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Abstract 
 

In this work, we develop a system for retrieving medical 
images with focus objects incorporating models of human 
perception. The approach is to guide the search for an 
optimum similarity function using human perception. 
First, the images are segmented using an automated 
segmentation tool. Then, 20 shape features are computed 
from each image to obtain a feature matrix. Principal 
component analysis is performed on this matrix to reduce 
the number of dimensions. Principal components obtained 
from the analysis are used to select a subset of variables 
that best represents the data. A human perception of 
similarity experiment is designed to obtain an aggregated 
human response matrix. Finally, an optimum weighted 
Manhattan distance function is designed using a genetic 
algorithm utilizing the Mantel test as a fitness function. 
The system is tested for content-based retrieval of skin 
lesion images. The results show significant agreement 
between the computer assessment and human perception 
of similarity. Since the features extracted are not specific 
to skin lesion images, the system can be used to retrieve 
other types of images.  

Keywords 
Content-based image retrieval, human perception, pattern 
recognition, multidimensional access methods.  

1. Introduction 
Medical information systems with advanced browsing 
capabilities play an important role in medical training, 
research, and diagnostics. Since images represent an 

essential component of the diagnosis, it is natural to use 
medical images to support browsing and querying of 
medical databases [20].  

Current content-based retrieval systems use low-level 
image features based on color, texture, and shape to 
represent images. However, except in some constrained 
applications such as human face and fingerprint 
recognition, these low-level features do not capture the 
high-level semantic meaning of images [26]. In order to 
bridge the gap between the low-level features and high-
level semantics, researchers have proposed to compute 
increasingly high level features based on simpler ones [X]. 
However, another aspect that is as important as the 
features themselves has been neglected: The processing 
and interpretation of those features by human cognition. 
Although the ultimate goal of all image similarity metrics 
is to be consistent with human perception, little work has 
been done to systematically examine this consistency. 
Commonly, the performance of similarity metrics is 
evaluated based on anecdotal accounts of good and poor 
matching results [10].  

In this work, we develop a system for retrieving medical 
images with focus objects incorporating models of human 
perception. The approach is to guide the search for an 
optimum similarity function using human perception. 

Figure 1 shows an overview of the system. First, the 
images are segmented using an automated segmentation 
tool. Then, 20 shape features are computed from each 
image to obtain a feature matrix. Principal component 
analysis is performed on this matrix to reduce its 
dimension. The principal components obtained from the 
analysis are used to select a subset of variables that best 
represents the data. A human perception of similarity 
experiment is designed to obtain an aggregated human 
response matrix. Finally, an optimum weighted Manhattan 
distance function is designed using a genetic algorithm 
utilizing the Mantel test as a fitness function. 

 

 



  Figure 1. System Overview 

The system is tested for content-based retrieval of skin 
lesion images. The results show significant agreement 
between the computer assessment and human perception of 
similarity. Since the features extracted are not specific to 
skin lesion images, the system can be used to retrieve other 
types of images. 

2. Segmentation and Feature Extraction  
 

We use 184 skin lesion images obtained from various 
online image databases [4,5] as our data set. All images 
have a resolution of about 500 pixels per centimeter. 

2.1 Segmentation 
 

Segmentation is partitioning of an image into regions that 
have similar characteristics such as color, texture, etc. It is 
an extremely important step in image retrieval since 
accurate computation of shape features depends on good 
segmentation [26]. For segmentation of lesion images we 
have used an automated tool, SkinSeg, developed by 
Goshtasby et al. [29]. Some of the segmented lesion 
images are shown in figure 2. 

 

  Figure 2. Segmented skin lesion images  

2.2 Feature Computation 
 

The ABCD rule of dermatoscopy [22], recommended by 
American Cancer Society,  summarizes the clinical 
features of pigmented lesions suggestive of melanoma (a 
deadly form of skin cancer) by: asymmetry (A), border 
irregularity (B), color variegation (C) and diameter greater 
than 6 mm (D). Interestingly, three of these features are 
shape-based features. For each image in the database, we 
compute 20 shape features: Diameter, bending energy, 
contour sequence moments, convex hull area and 
perimeter, lesion area and perimeter, convexity, solidity, 
compactness, major and minor axis length, eccentricity, 
orientation, extent, asymmetry, and border irregularity. 

