
SMCA: A General Model for Mining
Asynchronous Periodic Patterns in

Temporal Databases
Kuo-Yu Huang and Chia-Hui Chang, Member, IEEE Computer Society

Abstract—Mining periodic patterns in time series databases is an important data mining problem with many applications. Previous

studies have considered synchronous periodic patterns where misaligned occurrences are not allowed. However, asynchronous

periodic pattern mining has received less attention and only been discussed for a sequence of symbols where each time point contains

one event. In this paper, we propose a more general model of asynchronous periodic patterns from a sequence of symbol sets where a

time slot can contain multiple events. Three parameters min rep, max dis, and global rep are employed to specify the minimum

number of repetitions required for a valid segment of nondisrupted pattern occurrences, the maximum allowed disturbance between

two successive valid segments, and the total repetitions required for a valid sequence. A 4-phase algorithm is devised to discover

periodic patterns from a time series database presented in vertical format. The experiments demonstrate good performance and

scalability with large frequent patterns.

Index Terms—Periodic pattern, asynchronous sequence, partial periodicity, temporal database.

�

1 INTRODUCTION

PATTERN mining plays an important role in data mining
tasks. Various patterns have been introduced for

different applications, e.g., frequent item sets [1], [6] and
sequential patterns [2], [14], [18] for transaction databases,
frequent episodes [10], [11], [12] in event sequences, and
frequent continuities [15], [7] for intertransaction associa-
tion. Periodic patterns are recurring patterns that have
temporal regularities in time-series databases. Periodic
patterns exist in many kinds of data. For example, tides,
planet trajectories, somite formation, daily traffic patterns,
and power consumptions all present certain periodic
patterns. There are many emerging applications, including
stock market price movement, earthquake prediction, tele-
communication network fault analysis, repeat detection in
DNA sequences and occurrences of recurrent illnesses, etc.

The discovery of patterns with periodicity has been

studied in several works [3], [4], [5], [9], [13]. For example,

Ozden et al. proposed the mining of cyclic association rules

that reoccur in every cycle of the time span of the temporal

database [13]. Han et al. considered imperfect periodic

patterns that reoccur for at least minconf percent of the

cycles [4]. Berberidis et al. further proposed an approximate

periodicity detection algorithm [3]. However, these studies

considered only synchronous periodic patterns and did not

recognize the misaligned presence of patterns due to the

intervention of random noise. For example, assume that a

temporal database contains a periodic pattern, “Beer and
Diaper,” on Friday nights, from January to March. How-
ever, in April, the business has a big promotion for beer
every Saturday. Therefore, many customers would buy beer
on Saturday instead of Friday because of this promotion. In
this case, it would be desirable if the pattern can still be
recognized when the disturbance is within some reasonable
threshold. Therefore, in [17], Yang et al. extended the idea
to find asynchronous periodic patterns.

Yang et al.’s asynchronous periodic pattern problem
aims at mining the longest periodic subsequence which
may contain a disturbance of length up to a certain
threshold. Formally, a valid subsequence with respect to a
pattern P in a sequence D is a set of nonoverlapping valid
segments, where a valid segment has at least min rep

contiguous matches of P and the distance between any two
successive valid segments does not exceed a parameter
max dis. A valid subsequence with the most overall
repetitions of P is called its longest valid subsequence.
However, this model has some problems.

. First, this model only focused on mining periodic
patterns in temporal sequences of events. However,
in real-world applications, we may find multiple
events at one time slot in terms of various intervals
(e.g., hour, day, week, etc.) as discussed in previous
works [4], [5], [13]. We refer to such databases as
sequences of event sets.

. Second, this model only focused on mining the
longest sequence of a pattern, which can only
capture part of the system’s behavior. For example,
in the case when two successive, nonoverlapped
segments with a disturbance larger than max dis,
only the larger segment will be reported. Taking
another example, as shown in Fig. 1a, it is possible

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005 1

. The authors are with the Department of Computer Science and Information
Engineering, National Central University, No. 300, Jungda Rd., Jhongli
City, Taoyuan, Taiwan 320, R.O.C.
E-mail: want@db.csie.ncu.edu.tw, chia@csie.ncu.edu.tw.

Manuscript received 21 May 2004; revised 14 Sept. 2004; accepted 21 Sept.
2004; published online 19 Jan. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0147-0504.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

that two overlapped subsequences, (S1; S3) and (S2),
are controlled by two network administrators.
Therefore, reporting the longest subsequence will
miss the other subsequence.

. Third, in order to discover the longest subsequence,
a longer segment can be broken into smaller
segments when two segments overlap. Take Fig. 1a,
for example. Suppose the min rep is 2, the longest
subsequence for pattern ðA; �; �Þ which can be
connected by segments: (D1 � D3), (D5 � D6), and
(D9 � D10) according to the definition in [17]. This,
however, has to break a longer segment (both S2 and
S3) into smaller segments to avoid overlapping. In
fact, there can be several subsequences with the most
overall repetitions, e.g., (D1 � D2), (D4 � D5), and
(D8 � D10) is another subsequence with seven
repetitions. We argue that a segment should be
extended to its longest possibility and the over-
lapping of two segments should be considered as
two separate sequences.

. The final problem regards the definition of a
segment’s end position, which affects whether or
not two segments overlap. Instead of using the
pattern’s last occurrence as the segment’s end
position, the end position of a segment is defined
as the period’s end for the last occurrence of the
pattern. To illustrate this, the end position of
segment S1 in Fig. 1a is 9 according to the definition
in [17]. Therefore, segment S1 and S2 overlap. If we
use the pattern’s last occurrence as the segment’s
end position, as shown in Fig. 1b, the end position
for segment S1 will be 7 and segment S1 and S2 will
not overlap. This consideration is from the applica-
tion of inventory replenishment where an event
occurs ahead of time as addressed in [17]. In order to
connect such occurrences, the end of a segment is
better defined as the event’s last occurrence.

