense ambiguities in 
Korean-to-Japanese MT, this paper has proposed 
a word sense disambiguation method using 
neural networks with refined concept 
co-occurrence information (CCI) as features. 
CCI consists of two types of information : local 
syntactic patterns and unordered co-occurrence 
words. Using CCI refinement processing, we can 
reduce the number of features of the network to a 
practical size. Unlike most previous approaches 
based on neural networks, our method is fully 
automated and requires only a small number of 
features. In an experimental evaluation, the 
proposed WSD model using 2-layered network 
achieved the average accuracy of 85.0% with an 
improvement over Li’s method by 12.6%. 
Because the test corpus is completely irrelevant 
to the training corpus, the model may be effective 
for noun-sense disambiguation. 

We plan further research to improve accuracy 
and applicability, and to expand our method for 
verb homograph disambiguation. 
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appliedcorrect NNAccuracy /=                         (7)

totalapplied NNityApplicabil /=                      (8)

Table 3. Experimental results of word sense disambiguation (%) 

AaLSP_UCWaa a2-layered NNa a3-layered NNaaHomographa Sense No Acc App Acc App Acc App 
father & child a330aPwuca rich man 165 66.5 69.7 78.8 80.8 75.9 93.1 

liver 142 Kancang soy sauce 69 72.1 98.6 70.0 96.2 71.6 96.7 

housework 456 Kasa words of song 103 65.1 81.2 85.2 90.7 83.9 93.6 

shoes 651 Kwutwu aword of moutha 19 76.4 81.0 97.2 99.4 97.3 99.0 

eye 364 Nwun snow 87 64.8 58.5 86.9 97.8 85.6 96.9 

courage 95 Yongki container 467 68.5 94.3 85.9 92.4 80.1 95.6 

intention 184 Uysa doctor 267 86.5 88.9 91.2 85.4 90.4 88.0 

the earth 285 Cikwu district 160 79.4 81.8 84.7 83.8 85.0 87.0 

Average 72.4 81.8 85.0 90.8 83.7 93.7 
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