3.   Dimensionality Reduction and Feature 
Selection  
 

After the feature computation step, we have 20 
dimensional data to be analyzed. Well known problems 
associated with high dimensionality include (a) high 
computational cost, (b) classifier accuracy degradation, 
known as Hughes phenomenon, and (c) difficulty in 
visualization.  

Dimensionality reduction can be achieved in two different 
ways. One approach, called feature subset selection, is 
selection of a subset of features that minimizes intra-class 
variance and maximizes inter-class variance. The other 
approach, called feature extraction, is linear or non-linear 
transformation of the original feature vector that optimizes 
a particular class separability criterion. 

 

3.1 Principal Component Analysis of Skin 
Lesion Data  
 

Principal Component Analysis (PCA) is an unsupervised 
linear feature extraction technique that transforms a set of 
variables into a substantially smaller set of uncorrelated 
variables that represents most of the information in the 
original set of variables [7]. 

Our data consists of 184 samples each having 20 features. 
Since features have arbitrary units, PCA is applied on the 
correlation matrix. The eigenvalue and the percentage of 
explained variance for each PC are given in table 1. 

    Table 1. Eigenvalues and Explained Variances 

PC Eigenvalue 
% 
Variance 

% Var. 
Cum. 

1 7.17871 35.89 35.89 
2 4.06138 20.31 56.2 
3 3.17062 15.85 72.05 



4 1.53324 7.67 79.72 
5 1.03291 5.16 84.88 
6 0.91134 4.56 89.44 
7 0.82177 4.11 93.55 
8 0.44458 2.22 95.77 
9 0.38006 1.9 97.67 

10 0.21225 1.06 98.73 
11 0.09135 0.46 99.19 
12 0.05471 0.27 99.46 
13 0.0427 0.21 99.68 
14 0.03532 0.18 99.85 
15 0.018 0.09 99.94 
16 0.00618 0.03 99.98 
17 0.00298 0.01 99.99 
18 0.00154 0.01 100 
19 0.00027 0 100 
20 0.00012 0 100 

 
There are several rules of thumb for deciding how many 
PCs to retain [7]: 

1) Kaiser [15] recommends discarding PCs of a correlation 
matrix having eigenvalues less than 1.  

2) Jolliffe [14] argues that Kaiser’s rule generally retains 
too few variables, that is, throws away too much 
information and suggests a cut-off of 0.7 instead of 1. 

3) Including enough PCs to account for a given percentage 
of variation, e.g. 80%. 

These rules should be used cautiously. For example, in 
some cases, Jolliffe’s criterion results in retaining twice as 
many components as Kaiser’s criterion. The more PCs, 
relative to the number of variables, retained, the better is 
the description of the data. Also, smaller PCs are, 
generally, harder to interpret than larger ones [7]. 

In our analysis, we choose to retain 8 principal 
components. From table 3.1 it can be seen that 8 PCs 
account for 95.77% of variation. On the other hand, 
Kaiser’s criterion would retain 5 PCs explaining 84.88% 
of variation, whereas Jolliffe’s criterion would retain 7 PCs 
explaining 93.55% of variation.  

It is useful to examine the sums of squares of the loadings 
for each row of the principal component loading matrix 
because the row sum of squares indicates how much 
variance for that variable is explained by the retained PCs 
[7]. The percentage of variance explained for each variable 
is presented in table 2. 

    Table 2. Explained Variances for each Variable 

Variable 5 PCs 7 PCs 8 PCs 
1 99 99 98 
2 95 90 58 
3 96 90 87 
4 98 97 94 
5 89 73 67 

6 98 98 96 
7 98 98 97 
8 100 99 99 
9 98 98 98 

10 99 99 99 
11 96 96 78 
12 86 83 78 
13 99 99 92 
14 89 89 46 
15 99 98 91 
16 99 99 98 
17 98 97 97 
18 95 93 90 
19 100 99 75 
20 85 76 60 

 

An examination of table 3.2 shows that 5 PCs retained 
using Kaiser’s criterion are insufficient in explaining the 
variation in features 2 (58 %), 5 (67 %), 11 (78 %), 12 (78 
%), 14 (46 %), 19 (75 %), and 20 (60 %). 7 PCs retained 
using Jolliffe’s criterion are weak in representing the 
variation in features 5 (73 %) and 20 (76 %).  On the other 
hand, 8 PCs account for more than 90% of variation in 16 
of the features and more than 85% of variation in all 
features.  