To address these problems, in this paper, we discuss

asynchronous partial periodic patterns in eventset se-

quences where each time slot may contain multiple events.

Three parameters, namely, min rep, global rep, and max dis

are employed to qualify valid patterns and the subsequence
containing them, where this subsequence, in turn, can be
viewed as a list of valid segments of perfect repetitions
interleaved by a disturbance. Each valid segment is
required to be of maximal and at least min rep contiguous
matches of the pattern, and the distance of each piece of
disturbance is allowed only up to max dis. A sequence is
termed valid if and only if the overall repetitions of the
pattern are greater than global rep. We propose a series of
algorithms for mining asynchronous periodic patterns,
proceeding from mining valid segments for 1-patterns to
mining periodic segments for i-patterns. We first devise an
algorithm (called SPMiner) to discover all valid segments
for each single event from temporal database presented in
vertical format. The idea is to trace p possible segments for
period p. When examining a time slot Ti for the given event,
if Ti minus the last position for the segment maintained in
Ti%p equals p, this segment is extended and its last position
is updated. Then, two algorithms, MPMiner and CPMiner,
are devised to discover valid segments for multievent
1-patterns and i-patterns. To avoid additional scans over the
temporal database, we use the discovered valid segments
and combine them using depth first enumeration, thus
reducing redundant generation and testing. Finally, all
valid segments with respect to a pattern can be combined to
form an asynchronous subsequence by APMiner. In
summary, this paper make the following contributions in
this paper:

. A more general model of asynchronous periodic
patterns is proposed to allow the mining of all
patterns, not only in a sequences of events, but also
in a temporal database of event sets.

. A dynamic hash-based validation mechanism is
devised to discover all patterns using a single scan
of the temporal database.

. There is no candidate pattern generation, as required
for Apriori-like algorithms.

. Finally, the complexity analysis and experiments of
the proposed algorithm show great scalability with
large data sets.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 1. Two definitions of a segment’s end position: (a) Yang et al. and (b) this paper.

The remaining parts of the paper are organized as
follows: We summarize some related research in Section 2.
In Section 3, we define the problem of asynchronous
periodic pattern mining for temporal database. Section 4
presents our algorithm for mining asynchronous periodic
patterns from temporal database and Section 5 compares
the proposed algorithm with that in [17]. Experiments and
performances of the algorithm study are reported in
Section 6, and our conclusion are presented in Section 7.

2 RELATED WORK

There have been a number of recent studies in periodic
pattern mining. For example, cyclic association rules
proposed by Ozden et al. [13], partial periodic patterns by
Han et al. [4], [5], and asynchronous periodic patterns by
Yang et al. [16], [17]. However, each of these studies has a
different definition for periodicity. Special terms like partial
versus full, perfect versus imperfect, and synchronous
versus asynchronous are used and need to be clarified.

The so called full periodicity specifies the behavior of
the time series at all points in the period, while partial
periodicity specifies the behavior at some but not all points
in time. Partial periodicity is a looser kind of periodicity
than full periodicity and its application is more general
because of the mixture of periodic events and nonperiodic
events in real-world data. Full periodicity search has been
studied for time series of numerical values, while partial
periodicity search is mainly applied for symbolic patterns.
For example, Ozden et al. define the problem of discovering
cyclic association rules that display regular cyclic variation
over time [13]. This motivation is based on the observation
that an association rule may not have the user-specified
minimum confidence or support over the entire time
spectrum, but its confidence and support may be above
the minimum threshold within certain time intervals. In this
work, a periodic pattern is expressed as c ¼ ðp; l; oÞ, where a
pattern p occurs in every l time unit starting at the oth time
unit (o � l). Note that what Ozden et al. considered are
partial periodic patterns with perfect periodicity in the
sense that the pattern reoccurs in every cycle, with
100 percent confidence. By studying the interaction between
association rules and time, they applied three heuristics:
cycle pruning, cycle skipping, and cycle elimination to find
cyclic association rules in transactional databases.

Since real-life patterns are usually imperfect, Han et al.
[4], [5] presented several algorithms to efficiently mine
partial and imperfect periodic patterns by exploring some
interesting properties related to partial periodicity, such as
the Apriori property and the max-subpattern hit set
property, and by shared mining of multiple periods. In
order to tame the restriction cyclic association rule, Han et
al. used confidence to measure how significant a periodic
pattern is. The confidence of a pattern was defined as the
occurrence count of the pattern over the maximum number
of periods of the pattern length in the temporal database.
For example, ða; �; bÞ is a partial pattern of period 3 (The
character “*” is a “don’t care” character, which can match
any single set of events); its occurrence count in the event
series “a{b,c}baebaced” is 2; and its confidence is 2/3, where
3 is the maximum number of periods of length 3. Never-

theless, the proposed mining model works only for
synchronous periodic pattern mining.

Therefore, Yang et al. [16], [17] proposed to mine for
asynchronous periodic patterns that are significant using a
subsequence of symbols. Two parameters, min rep and
max dis, are employed to qualify valid patterns. The
intuition is that a pattern needs to repeat itself at least a
certain number (min rep) of times to demonstrate its
significance and periodicity. On the other hand, the
disturbance between two valid segments has to be within
some reasonable bound (max dis). Otherwise, it would be
more appropriate to treat such a disturbance as a signal of
“change of system behavior” instead of random noise
injected into some persistent behavior. A two-step algo-
rithm is devised to first generate potential periods by
distance-based pruning, followed by an iterative procedure
to derive and validate candidate patterns and locate the
longest valid subsequence for 1-patterns (called LSI). For
patterns satisfyingmin rep andmax dis requirements, their
model will return the subsequence with the maximum
overall repetitions. The second step then applies an Apriori-
like algorithm (called level-wise search) to generate the
subsequences of i-patterns based on valid subsequences of
all ði� 1Þ-patterns with the same period length. As argued
above, this model considers only sequences of symbols, and
the longest subsequences can only capture part of the
system’s behavior. Therefore, a more general model is
proposed in this paper.