3.2 Using Principal Components to Select a 
Subset of Variables  
 

Substantial dimensionality reduction can be achieved using 
n << m PCs instead of m variables, but usually the values 
of all m variables are still needed to calculate the PCs, 
since each PC is a linear combination of all m variables 
[14]. Some variables may be difficult or expensive to 
measure therefore, collecting data on them in future 
studies may be impractical [7]. Furthermore, while the 
original variables are readily interpretable, the constructed 
PCs may not be easy to interpret. Therefore, it might be 
preferable if, instead of using n PCs, we could use n of the 
original variables, to account for most of the variation in 
the data [14]. 

If the correlations among the variables are high, in many 
cases, we can represent the variation in the original set of 
variables by a much smaller subset of variables. Dunteman 
discusses two methods for variable subset selection [7]: 

1) Starting with the smallest discarded PC, delete the 
variable with the highest loading on the relevant PC. If the 
variable had been already deleted, then the variable with 
the next highest loading would be deleted. Totally, m-n 
variables are deleted this way. This is called Jolliffe’s B2 
Method [14].  

2) Starting with the largest retained PC, select the variable 
with the highest loading on the relevant PC to represent 



that component, unless it has been chosen to represent a 
larger PC. In this way, a total of n variables are retained. 
This is called Jolliffe’s B4 Method [14]. 

We use Jolliffe’s B4 Method to retain the following 
variables: 10 (Perimeter), 12 (Solidity), 18 (Eccentricity), 
6 (4th Moment), 19 (Orientation), 20 (Extent), 14 
(Asymmetry), and 5 (3rd Moment) and discard the 
remaining ones.  

The total amount of variation the selected variables 
account for can be used as a criterion to evaluate the 
efficiency of a particular subset of variables in representing 
the original set of variables [7]. The total amount of 
variation that a subset of variables explains is the sum of 
the variation they explain in each of the discarded 
variables plus the sum of the variances for the variables 
comprising the subset. Each discarded variable is regressed 
on the retained variables and the corresponding squared 
multiple correlations are summed. If we add to that the 
variances of the retained variables, in our case 1 for each 
variable, we can obtain a measure of the total amount of 
variation that a subset of variables explains. This can be 
formulated as: 

     m-n 

n + ∑ R2 (i)  

     i=1 

where R2 (i) is the squared multiple correlation of the ith 
discarded variable with the retained variables.  

The percentage of variation that the selected subset of 
variables explains is 78.98% if we retain n=5 PCs 
(Kaiser’s criterion), 85.67% if we retain n= 7 PCs 
(Jolliffe’s criterion) and 88.29% if we retain n= 8 PCs. 
Therefore, retaining 8 PCs seems to be the best choice. 

4. Human Perception of Similarity 
Experiments  
 

Since the ultimate user of an image retrieval system is 
human, the study of human perception of image content 
from a psychophysical level is crucial [26]. However, few 
content-based image retrieval systems have taken into 
account the characteristics of human visual perception and 
the underlying similarities between images it implies [11]. 
In their paper, Payne and Stonham state that if 
perceptually derived criteria and rank correlation are used 
to evaluate textural computational methods, retrieval 
performances are typically 25% or less, unlike the 80%-
90% matches often quoted [23]. 

We design a human perception of similarity experiment to 
incorporate human perception into our shape-based image 

retrieval system. Figure 3 shows a snapshot of the 
graphical user interface of the experiment. The image on 
the left is the reference image, and the one on the right is 
the test image. 

Since the image features are based on shape this is a 
“shape similarity” experiment. To focus the subjects only 
on shape similarity we binarized the lesion images so that 
there is no color or texture information in them. 

 

 Figure 3. Experiment GUI 

The subjects are expected to rate the similarity between 
pairs of images on a scale of four: Extremely similar, 
considerably similar, partially similar, and not similar. 
This scale is adapted from a psychophysical study [16]. 
Note that “Not similar” does not mean absolute 
dissimilarity; instead the term “not” is akin to “barely” or 
“hardly” in this context. 

Since the number of trials is proportional to the square of 
the number of images, using all of the 184 images in the 
database is impractical. Therefore we select 48 images 
from the database to use in the experiment. This means C 
(48, 2)= 1128 trials. 

The experiment consists of 3 sessions each comprised of 
approximately 376 trials. Nine subjects participated in the 
experiments. Each session took about 19 minutes on the 
average. 

We construct the human response matrix following the 
approach described in Guyader et al. [11]. The overall 
dissimilarity matrix S is the weighted average of the 
individual similarity matrices SK={SK (i j)}, one for each 
level of similarity. (Matrix S1 is for “Extremely similar”, 
S2 for “Considerably similar”, S3 for “Partially similar”, 
and S4 for “Not similar”). Each time a subject associates a 
test image j to a reference i, we increase the corresponding 
SK (i j) by 1. We take the weighted average of SK to obtain 
the overall dissimilarity matrix S as follows: 

S (i,j)= (1/64)*S1 (i,j)+(1/27)*S2 (i,j)+(1/8)*S3 (i,j)+S4 (i,j) 



Note that weighting is necessary while obtaining S since 
we want to emphasize dissimilarity more than similarity. 
Since S is a dissimilarity matrix, a large entry represents a 
pair of dissimilar images, whereas a small entry 
corresponds to a pair of similar images. 

5. Optimization of the Similarity Function 
Using a Genetic Algorithm  
 

Genetic algorithms (GAs) are stochastic and adaptive 
optimization methods. Their advantages are: 

1) They can be applied to an extremely wide range of 
problems [6]. 

2) They are simple to understand and easy to code [6]. 

3) They can be applied to general NP-complete problems 
such as job-shop scheduling, timetabling, traveling 
salesman, and facility layout problems [18]. 

4) They are inherently parallel, since various regions of the 
search space are explored simultaneously [9].  

5) They are effective in situations where the search space 
is mathematically uncharacterized and not fully 
understood [12].  

6) They can handle high-dimensional, nonlinear 
optimization problems [4]. 

We have used Parallel Genetic Algorithm Library 
(PGAPack) developed by David Levine [17] to implement 
our algorithm. The parameters of the algorithm are given 
in table 3. These parameters are determined empirically. 

                       Table 3. GA Parameters 

Parameter Value 
Representation Integer 
Chromosome length 8 genes 
Population size 2000 
Termination criterion 2000 iterations 
Parent selection strategy Tournament selection 
Crossover type 2-point crossover 
Crossover probability 0.85 
Mutation type Permutation 
Population replacement 
strategy 

Steady-state 
replacement 

 
5.1 Mantel Test 
 

The Mantel test is a statistical technique for comparing 
two n x n dissimilarity (or similarity) matrices. It involves 
a measure of the association between the elements in two 
matrices by a statistic r, and then evaluates the 

significance of this measure by comparing it with the 
distribution of the values found by randomly reallocating 
the order of the elements in one of the matrices [1]. 

The statistic used for measuring the correlation between 
two matrices A and B is the classical Pearson coefficient: 

 

where N is the number of elements in the lower or upper 
triangular part of the matrix, Ā and SA are the mean and 
standard deviation of elements of A, respectively.  

Suppose we have two symmetric dissimilarity matrices A 
and B of size n x n. The testing procedure for the simple 
Mantel test is as follows [3]: 

1) Compute the Pearson correlation coefficient rAB using 
eq. 1. 

2) Permute randomly rows and the corresponding columns 
of one of the matrices, creating a new matrix A’. 

3) Compute the rA’B statistic between matrix A’ and matrix 
B using equation 1. 

4) Repeat steps 2 and 3 a great number of times (>5000). 
The number of repeats determines the overall precision of 
the test.  