3 PROBLEM DEFINITION

In this section, we define the problem of asynchronous
periodic mining. The problem definition is similar to [17],
with some modification as discussed in Section 1. Let E be a
set of all events. An event set is a nonempty subset of E. A
databaseD is a set of time records where each time record is
a tuple ðtid;XÞ for time instant tid and event set X. A time
series database stored in form of ðtid;XÞ is called horizontal
format (see Table 1). We say that an event set Y is supported
by a time record ðtid;XÞ if and only if Y � X. An event set
with k events is called a k-event set.

Definition 1. A pattern with period l is a nonempty sequence
P ¼ ðp1; p2; . . . ; plÞ, where p1 is an event set and others are
either an event set or *, i.e., pj 2 ð2E � ;Þ [f�g for 2 � j � l.

The symbol “*” is introduced to allow partial periodicity
as in previous papers (the “don’t care” position in a
pattern). Since a pattern can start anywhere in a sequence,
we only need to consider patterns that start with a non “*”

HUANG AND CHANG: SMCA: A GENERAL MODEL FOR MINING ASYNCHRONOUS PERIODIC PATTERNS IN TEMPORAL DATABASES 3

TABLE 1
An Illustrative Temporal Database D

symbol. A pattern P is called an i-pattern if exactly i

positions in P contain event sets. Particularly, we call
1-patterns singular patterns, and i-patterns complex pat-

terns for i > 1. For example, ðA; �; �Þ is a singular pattern
and (A, C, *) is a 2-pattern, which is also called complex
pattern. If pattern P does not have any “*” symbol, we call it
a full pattern. Otherwise, pattern P is called a partial

pattern.

Definition 2. Given a pattern P ¼ ðp1; p2; . . . ; plÞ with period l

and a sequence of l event sets D0 ¼ ðd1; d2; . . . ; dlÞ, we say that
P matches D0 (or D0 supports P) if and only if, for each
position j (1 � j � l), either pj ¼ � or pj � dj is true. D0 is
also called a match of P .

In general, given a sequence of event sets and a
pattern P , multiple matches of P may exist. In Fig. 1b,
D1; D2; . . . ; D10 are 10 matches of ðA; �; �Þ. We say that
two matches of the same period are overlapped if and
only if they share some common subsequence, otherwise,
they are disjoint. For example, D3 and D4 share a
common subsequence at time slots 8 and 9 so they
overlap, whereas D1 and D2 are disjoint.

Definition 3. Given a pattern P with period l and a sequence
of event sets D, a list of k (k > 0) disjoint matches of P in

D is called a segment with respect to P iff it forms a
contiguous subsequence of D. Here, k is referred to as the

number of repetitions of this segment. For convenience, we
use a 4-tuple (P , l, rep, pos) to denote a segment of pattern

P with period l starting from position pos for rep times. A
segment is maximum if there are no other contiguous

matches at either end.

In Fig. 1b, D4; . . . ; D7 are continuous and disjoint
matches. Therefore, we can use S2 ¼ fðA; �; �Þ; 3; 4; 8g to
indicate a segment with period 3 starting from position 8 for
4 times. For convenience, we may ignore the “don’t care”
symbols for 1-patterns. Therefore, segment S2 can also be
represented by ðA; 3; 4; 8Þ. Note that D4, D5, and D6 also
form a segment but it is not maximum.

Definition 4. A maximum segment S with respect to a pattern P

is a valid segment if and only if the number of repetitions of S

(with respect to P) is at least the required minimum repetitions

(i.e., min rep).

Let M1 and Mf denote the first and the last match of a
maximal segment. The start (end) position of a maximal
segment for a pattern is the start position of M1 (Mf).
Therefore, the start and end position of segment S1 is 1 and
7, respectively. The disturbance between two segments is
the distance between the end position of the first segment
and the start position of the second segment. For Fig. 1b, the
disturbance between S1 and S3 is 8 ð15� 7Þ.
Definition 5. Given a temporal database D and a pattern P , a

sequence in D is a set of nonoverlapping valid segments, where
the distance between any two successive valid segments is less

than a predefined parameter, called maximum disturbance
(max dis). A sequence is called valid if and only if the overall

number of repetitions of P is greater than a predefined

parameter, called global repetition (global rep).

For Fig. 1b, if we set min rep ¼ 2, global rep ¼ 6, and
max dis ¼ 8, there will be two valid subsequences (S1; S2)
and (S1; S3) returned. The problem is formulated as follows:
Given a temporal database and three parameters, min rep,
global rep, and max dis, the problem is to find all valid
periodic sequences with significant periods between 1 and
Lmax specified by the user.

4 ALGORITHM OVERVIEW

In this section, we explore methods for mining asynchro-
nous periodic patterns in temporal database, proceeding
from mining valid periodic segments for singular patterns
to mining periodic segments for complex patterns. One
algorithm, SPMiner, is devised to discover all valid
segments for each single event from database using
potential cycle detection and hash-based validation me-
chanism. Then, two algorithms, MPMiner and CPMiner, are
devised to discover valid segments for multievent
1-patterns and complex patterns. Finally, all valid segments
with respect to a pattern can be combined to form an
asynchronous subsequence by APMiner.

Fig. 2 shows the architecture of our algorithm (abbre-
viated as SMCA). The links between the four modules show
the flow of mining results. CPMiner receives the result of
SPMiner and MPMiner as its input since it combines both
single event 1-patterns and multievent 1-patterns to form
i-patterns. The last three modules, MPMiner, CPMiner, and
APMiner, are designed by depth first enumeration, which
uses the mining result of previous modules as input. Note
that the first three modules discover valid segments which
are synchronous patterns. Therefore, their mining results
can all be fed into the fourth module for asynchronous
sequence mining. Finally, the rectangle around MPMiner
and CPMiner indicates that the two modules can be
combined in one procedure as discussed below. If the
input is a sequence of symbols, MPMiner can be ignored
and the three modules SPMiner, CPMiner, and APMiner
can be used to discover periodic patterns for the problem
defined in [17].

4.1 SPMiner: Segment Mining for Single Event
Pattern

This section describes SPMiner, which discovers valid
segments for each single event. In contrast to most previous
research on pattern mining, which assumes a horizontal
database layout, we use vertical database format which has
been proved to be more efficient, as reported in [18]. Table 2

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 2. The SMCA model.

shows the vertical format for databaseD in Table 1, where a
timelist is maintained for each event. The inputs to SPMiner
include a vertical format VD and the interested period
interval specified by Lminð¼ 1Þ and Lmax. By examining the
variation in timelists, we devise two mining strategies,
potential cycle detection (PCD) and Hash-based validation
(HBV), for mining periodic segments for each single event.
We explain these two techniques below and list the
algorithm in Fig. 3 for reference:

. Potential Cycle Detection (PCD) is designed to
recognize possible periods for an event. Since a
valid pattern with period l implies there exist at
least min rep matches, we need to count the
number of matches for each period l
(1 � l � Lmax). This can be implemented by scan-
ning the timelist for an event once and maintain-
ing a sliding window of Lmax latest time instants.
We use an array CheckSet½Lmax� (initialized to 1)

to accumulate the counts for each period l (Step 1
in procedure PCD). At time instant Ti, if the
difference between Ti and Tj, denoted by p, is less
than Lmax fo r Tj, j ¼ i� 1; ; i� Lmax, then
CheckSet½p� is increased by one (Steps 3-5). If, at
the end, CheckSet½l� is greater than min rep, then
l is a potential cycle and the HBV procedure will
be executed. Take event C in Table 2 and Lmax ¼
3 as an example. After scanning the timelist of
event C, we get CheckSet½1� ¼ 3, CheckSet½2� ¼ 8,
and CheckSet½3� ¼ 4. With min rep ¼ 5, only 2 is a
possible period for event C.

. Hash-Based Validation (HBV): For each potential
cycle p of an event e, this procedure scans the timelist
once and outputs valid segments with period p. Note
that segments represent synchronous periodic occur-
rences and can be overlapped as shown in Fig. 1.
Therefore, a hash-based function is used to trace p
independent (potentially overlapping) segments in a
data structure called CSeg½p�, where each entry
records the last position where the event occurs and
the number of repetitions for the current segment. For
each time instant Ti in the timelist, we compute the
modulus pos ¼ Ti%p (Step 5 in procedure HBV). The
possible segment is kept in CSeg½pos�. If Ti �
CSseg½pos�:last is exactly p, it implies that this event
hasoccurredat ðTi � pÞ-th time instant. In this case,we
inc rea se Cseg½pos�:rep by one and upda t e
CSeg½pos�:last by Ti (Steps 6-7). If otherwise, Ti �
CSseg½pos�:last is not p, it implies the last segment
withperiodphasbeen interrupted. In this case, output
this segment if CSeg½pos�:rep is greater than min rep
(Steps 8-9), and reset CSeg½pos�:rep to 1 and
CSeg½pos�:last to Ti (Step 10). Finally, examine CSeg
once and output valid segments if the number of
repetitions is greater than min rep (Steps 12-13).
Taking period 3 of event D, for example, the process
of scanning D:timelist is shown in Fig. 4. Initialize
each record of CSeg with rep ¼ 1 and last ¼ �Max.
With min rep ¼ 5, one valid segment ðeventset ¼
D; p ¼ 3; rep ¼ 6; start ¼ 3Þ is returned.Table 3 shows
all valid segmentsofdatabaseDwithmin rep ¼ 5and
Lmax ¼ 3.

We analyze the time complexity and space complexity of

the SPMiner below. The overall time for processing

HUANG AND CHANG: SMCA: A GENERAL MODEL FOR MINING ASYNCHRONOUS PERIODIC PATTERNS IN TEMPORAL DATABASES 5

TABLE 2
Vertical Format of Database D in Fig. 1

Fig. 3. SPMiner: Singular periodic pattern mining algorithm.

Fig. 4. Execution process for event D with period 3.

SPMiner for a given event e is 2 � ne (PCD + HBV), where ne

is the number of occurrences of event e. For a given period
length l, the time to find the singular periodic pattern for all
events is hence

P
8e 2 � ne which is equivalent to two

database scans. LetD denote the number of time slots and T

be the average number of events in each time slot. The
database size can be represented by D � T . Consequently,
the time complexity to discover all valid segments for all
periods is OðD � T � LmaxÞ. The data structure used for PCD
and HBV when processing an event is CheckSet and CSeg,
respectively. The size of the data structure is a multiple of
Lmax, which can be reused for all events. Therefore, the
space complexity is OðLmaxÞ.

4.2 Depth First Enumeration

Depth first enumeration is a popular concept used to
enumerate all possible combinations. Although it has a
worst-case time complexity which is exponential to the
number of input elements, most enumeration stop earlier
due to an antimonotone property. In this section, we will
show how DFS enumeration can be used to discover valid
segments for multievent singular patterns and complex
patterns, and also the combination of segments with respect
to one pattern to form valid sequences.

4.2.1 MPMiner for Multievent Patterns

To discover valid segments for multievent 1-patterns, we
propose two mining methods: timelist-based enumeration
(TBE) and segment-based enumeration (SBE). These two
methods have their respective advantages and can be used

in appropriate situations. We will compare these two
methods in Section 6.

Timelist-Based Enumeration (TBE): For each period p, we
can enumerate possible event sets from events that have
valid segments with period p. Duplicate enumerates are
avoided by forcing an alphabetic or numerical order on the
events. For each combined event set, the timelist is obtained
by the timelist intersection from the constituent events.
Then, the HBV procedure used in SPMiner is applied to
check if valid segments exist for the eventset. Enumeration
stops whenever no valid segment exists for an event set.