We have used a GNU general public license software “zt” 
for performing the Mantel test [3]. As mentioned before, 
we use the Mantel test as the fitness function of our genetic 
algorithm. In other words, the output of the Mantel test, 
which is the correlation between two matrices, is used as a 
fitness value indicating the goodness of a particular set of 
weights. Since the Mantel test works with symmetric 
dissimilarity (or similarity) matrices we need to transform 
these matrices to symmetric dissimilarity ones. In each 
generation, we can transform the feature matrix to a 
dissimilarity matrix by taking the weighted Manhattan 
distances between each row using the gene values of the 
fittest individual in that generation as weights. Since 
Manhattan distance is a symmetric function, this matrix is 
guaranteed to be symmetric. The human response matrix is 
already a dissimilarity matrix. But, it is not necessarily 
symmetric. To symmetrize this matrix, we can take the 
average of symmetric entries (i.e., [i,j] and [j,i]).  

5.2 Results of the Optimization 
 

Initially (i.e., with all weights equal to 1.0), the correlation 
between the aggregated human matrix and the feature 
matrix is 0.56. After optimization the correlation becomes 
0.73. This means using optimization we achieve 31% 
improvement in the agreement between the computer 



assessment and human perception. Figure 4 shows a 
selection of matching results. 

        Query           Computer match    Human  match 

 

  Figure 4. A selection of matching results 

6. Related Work 

  
To the authors’ knowledge relatively little work has been 
done to incorporate human perception of similarity in 
CBIR systems in a systematic manner. 

For the specific case of shape similarity Scassellati et al. 
[27] have used shape similarity judgments from human 
subjects to evaluate the performance of several shape 
distance metrics.  

Frese et al. [10] have developed a methodology for 
designing similarity metrics based on human visual 
system. The metric they propose is based on color and 
spatial attributes. Therefore, their method cannot be used 
for general similarity based image retrieval. 

Rogowitz et al. [25] have studied how human observers 
judge image similarity. They conduct two psychophysical 
scaling experiments aimed at uncovering the dimensions 
human observers use in rating the similarity of 
photographic images and compare the results with two 
algorithmic image similarity methods. Although their 
work provides insight into how humans judge similarity, 
this information is not used to improve the performance of 
a CBIR system.  

Mojsilovic et al. [19] have developed a perceptually based 
image retrieval system based on color and texture 
attributes. They perform subjective experiments and 
analyze the results using multidimensional scaling to 
extract relevant dimensions. They also design distance 
metrics for color and texture matching. However, these 
metrics are not optimized for maximum agreement with 
human perception of similarity.  

Guyader et al. [11] have developed a natural scene 
classification system incorporating human perception 
based on Gabor features. However, their model is suitable 
for only global similarity retrieval. For example, classes 
such as people or animals cannot be discriminated. 

7. Conclusion 
 

Content-based image retrieval has been an active research 
area during the last two decades. Since the early 90s 
numerous image retrieval systems, both research and 
commercial, have been developed [21, 24, 28, 13]. The 
main contribution of this work is the incorporation of 
human perception into this task in a systematic and 
generalizable manner. 

In this work, we used aggregated human perception as a 
guide in optimizing a visual similarity function in a 
content-based image retrieval system. A psychophysical 
experiment was designed to measure the perceived 
similarity of each image with every other image in the 
database. The weights of the similarity function were 
optimized by means of a genetic algorithm using the 
dissimilarity matrix obtained from the human experiments. 
As a result of optimization, agreement between the 
computer assessment and human perception is improved 
by 31 percent. 

In this system we focus on shape similarity. However, the 
same approach can be used to develop similarity functions 
based on other low-level features such as color or texture. 
Also, for general similarity based retrieval, another 
content-based image retrieval system powerful in color or 
texture aspects can be combined with our system.  

Currently the human experiment requires approximately 
one hour to be completed. Further work needs to be done 
to minimize the experiment duration in order to include 
experts in the experiments.  

In this system, indexing aspect necessary for efficient 
retrieval has not been considered. For this purpose, 
efficient multidimensional indexing techniques such as 
SS-trees, SR-trees or X-trees can be used. 
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