Example 1. Take period 2 in Table 3, for example. There are
three events A;C;D that have valid segments with
period 2. We can enumerate all combinations via depth-
first search. fA;Cg is first enumerated with timelist
being the intersection of A:TimeList and C:TimeList.
With the timelist information, the HBV procedure is then
called to check if valid segments exist for this event set
fA;Cg. Since valid segments exist for this event set,
fA;C;Dg is then enumerated with timelist being the
intersection of AC:TimeList and D:TimeList. The
process for enumerating multiple event patterns is
illustrated in Fig. 5.

Segment-Based Enumeration (SBE): Another way to dis-
cover multievent 1-patterns is to combine valid segments of
single-event 1-patterns. Consider segments with the same
period. Let us define the normalized offset of a segment,
ðEvtSet; p; rep; startÞ, as the module of the segment’s start
position over its period, i.e., off ¼ start%p. Two over-
lapping segments with the same offsets can form 2-event
singular patterns if the number of repetitions of the
overlapped area is greater thanmin rep. To discover i-event
singular patterns, we can compose them from an ði�
1Þ-event segment with a 1-event segment. In other words, an
i-event singular pattern is composed of i segments dis-
covered by SPMiner. For efficient combination, segments of
the same period are ordered by their start position. Two
segments can be combined if they have the same offsets and
the overlapping area has repetitions greater than min rep.
The overlapped area is defined by the maximum start
position and the minimum end position of the two

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

TABLE 3
Valid Segments with min rep ¼ 5

Fig. 5. Tree enumeration.

segments. Note that the end position of the segment can be

determined by startþ ðrep� 1Þastp. The same criteria work

for combination of an ði� 1Þ-event segment and a single-

event segment.

Example 2. Again, take period 2 in Table 3, for example.

Segment ðA; 2; 5; 1Þ and ðC; 2; 5; 1Þ can be combined to

form segment ðAC; 2; 5; 1Þ since the normalized offset is

the same and the overlapping area has repetition 5.

However, segment ðAC; 2; 5; 1Þ and ðD; 2; 5; 7Þ cannot

form a 3-event segment since the overlapped area

(minf9; 15g �maxf1; 7g) has only two repetitions.

4.2.2 CPMiner for Complex Patterns

Discovering complex patterns from singular patterns (both

single-event and multievent) has a procedure similar to the

segment-based enumeration (SBE) in MPMiner. We refer to

this procedure as CPMiner. CPMiner enumerates possible

combinations of valid segments of the same period in

depth-first order and checks if a combination forms a

complex pattern. For two overlapping segments with

different offsets, they can form a 2-pattern if the repetition

of the overlapping area is greater than min rep. To discover

an i-pattern, we can compose it from an ði� 1Þ-pattern with

1-patterns. In other words, an i-pattern is composed of

i segments (of 1-patterns) with different offsets. Note that

two segments with the same offset can only form a singular

pattern and have been considered in MPMiner.

For an efficient combination, segments are ordered by
their start position. As shown in Fig. 6, each call of the
procedure CP DFS examines possible combinations of the
current pattern composed by Node:Head with a segment in
the Node:Tail, denoted by Si (Step 2). For a possible
combination, the new segment must have a different offset
with each segment in the Node:Head (Steps 4-6). Two
variables Node:start and Node:end are used to record the
start and end position for the current pattern. Therefore, the
overlapping area can be easily computed (Step 7). Since
segments are ordered by their start position, the maximum
start position is determined by the new segment. If the
number of repetitions of the overlapped area is greater than
the specified min rep, the pattern is output (Steps 9-12).
Since segments are ordered by their start positions, once the
overlapping area is less than min rep, the remaining
segments can be ignored if the gap between Node:end and
Si:start is less than p �min rep (Step 13). Another way is to
check if Si:start is greater than Node:end, while the formula
in Step 13 stop the procedure earlier.

Since a pattern ðA; �; B; CÞ can also be represented by
ðB;C;A; �Þ or ðC;A; �; BÞ, it is desirable to select one
representation to avoid duplication. The idea is to select
the one with the largest repetitions. Therefore, the first
element of the pattern is determined by the segment with
the minimum end position. Then, each 1-pattern, Si is
placed in the pattern with an offset determined by
ðSi:start� shiftÞ%p (Steps 4-5 of PatternOutput), where
shift is the offset of the segment with the minimum end
position (Step 1). Note that the start position of the
combined pattern will be modified by Node:end� ðrep�
1Þ � p (Step 6) in order to have the largest repetitions (Check
pattern ðD;A; �; CF Þ in Table 5).

Example 3. Consider the segment list with period 4, as
shown in Table 4. By using depth-first enumeration,
we first enumerate f0; 1g. Since these two segments

HUANG AND CHANG: SMCA: A GENERAL MODEL FOR MINING ASYNCHRONOUS PERIODIC PATTERNS IN TEMPORAL DATABASES 7

Fig. 6. CPMiner: Complex periodic pattern mining algorithm

TABLE 4
Segment List Ordered by Start Position

TABLE 5
Complex Patterns Combined from Table 4

have the same offset (2), they cannot be combined into
a 2-pattern. Next, enumerate f0; 2g. Since they have
different offsets, we then check the overlapping area
with start at Maxf42; 49g ¼ 49 and end position at
Minf66; 77g ¼ 66. Since dð66� 49Þ=4e þ 1 ¼ 6 satisfies
the minimum repetition 4, it forms a valid 2-pattern
with segments f0; 2g. This 2-pattern is then expressed
as a 4-tuple with the first element determined by
segment 0 since it has the minimum end position.
Then, each segment will be shifted by 2 as the offset of
segment 0 is 2 ð¼ 42%4Þ. Therefore, segment 0 is
located at ð42� 2Þ%4 ¼ 0 and segment 2 is located at
ð49� 2Þ%4 ¼ 3. This will output pattern (C, *, *, BE)
with six repetitions and start position determined by
66� ðrep� 1Þ � p ¼ 46. With depth-first enumeration,
this 2-pattern will be combined with two other
segments, 3 and 4, until no segments can be combined
with the current pattern. All complex patterns dis-
covered from Table 4 with min rep ¼ 5 are shown in
Table 5.

For an input of Sp segments with period p, there are C
Sp

l

l-patterns in the worst case. However, there are usually
fewer combinations because of the min rep constraints for
the overlapping area. The correctness of CPMiner and
MPMiner can be shown as follows: At each node, each
element in the node’s tail is combined with the node’s head
and regarded as a possible 1-extension. If the overlap area is
less than min rep, then we can stop any following
enumeration, since any combination from that possible 1-
extension would have an invalid subset (antimonotone
property).

Note that it is possible to enumerate all combinations of
segments discovered from SPMiner to form either multie-
vent singular patterns or complex patterns. That is, the SBE
approach of MPMiner and CPMiner can be combined in
one depth-first enumeration, where the offset criteria is
lifted and only the overlap criteria is enforced.

4.2.3 APMiner for Asynchronous Pattern

As noted in Definition 5, an asynchronous periodic pattern
is defined by the existence of a valid sequence which is a set
of nonoverlapping valid segments with respect to a pattern.

Therefore, a depth-first algorithm is designed to enumerate
all combinations of segments with respect to a pattern.
Suppose segments are ordered by their start position. A
single segment is itself a subsequence and potentially valid
if the number of repetitions is greater than global rep. For
each enumeration, we try to extend the current subsequence
by examining one more segment. Then, if the start position
of the new segment is within max dis of the current
subsequence, the subsequence is extended. Once the start
position of a segment is greater than the end position of the
current sequence by max dis, the remaining segments can
be ignored since segments are ordered by their start
position.

5 DISCUSSION

In this section, we compare the mining procedure of our
proposed algorithm, SMCA, with the LSI algorithm
proposed in [17]. Furthermore, we discuss the solution
when the data is too long/large to fit in memory space.

5.1 Comparison

The comparison of LSI and SMCA is summarized in Table 6,
where LSI is decomposed for comparison with the four
modules in SMCA. Since the first step of LSI is used to
discover asynchronous subsequences for 1-patterns, it is
roughly equivalent to SPMiner+APMiner. To be more
specific, the discovery process of LSI’s first step moves
among three phases for segment validation (phase A),
segment growth (phase B), and sequence extension
(phase C). Therefore, phase A+B is equivalent to SPMiner,
and phase C is equivalent to APMiner. The second step of
LSI is then used to compute asynchronous subsequences for
complex patterns, which is roughly equivalent to CPMiner.
Finally, since LSI is designed for sequences of events, there
is no corresponding procedure for MPMiner.

The time complexity to discover the “longest” single event
subsequence fromadatabase of events is k �M � Lmax, where
Lmax is the maximum period length, M is the database size,
and k is abbreviated formin repþmax disþ Lmax [17]. For a
database of events, the size of thedatabase can be represented
by D � T for D time slots, each with an average of T events
(M ¼ D � T). The space complexity of LSI is

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

TABLE 6
Overall Comparison between SMCA and LSI

ðmax disþ LmaxÞ �N � Lmax

þminðN � Lmax;min rep � L2
max �NÞ

as analyzed in [17]. To discover valid segments according to

the definition in this paper, the space of LSI can be

approximated by O(L2
max �N). The LSI algorithm needs

two database scans, one for the distance-based pruning

procedure and the other for the 1-pattern verification

procedure. Analysis of SPMiner was made in the previous

section. Compared to SPMiner, the vertical format repre-

sentation has significant benefits over horizontal format.
Yang et al. employs a level-wise search algorithm (a

priori-like) for discovering complex patterns, i.e., it gen-

erates candidate l-patterns based on ðl� 1Þ-patterns with

the same period length and then applies LSI to validate the

longest subsequence for the l-pattern. However, a priori-

like algorithms often perform as many passes over the

database as the length of the longest l-pattern. In this case,

the number of database scans is proportional to the number

of candidates. If there are N̂pNp valid patterns with period p,

this will imply a presence of OðCN̂pNp

l ðp� lÞÞ candidate

patterns, each of which is explicitly examined by their

algorithm. Therefore, CPMiner may outperform LSI when

the number of segments is not exceptionally high.
Finally, the LSI algorithm outputs the longest subse-

quence for a pattern. As stated in the introduction, there can

be several subsequences with the most overall repetitions.

Which subsequence will be output depends on the im-

plemented algorithm. Therefore, APMiner is designed to

output all valid subsequences with overall repetitions

greater than global rep, as described in the problem

definition.

5.2 Extra Long/Large Sequence

Sometimes, the whole time series database is too long/large

to fit in memory space. In this case, we mine periodic

patterns by a partition-and-validation strategy. First, the

algorithm subdivides the extra-large sequence data into n

nonoverlapping horizontal partitions. Each partition can be

handled in memory by SPMiner. Further, each partition is

transformed into vertical format. For the first partition, all

valid segments can be mined by the initialization and

validation steps in procedure HBV. For the succeeding

partitions, the initial start (last) position is inherited from

the last partition. In the final partition, valid segments are

discovered by the complete three steps of procedure HBV,

that is, rechecking is only necessary for the last partition.

For example, suppose the memory only maintains six time

records at one time. Thus, Table 1 will be divided into three

partitions. Take eventD for an example, the timelist in three

partition will be f2; 3; 6g, f7; 9; 11; 12g, and f13; 15; 16; 18g,
respectively. For the first partition, the mining process is the

same, as shown in Fig. 4, from initial to time instant 6. For

the second partition, the initial state is exactly that of time

instant 6 and the mining process goes similarly as shown in

the same figure from time instant 7 to time instant 12.

Finally at partition 3, we recheck the CSeg structure after

processing time slot 18 and output segment (D, period = 3,

rep = 6, start = 3).

6 EXPERIMENTS

In this section, we report on a performance study of the
algorithms proposed in this paper and an application of
periodic pattern mining in a real data set. We first
investigate the performance of SPMiner for singular
patterns and compare the result with the LSI (Longest
Sequence Identifier) algorithm proposed in [17] using
synthetic data. We also compare two multievent pattern
mining algorithms, TBE and SBE. Then, complex pattern
mining using CPMiner is also evaluated. Finally, the
algorithms are applied to real data for periodic pattern
mining.

6.1 Synthetic Data

For the purpose of performance evaluation, we use
synthetically generated temporal data set consisting of jN j
distinct symbols and jDj time instants. A set of periodic
complex patterns C, is generated as follows: First, we
decide the period length from normal distribution with
average length P . Then, L ð1 < L < P Þ positions are chosen
for nonempty event sets. The average number of events for
each singular pattern is set to I. The number of repetitions
of a segment follows a geometrical distribution with mean
Rep. Following each segment, a disturbance is given, based
on a geometrical distribution with mean Dis. This process
repeats until S segments are generated. A total of jCj
complex patterns are generated. With all periodic patterns
generated, we then assign events to each time instant. The
number of events in each time instant is picked from a
Poisson distribution with mean T . For each time instant, if
the number of the events in this time instant is less than T ,
the insufficient events are picked at randomly from the
symbol set N . Table 7 shows the notations used and their
default values. The experiments are conducted on a
computer with a CPU clock rate of 1GHz and 1.5GB of
main memory, and the program is written in Visual C on a
Windows 2000 platform.

Before presenting the experimental results, we first
describe our implementation of LSI. Since the LSI algorithm
is designed to discover the longest subsequence for single-
event singular patterns from a sequence of events instead of
event set, we made two modifications. First, we implement
only the first two phases of LSI for valid segment discovery,
since the last phase is used to identify the longest
subsequence (The discovery process of LSI’s first step

HUANG AND CHANG: SMCA: A GENERAL MODEL FOR MINING ASYNCHRONOUS PERIODIC PATTERNS IN TEMPORAL DATABASES 9

TABLE 7
Meanings of Symbols

moves among three phases for segment validation
(phase A), segment growth (phase B), and sequence

extension (phase C)). Second, in order to handle an eventset
sequence, we implement LSI using vertical data formats to

save extra time when examining a time slot in horizontal
data formats.

We start by looking at the performance of SPMiner with

default parameter min rep ¼ 15 and Lmax ¼ 20 (Default

Data Set). The scalability of SPMiner is shown in Fig. 7a.
The scaling with database size was linear, and the running

time for SPMiner was also better than LSI(A+B) (by a
magnitude of 30 for jDj ¼ 150K). Fig. 7b shows the effect of

parameter I on LSI. When the number of events for singular
patterns increases, LSI requires more time to process the

increased number of candidates. As for SPMiner, the
running time is independent of I since the time complexity

is related only to data size D and T (note that I is a value
smaller than T). In Fig. 7c, the total running time for

SPMiner is linear to the average transaction size, as
analyzed in Section 4.1; whereas, the running time for LSI

increases dramatically since the distance-based pruning

technique has comparatively less to prune. Another experi-
ment, recorded in Fig. 7d, shows that the total running time
of LSI is decreasing along with the increasing of themin rep
since the number of valid segments decreases as min rep
are increased, whereas SPMiner has minor variations since
the number of repetitions is in a geometrical distribution.

Next, we demonstrate the efficiency of MPMiner by
comparing timelist-based enumeration (TBE) with segment-
based enumeration (SBE). Fig. 8a shows the execution time
of these two methods. As we can see, SBE outperforms TBE
when I and S are small. However, when I and S are large,
TBE outperforms SBE. This is because the time complexity
of SBE has an exponential relation to the number of
segments in the worst case. In contrast, TBE is comparably
stable with respect to the number of segments.

Finally, we show the performance for CPMiner. As
analyzed in Section 4.2.2, the time complexity for CPMiner
is related to the number of segments. Hence, we use various
values of L, the maximum lengths of complex patterns, to
generate different data sets. Note that for various lengths of
complex patterns (L), the number of segments generated is
proportional to 2I � 2L � C � S. As shown in Fig. 8b, the

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 7. Performance comparison SPMiner versus LSI.

Fig. 8. Performance of (a) MPMiner (TBE versus SBE) and (b) CPMiner with parameter C = 1.

execution time and the number of complex patterns have

very similar trends, indicating that the running time is

proportional to the number of segments. This seems to

prove our estimation since nonoverlapping segments can be

ignored due to the increasing order of the start position for

segments.

6.2 Web Log

We also apply our algorithm to part of the Web log data for

the Kinmen Information PortalWeb site (http://kmip.org/),

collected from 20 August 2002 to 4 June 2003. There are 6,892

time instants (hours) and 488 users in the KMIP-Log with

anonymous users removed. The execution time is less than 1

sec. In average, there are four distinct users online in every

hour. The interested period is a range between 1 to 48 hours.

With min rep ¼ 3, Fig. 9a shows the number of valid

segments for different periods. This curve, with an acme

located on 24, demonstrates that most of the users of KMIP

have a regular log-in periodicity of 24 hours, reflecting a

daily schedule. This curve is useful when the period of the

database is unknown. Analysts can find all singular periodic

patterns within a predefined period interval to find an acme

of the curve. With such an acme, a possible periodicity is

consequently ascertained. Fig. 9b shows that the number of

valid segments decreases steeply with the increasing

min rep threshold following a geometrical distribution as

our synthetic data.

6.3 Biological Data

We also apply SMCA to discover periodic conservation

of the protein sequences, which is an important problem

in bioinformatics. We used data in the PROSITE database

of the ExPASy Molecular Biology Server (http://

www.expasy.org/). We selected a protein sequence

P17437 (Skin secretory protein XP2) with a known

periodic pattern fA;P;A;P;A; �; �;E; �; �g, as reported in

[8]. As expected, several periodic patterns which are

related to the known periodic conservation are discov-

ered. It is indicated that our algorithm can be used in

protein sequence. It is worth to note that we also

discover an interest ing and longest pat tern

fA;P;A;P;A;E;G;E;A;Pg occur 11 times (approximately

46 percent) in the known periodic pattern. It may be a

core pattern, since the partial slots of the pattern allow

some mutations.

7 CONCLUSION

In this paper, a general model for asynchronous periodic

pattern mining is defined. A four-phase algorithm which

includes singular periodic pattern mining (SPMiner),

multievent periodic pattern mining (MPMiner), complex

periodic pattern mining (CPMiner), and asynchronous

sequence mining (APMiner) is devised to solve the

problem. One of the main contributions of this paper is

that SMCA is devised to discover all patterns via two scans

of the temporal database. Transforming horizontal database

into their vertical formats can be done in a straightforward

way. Also, SMCA can be modified for incremental mining

with proper management of the mining results (both final

and intermediate). Maintaining a maximal patterns can also

save additional time for unnecessary mining. More works

will be reported in the near future.

ACKNOWLEDGMENTS

This work was sponsored by the Ministry of Economic

Affairs, Taiwan under grant 93-EC-17-A-02-S1-029.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data Bases
(VLDB ’94), pp. 487-499, 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng. (ICDE ’95), pp. 3-14, 1995.

[3] C. Berberidis, I. Vlahavas, W. Aref, M. Atallah, and A.
Elmagarmid, “The Discovery of Weak Periodicities in Large Time
Series,” Proc. European Conf. Principles and Practice of Knowledge
Discovery in Databases (PKDD ’02), 2002.

[4] J. Han, G. Dong, and Y. Yin, “Efficient Mining Paritial Periodic
Patterns in Time Series Database,” Proc. 15th Int’l Conf. Data Eng.
(ICDE ’99), pp. 106-115, 1999.

[5] J. Han, W. Gong, and Y. Yin, “Mining Segment-Wise Periodic
Patterns in Time-Related Databases,” Proc. Fourth ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining (KDD ’98), pp. 214-
218, 1998.

[6] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without
Candidate Generation,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’00), pp. 1-12, 2000.

[7] K.Y. Huang and C.H. Chang, “Prowl: An Efficient Frequent
Continuity Mining Algorithm on Event Sequences,” Proc. Sixth
Int’l Conf. Data Warehousing and Knowledge Discovery (DaWaK ’04),
pp. 351-360, 2004.

[8] M.V. Katti, R. Sami-Subbu, P.K. Ranjekar, and V.S. Gupta, “Amino
Acid Repeat Patterns in Protein Sequences: Their Diversity and
Structural-Function Implications,” Protein Science, no. 9, pp. 1203-
1209, 2000.

HUANG AND CHANG: SMCA: A GENERAL MODEL FOR MINING ASYNCHRONOUS PERIODIC PATTERNS IN TEMPORAL DATABASES 11

Fig. 9. KMIP Web Log Analysis. (a) Number of segments versus period. (b) Number of segments versus repetition.

[9] S. Ma and J. Hellerstein, “Mining Partially Periodic Event Patterns
with Unknown Periods,” Proc. Int’l Conf. Data Eng. (ICDE ’01),
pp. 205-214, 2001.

[10] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovering
Frequent Episodes in Sequences,” Proc. First Int’l Conf. Knowledge
Discovery and Data Mining, pp. 210-215, 1995.

[11] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovering
Generalized Episodes Using Minimal Occurrences,” Proc. Second
Int’l Conf. Knowledge Discovery and Data Mining, pp. 146-151, 1996.

[12] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovering
Frequent Episodes in Event Sequences,” Data Mining and Knowl-
edge Discovery, vol. 1, no. 3, pp. 259-289, 1997.

[13] B. Ozden, S. Ramaswamy, and A. Silberschatz, “Cyclic Associa-
tion Rules,” Proc. 14th Int’l Conf. Data Eng. (ICDE ’98), pp. 412-421,
1998.

[14] R. Srikant and R. Agrawal, “Mining Sequential Patterns: General-
izations and Performance Improvements,” Proc. Fifth Int’l Conf.
Extending Database Technology (EDBT ’96), pp. 3-17, 1996.

[15] A.K.H. Tung, H. Lu, J. Han, and L. Feng, “Efficient Mining of
Intertransaction Association Rules,” IEEE Trans. Knowledge and
Data Eng., vol. 15, no. 1, pp. 43-56, 2003.

[16] W. Wang, J. Yang, and P.S. Yu, “Mining Patterns in Long
Sequential Data with Noise,” Proc. ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’00), pp. 28-33, 2000.

[17] J. Yang, W. Wang, and P.S. Yu, “Mining Asynchronous Periodic
Patterns in Time Series Data,” IEEE Trans. Knowledge and Data
Eng., vol. 15, no. 3, pp. 613-628, 2003.

[18] M.J. Zaki, “Spade: An Efficient Algorithm for Mining Frequent
Sequences,” Machine Learning, vol. 42, nos. 1/2, pp. 31-60, 2001.

Kuo-Yu Huang is currently a PhD student of
computer science information engineering at
National Central University, Taiwan, ROC. He is
also a member of the Database Laboratory. His
research interests include the design of efficient,
scalable, and flexible algorithms for various data
mining techniques such as intratransaction rule,
intertransaction rule, and temporal data mining.
He has published more than 10 books on
computer programming language in Chinese.

Chia-Hui Chang received the BS degree in
computer science and information engineering
from National Taiwan University, Taiwan, in
1993 and received the PhD degree in the same
department in January 1999. She is an assistant
professor in the Department of Computer
Science and Information Engineering, National
Central University in Taiwan. She worked as a
postdoctoral in Chun-Nan Hsu’s group after
graduation, then joined National Central Uni-

versity from August 1999. Her research interests include information
retrieval, knowledge discovery from databases, machine learning, and
Web related research. She is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

